
HAL Id: inserm-00405223
https://inserm.hal.science/inserm-00405223v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Split-Radix Fast Algorithm for 2-D Discrete
Hartley Transform

Longyu Jiang, Huazhong Shu, Jiasong Wu, Lu Wang, Lotfi Senhadji

To cite this version:
Longyu Jiang, Huazhong Shu, Jiasong Wu, Lu Wang, Lotfi Senhadji. A Novel Split-Radix Fast
Algorithm for 2-D Discrete Hartley Transform. IEEE Transactions on Circuits and Systems Part
1 Fundamental Theory and Applications, 2010, 57 (4), pp.911-924. �10.1109/TCSI.2009.2028639�.
�inserm-00405223�

https://inserm.hal.science/inserm-00405223v1
https://hal.archives-ouvertes.fr

 1

Abstract—This paper presents a fast split-radix-(2×2)/(8×8)

algorithm for computing the two-dimensional (2-D) discrete
Hartley transform (DHT) of length N×N with N = q*2m, where q is
an odd integer. The proposed algorithm decomposes an N×N DHT
into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs. It achieves
an efficient reduction on the number of arithmetic operations,
data transfers and twiddle factors compared to the
split-radix-(2×2)/(4×4) algorithm. Moreover, the characteristic of
expression in simple matrices leads to an easy implementation of
the algorithm. If implementing the above two algorithms with
fully parallel structure in hardware, it seems that the proposed
algorithm can decrease the area complexity compared to the
split-radix-(2×2)/(4×4) algorithm, but requires a little more time
complexity. An application of the proposed algorithm to 2-D
medical image compression is also provided.

Index Terms—Two-dimensional (2-D) discrete Hartley
transform (DHT), split-radix, fast algorithm

I. INTRODUCTION
he discrete Hartley transform (DHT) is widely used in
signal and image processing applications. The advantage

of the DHT over the discrete Fourier transform (DFT) is that it
can be used to avoid complex operations when the input
sequence is real. Moreover, the forward and inverse DHTs
differ from each other in their form only in the scaling factor.
Owing to these properties, the DHT is now finding an
increasing interest in the signal processing community. In the

Manuscript received November 23, 2008. This work was supported by the

National Natural Science Foundation of China under Grant 60873048, the
Program for Changjiang Scholars and Innovative Research Team in University
and the Natural Science Foundation of Jiangsu Province of China under Grant
BK2008279.

L. Jiang is with the Laboratory of Image Science and Technology, School
of Computer Science and Engineering, Southeast University, Nanjing 210096,
China (e-mail: jianglongyu01412@yahoo.com.cn).

H. Shu and L. Wang are with the Laboratory of Image Science and
Technology, School of Computer Science and Engineering, Southeast
University, Nanjing 210096, China, and also with the Centre de Recherche en
Information Biomédicale Sino-Français (CRIBs), Nanjing 210096, China
(e-mail: shu.list@seu.edu.cn; wanglu@seu.edu.cn).

J. Wu is with the Laboratory of Image Science and Technology, School of
Biological Science and Medical Engineering, Southeast University, Nanjing
210096, China, and with the Centre de Recherche en Information Biomédicale
Sino-Français (CRIBs), Nanjing 210096, China, and with INSERM, U 642,
35000 Rennes, France, and with the Laboratoire Traitement du Signal et de
l’Image (LTSI), Université de Rennes 1, 35000 Rennes, France, and also with
the Centre de Recherche en Information Biomédicale Sino–Français (CRIBs),
35000 Rennes, France (e-mail: jswu@seu.edu.cn).

L. Senhadji is with INSERM, U 642, 35000 Rennes, France, and with the
Laboratoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1,
35000 Rennes, France, and also with the Centre de Recherche en Information
Biomédicale Sino–Français (CRIBs), 35000 Rennes, France (e-mail:
lotfi.senhadji@univ-rennes1.fr).

past decades, fast algorithms and implementations of
one-dimensional (1-D) DHT and DFT have been extensively
investigated [1]-[21]. Meantime, special attention has also been
paid on the two-dimensional (2-D) and three-dimensional
(3-D) DHT [22]-[39], this is due to the growing interest in
applications involving multi-dimensional (M-D) signals. In this
paper, fast algorithm means lower computational complexity in
terms of the number of arithmetic operations, data transfers and
twiddle factors.

The algorithms proposed for fast computing the 2-D DHT
can be classified into four categories: i) the row-column
method; ii) the vector-radix fast Hartley transform (FHT)
algorithms [22]-[24]; iii) the split-radix FHT algorithm
[25]-[31]; and iv) the polynomial transform FHT algorithm
[32]-[34]. The row-column method computes the 2-D DHT by
taking the 1-D FHT sequentially along each dimension of the
input data while in the vector-radix algorithm, the 2-D DHT is
decomposed into many smaller ones until the trivial sequence
length is reached. The vector-radix method reduces the number
of arithmetic operations over the row-column algorithm and
possesses the desirable properties such as regular structure and
low implementation cost. This approach was then extended to
3-D DHT [35]-[37] and M-D DHT [23]. In [39], a
vector-radix-3×3 algorithm was developed for computing the
2-D DHT of sequence whose length is 3m×3m. The polynomial
transform based FHT algorithms for M-D DHT have been
reported in [32] and [34], which lead to a great reduction of the
arithmetic operations at the expense of very complicated
structure. The split-radix 2-D DHT algorithm is more efficient
than the vector-radix algorithm in terms of arithmetic
complexity and it is easy to implement. All the split-radix
algorithms for 2-D DHT reported so far are based on a mixture
of radix-2×2 and radix-4×4 index maps.

Huang et al. [25] applied a radix-2×2 decomposition to the
even-even, even-odd, odd-even indexed samples and a
radix-4×4 decomposition to the odd-odd indexed samples.
Thus, an N×N DHT is decomposed into three N/2×N/2 DHTs
and four N/4×N/4 DHTs. By using a radix-4×4 decomposition
to even-odd, odd-even and odd-odd indexed terms, an
improved split-radix algorithm for 2-D DHT was further
derived [28], which decomposes an N×N 2-D DHT into one
N/2×N/2 DHT and twelve N/4×N/4 DHTs. The split-radix
algorithms for the 2-D DHT have been presented using
decimation-in-frequency (DIF) [29] and decimation-in-time
(DIT) [30]. It seems that the algorithms reported in [29] and [30]
are the most efficient ones among all the existing split-radix
algorithms in terms of the arithmetic complexity.

A Novel Split-Radix Fast Algorithm for 2-D
Discrete Hartley Transform

Longyu Jiang, Huazhong Shu, Senior Member, IEEE, Jiasong Wu, Lu Wang and Lotfi Senhadji,
Senior Member, IEEE

T

 2

Moreover, these two algorithms support various sequence
lengths. Specifically, the block size can be chosen as
q*2m×q*2m, where q is an odd integer. In [31], the radix-2/4
approach has been generalized to the M-D DHT. In particular,
for the case of 2-D DHT, it has the same arithmetic complexity
as that of the algorithms presented in [29] and [30].

Among all the algorithms mentioned above, the split-radix
algorithms based on radix-2/4 are the most attractive ones
because they provide a good comprise between the arithmetic
and structural complexities. Recently, Bouguezel et al. [3]
proposed a new split-radix fast algorithm based on a mixture of
radix-2 and radix-8 index maps for 1-D DHT of sequences
whose length is q×2m, where q is an odd integer. This algorithm
is more efficient than the conventional split radix-2/4 FHT
algorithm in terms of the number of data transfers and twiddle
factor evaluations, which also contribute significantly to the
execution time of FHT algorithms. Inspired by the algorithm
presented in [3], we propose a split-radix-(2×2)/(8×8)
algorithm for computing the 2-D DHT of sequences with
length-q*2m×q*2m, which consists of decomposing an N×N
DHT into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs.
Besides, the split radix-2/8 algorithm has been already used for
computing the 2-D DFT [40], [41].

The rest of the paper is organized as follows. Section II
presents the derivation of the algorithm. In Section III, the
computational complexity and the hardware area and time
complexity of the proposed algorithm are analyzed, and the
comparison with some existing algorithms is also provided.
Section IV presents the result of software implementation of
the proposed and some existing algorithms. Section V
concludes the work.

II. PROPOSED RADIX-(2×2)/(8×8) ALGORITHM
The 2-D DHT X(k1, k2) of real valued sequence, x(n1, n2),

for 0 ≤ n1, n2 ≤ N – 1, is defined by

1 2

1 2

1 1 2

1 2 1 2
0 0 1

(,)

2(,)cas , 0 , 1,
N N

i i
n n i

X k k

x n n n k k k N
N
π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (1)

where cas() cos() sin().θ θ θ= + The sequence length N is
assumed to be q×2m, where q is an odd integer and m > 0.

Let us first consider the case when m = 1, that is, N = 2q.

A. The case m = 1, i.e., N = 2q

In this case, the radix-2×2 algorithm is used to decompose a
length-2q×2q DHT. The even-even indexed outputs are
obtained by

1 2

1 2

1 1 2

00 1 2 1 2
0 0 1

(2 ,2)

2(,)cas , 0 , 1.
q q

i i
n n i

X k k

y n n n k k k q
q
π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (2)

The even-odd, odd-even, and odd-odd indexed outputs can
be computed by

1 1 2 2

1 2

1 2

1 1 2 2

1 1 2
()

1 2
0 0 1

(2 ,2)

2(1) (,)cas ,
q q

n p n p
p p i i

n n i

X k p q k p q

y n n n k
q
π− −

+

= = =

+ +

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (3)

where 1 2 1 2 1 2, 0, 1, (,) (0,0), 0 , 1.p p p p k k q= ≠ ≤ ≤ −
The sequences

1 2, 1 2(,)p py n n for p1, p2 = 0, 1, in (2) and (3) are

obtained from the original input sequence as
()

()
00 1 2 01 1 2 10 1 2 11 1 2

2 2 1 2 1 2 1 2 1 2

(,), (,), (,), (,)

() (,), (,), (,), (,)

T

T

y n n y n n y n n y n n

H H x n n x n n q x n q n x n q n q= ⊗ + + + +
 (4)

where T denotes the transpose, ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11
2H , and “ ⊗ ” is

the Kronecker product [42]. Fig. 1 shows the implementation of
(4).

B. The case m = 2, i.e., N = 4q

When m = 2, the decomposition of (1) for the even-even
indexed outputs is given by

1 2

1 2

2 1 2 1 2
2 / 4
00 1 2 1 2

0 0 1

(2 ,2)

2(,)cas , 0 , 2 1,
2

q q

i i
n n i

X k k

y n n n k k k q
q
π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (5)

where

2 / 4
00 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, 2)]
 [(2 ,) (2 , 2)].
y n n x n n x n n q

x n q n x n q n q
= + +

+ + + + +
 (6)

 The even-odd, odd-even and odd-odd indexed outputs are
obtained as follows

1 2

1 2 1 2

1 1 2 2

1 1 2 2

1 2
0 0 1 1

2 / 4 2 / 4
, 1 2 , 1 2 1 2

(4 , 4)

2(,)cas
2

(,) (,), 0 , 1,

N N

i i i i
n n i i

p p p p

X k p q k p q

x n n n k n p
q

F k k G k k k k q

π π− −

= = = =

± ±

⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
= ± ≤ ≤ −

∑ ∑ ∑ ∑ (7)

where

1 2

1 2

2 / 4
, 1 2

1 1 2 2

1 2
0 0 1 1

(,)

2(,) cos cas ,
2

p p

N N

i i i i
n n i i

F k k

x n n n p n k
q

π π− −

= = = =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑
 (8)

1 2

1 2

2 / 4
, 1 2

1 1 2 2

1 2
0 0 1 1

(,)

2(,)sin cas .
2

p p

N N

i i i i
n n i i

G k k

x n n n p n k
q

π π− −

= = = =

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑
 (9)

Using the matrix representation, (7) can be expressed as

1 2

1 2

1 1 2 2

1 1 2 2

2 / 4
, 1 2

2 2 / 4
, 1 2

((4) mod 4 , (4) mod 4)
((4) mod 4 , (4) mod 4)

(,)
.

(,)
p p

p p

X k p q q k p q q
X N k p q q N k p q q

F k k
H

G k k

+ +⎡ ⎤
⎢ ⎥+ − + −⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

 (10)

 3

1) Even-odd output terms (p1 = 0, 2; p2 = 1)

1 2

2 / 4
, 1 2(,)p pF k k and

1 2

2 / 4
, 1 2(,)p pG k k defined by (8) and (9) can be

further decomposed as follows.

1 2

1 2

1 2

2 / 4
, 1 2

2 1 2 1

1 2 1 2
0 0

2

1 2 1 2
1

2

1

2 1 2 1 2 2
2 / 4
01 1 2

0 0 1 1

(,)

{[(,) (2 ,)]

[(, 2) (2 , 2)]}cos
2

2cas

2(,) cos cas
2

p p

q q

n n

i i
i

i i
i

q q

i i i i
n n i i

F k k

x n n x n q n

x n n q x n q n q n p

n k
q

y n n n p n k
q

π

π

π π

− −

= =

=

=

− −

= = = =

= + +

⎛ ⎞− + + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞
× ⎜ ⎟

⎝ ⎠
⎛⎛ ⎞= ⎜⎜ ⎟

⎝ ⎠ ⎝

∑ ∑

∑

∑

∑ ∑ ∑ ∑

1 2
1 2

1 1 2
2 / 4

, 1 2
0 0 1

2(,)cas ,
q q

p p i i
n n i

f n n n k
q
π− −

= = =

⎞
⎟
⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (11)

where

2 / 4
01 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, 2)]
 [(2 ,) (2 , 2)],
y n n x n n x n n q

x n q n x n q n q
= − +

+ + − + +
 (12)

1

1 2

1

/ 22 / 4 2 / 4 2 / 4
, 1 2 01 1 2 01 1 2

2
(1) 2 2 / 4

01 1 2
1

2
/ 2 2 / 4

01 1 2
1

(,) (,) (1) (,)

cos (1) [(,)
2

(1) (,)]sin .
2

p
p p

q
i i

i

p
i i

i

f n n y n n y n q n

n p y n n q

y n q n q n p

π

π

+

=

=

⎡ ⎤= + − +⎣ ⎦
⎛ ⎞× + − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + + ⎜ ⎟
⎝ ⎠

∑

∑

 (13)

The decomposition of
1 2

2 / 4
, 1 2(,)p pG k k (p1 = 0, 2; p2 = 1) can be

done in a similar way.

1 2

1 2

1 2

1 2

2 / 4
, 1 2

2 1 2 1 2 2
2 / 4
01 1 2

0 0 1 1

1 1 2
2 / 4

, 1 2
0 0 1

 (,)

2(,)sin cas
2

2(,)cas

p p

q q

i i i i
n n i i

q q

p p i i
n n i

G k k

y n n n p n k
q

g n n n k
q

π π

π

− −

= = = =

− −

= = =

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

 (14)

where

1

1 2

1

/ 22 / 4 2 / 4 2 / 4
, 1 2 01 1 2 01 1 2

2
(1) 2 2 / 4

01 1 2
1

2
/ 2 2 / 4

01 1 2
1

(,) (,) (1) (,)

 sin (1) (,)
2

 (1) (,) cos
2

p
p p

q
i i

i

p
i i

i

g n n y n n y n q n

n p y n n q

y n q n q n p

π

π

−

=

=

⎡ ⎤= + − +⎣ ⎦
⎛ ⎞ ⎡× + − +⎜ ⎟ ⎣⎝ ⎠

⎛ ⎞⎤+ − + + ⎜ ⎟⎦ ⎝ ⎠

∑

∑

 (15)

1 2

2 / 4
, 1 2(,)p pf n n and

1 2

2/ 4
, 1 2(,)p pg n n (p1 = 0, 2; p2 = 1) defined by

(13) and (15) can be expressed in matrix form as

1 1

1 1

2 / 4
0,1 1 2
2 / 4

2,1 1 2
2 / 4
0,1 1 2
2 / 4
2,1 1 2

2 2

12 2

2 2

2 2

(1)

(,)
(,)
(,)
(,)

cos 0 sin 0
2 2

0 (1) cos 0 (1) sin
2 2

sin 0 cos 0
2 2

0 (1) sin 0 (1) cos
2 2

1 0 0 0
0 1 0 0
0 0 (1)

n n

n n

q

f n n
f n n
g n n
g n n

n n

n n

n n

n n

π π

π π

π π

π π

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤−⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

× −

2 / 4
01 1 2

2 / 4
01 1 22 2 / 4
01 1 2(1) 2 2 / 4

01 1 2

(,)1 0 1 0
(,)1 0 1 0

0 1 0 10 (,)
0 1 0 10 0 0 (1) (,)q

y n n
y n n q
y n q n

y n q n q−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ +−⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ +⎢ ⎥⎢ ⎥ ⎢ ⎥−− ⎣ ⎦ + +⎣ ⎦ ⎣ ⎦

 (16)
The above equation can be rewritten as

1 2

1 2

2 / 4 2 / 4 2 / 4
, 2

(1) / 22 / 4 2 / 42 / 4
2,

2 / 4
2 / 41 1 1
012 / 4

1 2 2

(1)

 ,

p p eo eo
q

eo eop p
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
× ⎢ ⎥

⎣ ⎦

f I 0C S
0 IS Cg

J R J
y

R J J

 (17)

where 2I is the identity matrix, and

1 2 1 2

2 / 4 2 / 4
0,1 1 2 0,1 1 22 / 4 2 / 4

, ,2 / 4 2 / 4
2,1 1 2 2,1 1 2

(,) (,)
, ,

(,) (,)p p p p

f n n g n n
f n n g n n

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
f g (18)

1

1

012 / 4

01

012 / 4
01 2

01

cos 0
,

0 (1) cos

sin 0
, () 2,

0 (1) sin

eo n

eo n n

α
α

α
α π

α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

C

S
 (19)

2 / 4
1 2 1

1 0 0 1
, , diag(1, 1),

1 0 0 1
⎡ ⎤ ⎡ ⎤

= = = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
J J R (20)

2 / 4 2 / 4 2 / 4
01 01 1 2 01 1 2

2 / 4 2 / 4
01 1 2 01 1 2

((,) (,)

 (,) (,)) .T

y n n y n n q

y n q n y n q n q

= +

+ + +

y
 (21)

Fig. 2 shows the implementation of (17).

2) Odd-even output terms (p1 = 1; p2 = 0, 2)
 As for the previous case, the odd-even output terms can be
obtained as

1 2

1 2

2 / 4 2 / 4 2 / 4
, 2 2 2 / 4

10(1) / 22 / 4 2 / 42 / 4
2 2,

,
(1)

p p oe oe
q

oe oep p
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

f I 0 H 0C S
y

0 I 0 HS Cg

 (22)
where

1 2 1 2

2 / 4 2 / 4
1,0 1 2 1,0 1 22 / 4 2 / 4

, ,2 / 4 2 / 4
1,2 1 2 1,2 1 2

(,) (,)
, ,

(,) (,)p p p p

f n n g n n
f n n g n n

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
f g (23)

 4

2

2

102 / 4

10

102 / 4
10 1

10

cos 0
,

0 (1) cos

sin 0
 , () 2,

0 (1) sin

oe n

oe n n

α
α

α
α π

α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

C

S
 (24)

2 / 4 2 / 4 2 / 4
10 10 1 2 10 1 2

2 / 4 2 / 4
10 1 2 10 1 2

((,) (,)

 (,) (,)) ,T

y n n y n n q

y n q n y n q n q

= +

+ + +

y
 (25)

2 / 4
10 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, 2)]
 [(2 ,) (2 , 2)].
y n n x n n x n n q

x n q n x n q n q
= + +

− + + + +
 (26)

3) Odd-odd output terms (p1 = 1, –1; p2 = 1)
 We have the following decomposition for the odd-odd output
terms

1 2

1 2

2 / 4 2 / 4 2 / 4
, 2 1 2 2 / 4

11(1) / 2 2 / 4 2 / 42 / 4 2 / 42 / 4
2 1 2 2 1, (1)

p p oo oo
q

oo oop p
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

f I 0 J JC S
y

0 I R J R JS Cg

 (27)
where

1 2 1 2

2 / 4 2 / 4
1,1 1 2 1,1 1 22 / 4 2 / 4

, ,2 / 4 2 / 4
1,1 1 2 1,1 1 2

2 / 4
2

(,) (,)
, ,

(,) (,)

diag(1,1),

p p p p

f n n g n n
f n n g n n

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= −

f g

R

 (28)

11 112 / 4 2 / 4

11 11

11 2 1 11 1 2

cos 0 sin 0
, ,

0 cos 0 sin
 [()] 2, [()] 2,

oo oo

n n n n

α α
α α

α π α π

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

′= − = +

C S
 (29)

2 / 4 2 / 4 2 / 4
11 11 1 2 11 1 2

2 / 4 2 / 4
11 1 2 11 1 2

((,) (,)

 (,) (,)) ,T

y n n y n n q

y n q n y n q n q

= +

+ + +

y
 (30)

2 / 4
11 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, 2)]
 [(2 ,) (2 , 2)].
y n n x n n x n n q

x n q n x n q n q
= − +

− + − + +
 (31)

C. The case m ≥ 3

By introducing a mixture of radix-2×2 and radix-8×8 index
maps, we propose a novel decomposition of (1). The even-even
output terms can be computed by

1 2

1 2

2 1 2 1 2
2 / 8
00 1 2 1 2

0 0 1

(2 , 2)

2(,)cas , 0 , 2 1,
2

N N

i i
n n i

X k k

y n n n k k k N
N

π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

 (32)

where
2 / 8
00 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, 2)]
 [(2,) (2, 2)].
y n n x n n x n n N

x n N n x n N n N
= + +

+ + + + +
 (33)

The even-odd, odd-even, and odd-odd output terms can be
derived as follows.

1 2

1 2 1 2

1 1 2 2

1 1 2 2

1 2
0 0 1 1

2 / 8 2 / 8
, 1 2 , 1 2 1 2

(8 ,8)

2 2(,)cas
8

 (,) (,), 0 , 8 1,

N N

i i i i
n n i i

p p p p

X k p q k p q

x n n n k n p
N N q

F k k G k k k k N

π π− −

= = = =

± ±

⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
= ± ≤ ≤ −

∑ ∑ ∑ ∑ (34)

where

1 2

1 2

2 / 8
, 1 2

1 1 2 2

1 2
0 0 1 1

(,)

2 2(,) cos cas ,
8

p p

N N

i i i i
n n i i

F k k

x n n n p n k
N q N

π π− −

= = = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

 (35)

1 2

1 2

2 / 8
, 1 2

1 1 2 2

1 2
0 0 1 1

(,)

2 2(,)sin cas .
8

p p

N N

i i i i
n n i i

G k k

x n n n p n k
N q N

π π− −

= = = =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

 (36)

Equation (34) can be written in matrix form as

1 2

1 2

1 1 2 2

1 1 2 2

2 / 8
, 1 2

2 2 / 8
, 1 2

((8) mod , (8) mod)
((8) mod , (8) mod)

(,)

(,)
p p

p p

X k p q N k p q N
X N k p q N N k p q N

F k k
H

G k k

+ +⎡ ⎤
⎢ ⎥+ − + −⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

 (37)

The input data sequences
1 2

2 / 8
, 1 2(,)p pF k k and

1 2

2 / 8
, 1 2(,)p pG k k are

determined as follows.
1) Even-odd output terms (p1 = 0, 2, 4, 6; p2 = 1, 3)
 Equation (35) can be decomposed as

1 2

1 2

1 2
1 2

2 / 8
, 1 2

2 1 2 1 2 2
2 / 8
01 1 2

0 0 1 1

/ 8 1 / 8 1 2
2 / 8

, 1 2
0 0 1

(,)

2 2(,)cos cas
8

2(,)cas ,
8

p p

N N

i i i i
n n i i

N N

p p i i
n n i

F k k

y n n n p n k
N q N

f n n n k
N

π π

π

− −

= = = =

− −

= = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

(38)

where
[]

[]

2/8
01 1 2 1 2 1 2

1 2 1 2

(,) (,) (, 2)

 (2,) (2, 2) ,

y n n x n n x n n N

x n N n x n N n N

= − +

+ + − + +
 (39)

1 2

1 2

3 3
2 / 8 2 / 8 1 2

, 1 2 01 1 2
0 0

2

1 1 2 2
1

(,) ,
8 8

2 cos () .
4

p p
l l

i i
i

l N l N
f n n y n n

n p q p l p l
N q

π π
= =

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞
× + +⎜ ⎟

⎝ ⎠

∑∑

∑
 (40)

Equation (36) can be decomposed in a similar manner as

1 2 1 2

1 2

/8 1 /8 1 2
2/8 2/8

, 1 2 , 1 2
0 0 1

2(,) (,)cas
8

N N

p p p p i i
n n i

G k k g n n n k
N

π− −

= = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (41)

where

1 2

1 2

3 3
2 / 8 2 / 8 1 2

, 1 2 01 1 2
0 0

2

1 1 2 2
1

(,) ,
8 8

2sin () .
4

p p
l l

i i
i

l N l N
g n n y n n

n p q p l p l
N q

π π
= =

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞
× + +⎜ ⎟

⎝ ⎠

∑∑

∑
 (42)

 We need to use the following lemma, which was stated in [3].
Lemma 1: Let qcπβ 22))4(cos(= and

qsπβ 22))4(sin(= , where β is an odd integer. Then the

following is true
i) For qβ = , 2)1()1(−−= q

qq sc .

ii) For qβ 3= , qq cc −=3 and qq ss =3 .

Letting
2

01
1

2
i i

i
n p

N q
πγ

=

= ∑ (43)

 5

and using Lemma 1, the twiddle factors

01 1 1 2 2cos ()
4

q p l p lπγ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 and 01 1 1 2 2sin ()
4

q p l p lπγ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

appeared in (40) and (42) can be simplified as
a) 1 1 2 2() mod 4 0p l p l+ = .

 ()1 1 2 2() / 4
01 1 1 2 2 01cos () (1) cos ,

4
p l p lq p l p lπγ γ+⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
 (44a)

()1 1 2 2() / 4
01 1 1 2 2 01sin () (1) sin .

4
p l p lq p l p lπγ γ+⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
 (44b)

b) 1 1 2 2() mod 4 1p l p l+ =

() ()

1 1 2 2

1 1 2 2

01 1 1 2 2

() / 4
01

() / 4 (1) 2
01 01

cos ()
4

(1) cos
4

(1) cos (1) sin ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − − −⎣ ⎦

 (45a)

() ()

1 1 2 2

1 1 2 2

01 1 1 2 2

() / 4
01

() / 4 (1) 2
01 01

sin ()
4

(1) sin
4

(1) sin (1) cos ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

 (45b)

 where x⎢ ⎥⎣ ⎦ denotes the integer part of x.
c) 1 1 2 2() mod 4 2p l p l+ =

()1 1 2 2

01 1 1 2 2

() / 4 (1) / 2
01

cos ()
4

(1) sin ,p l p l q

q p l p lπγ

γ+ + −⎢ ⎥⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

= −

 (46a)

()1 1 2 2

01 1 1 2 2

() / 4 (1) / 2
01

sin ()
4

(1) cos .p l p l q

q p l p lπγ

γ+ + −⎢ ⎥⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

= −

 (46b)

d) 1 1 2 2() mod 4 3p l p l+ =

() ()

1 1 2 2

1 1 2 2

01 1 1 2 2

() / 4
01

() / 4 1 (1) 2
01 01

cos ()
4

3(1) cos
4

(1) cos (1) sin ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+ +⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

 (47a)

() ()

1 1 2 2

1 1 2 2

01 1 1 2 2

() / 4
01

() / 4 1 (1) 2
01 01

sin ()
4

3(1) sin
4

(1) sin (1) cos .
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+ +⎢ ⎥ +⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

 (47b)

Using the above results,
1 2

2 / 8
, 1 2(,)p pf n n and

1 2

2 / 8
, 1 2(,)p pg n n

defined by (40) and (42) can be expressed in matrix form as

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

(1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 81

2 1 012 / 8 2 / 8
1

0
0 (1)

() ,

p p eo eo
q

eo eop p

eo eo

eo eo

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
× ⊗⎢ ⎥

⎣ ⎦

f IC S
IS Cg

A R A
I Q y

B R B

 (48)

where LI is an identity matrix of order L, the pth component of

the vectors 8/2
, 21 ppf and 8/2

, 21 ppg is related to the input sequences

of (40) and (42) by

 1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 1 2

() (,),

() (,), (1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + −
 (49)

The matrices 8/2
eoC and 8/2

eoS are composed by twiddle factors
whose components are given by

() ()2 / 8 2 / 8
01 01(,) cos , (,) sin . eo eop p p pγ γ= =C S (50)

The new input sequences 2/8
01y is related to the original

sequences as
2 / 8 2 / 8
01 01 1 1 2 2

1 2

() (8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
 (51)

01 10

2 / 8 01 10
01 10

1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 0 1 1 1
1 1 0 1 0 1 1 1

eo eo
eo eo eo

eo eo

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

A AA A A
A A

 (52)

01 10
2 / 8 01 10

01 10

0 1 1 1 0 1 1 1
0 1 11 0 1 1 1 0 1 1 1 1 1 0 1
0 1 11 1 1 0 1

eo eo
eo eo eo

eo eo

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

B BB B B
B B

 (53)

 1 diag(1,1, 1, 1,1,1, 1, 1),= − − − −R (54)

 1
2 2 2 21, ,1, ,1, ,1, .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q (55)

Fig. 3 shows the implementation of (48).

2) Odd-even output terms (p1 = 1, 3; p2 = 0, 2, 4, 6)

 We have

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

(1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 83

2 2 102 / 8 2 / 8
2

0
0 (1)

()

p p oe oe
q

oe oep p

oe oe

oe oe

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤

× ⊗⎢ ⎥
⎣ ⎦

f IC S
IS Cg

A R B
I Q y

B R A

 (56)

where the pth component of the vectors 8/2
, 21 ppf and 8/2

, 21 ppg is

related to the input sequences of (40) and (42) by

1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 2 1

() (,),

() (,), (1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + −
 (57)

The elements of the matrices 8/2
oeC and 8/2

oeS are given by
 () ()01 01(,) cos , (,) sin .oe oep p p pγ γ= =C S (58)

The new input sequences 8/2
10y is related to the original

sequences as

 6

2 / 8 2 / 8
10 10 1 1 2 2

1 2

() (8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
 (59

)
2 /8
10 1 2 1 2 1 2

1 2 1 2

(,) [(,) (, / 2)]
 [(/ 2,) (/ 2, / 2)],
y n n x n n x n n N

x n N n x n N n N
= + +

− + + + +
 (60)

01 10 01 10
2/8 2 /8

01 11 01 11, ,oe oe oe oe
oe oe

oe oe oe oe

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A B B
A B

A A B B
 (61)

01 10 11

1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1

oe oe oe

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A A (62)

01 10 11

0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1 1

oe oe oe

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B B B (63)

2

3

diag(1, 1, 1, 1, 1, 1, 1, 1),
diag(1, 1, 1, 1, 1, 1, 1, 1),

= − − − −
= − − − −

R
R

 (64)

2
2 2 2 21, 1, 1, 1, , , , .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q (65)

3) Odd-odd output terms (p1 = –3, –1, 1, 3; p2 = 1, 3)

We have

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

(1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 84

2 3 112 / 8 2 / 8
1

0
0 (1)

()

p p oo oo
q

oo oop p

oo oo

oo oo

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤

× ⊗⎢ ⎥
⎣ ⎦

f IC S
IS Cg

A R B
I Q y

B R A

 (66)

where the pth component of the vectors 8/2
, 21 ppf and 8/2

, 21 ppg is

related to the input sequences of (40) and (42) by

1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 1 2

() (,),

() (,), (3) (1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + + −
 (67)

The (p, p)th components of the matrices 8/2
ooC and 8/2

ooS are
respectively given by

() ()01 01(,) cos , (,) sin .oo oop p p pγ γ= =C S (68)

The new input sequences 8/2
11y is defined as

2 / 8 2 / 8
11 11 1 1 2 2

1 2

() (8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
 (69)

()
() ()

2/8
11 1 2 1 2 1 2

1 2 1 2

(,) (,) , / 2

/ 2, / 2, / 2 ,

y n n x n n x n n N

x n N n x n N n N

= − +⎡ ⎤⎣ ⎦
− + − + +⎡ ⎤⎣ ⎦

 (70)

01 10
2 / 8 01 10

01 10

1 1 0 1 1 0 1 1
1 1 0 1 1 1 1 0
1 1 0 1 1 1 1 0
1 1 0 1 1 0 1 1

oo oo
oo oo oo

oo oo

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

A AA A A
A A

 (71)

01 10
2 / 8 01 10

01 10

0 1 1 1 1 1 1 0
0 1 11 1 0 1 1 0 1 1 1 1 0 1 1
0 1 11 1 1 1 0

oo oo
oo oo oo

oo oo

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

B BB B B
B B

 (72)

4 diag(1, 1,1,1, 1, 1,1,1),= − − − −R (73)

3
2 2 2 21, ,1, , ,1, ,1 .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q (74)

III. COMPUTATIONAL COMPLEXITY AND HARDWARE AREA
AND TIME ANALYSIS

 In this section, we analyze the performance of the proposed
2-D split-radix-(2×2)/(8×8) algorithm and compare it with
some existing algorithms. The analysis and comparison will not
only include the arithmetic operations, but also the operations
such as data transfers and twiddle factor evaluations since they
contribute significantly to the execution time of the algorithm.
The analysis of the area and time complexities is also provided.

A. Arithmetic complexity

It is assumed that the butterfly computations are
implemented by four multiplications and two additions.
1) When N = 2q, from (2) and (3), the number of

multiplications and additions is given by
2

2 2 2 24 , 4 8 .q q q q q q q qM M A A q× × × ×= = + (75)
2) When N = 4q, the twiddle factors in (17), (22) and (27)

become trivial. Therefore
2

4 4 2 2 4 4 2 212 , 12 56 .q q q q q q q q q q q qM M M A A A q× × × × × ×= + = + + (76)
3) When N ≥ 8q
a) The computation of the input data sequences 2 / 8

00 1 2(,),y n n
2 / 8
01 1 2(,)y n n , 2 / 8

10 1 2(,)y n n and 2 / 8
11 1 2(,)y n n defined by (33),

(39), (60) and (70) requires 2N2 additions.
b) In (47), for each given pair (n1, n2), the matrix

⎥
⎦

⎤
⎢
⎣

⎡
8/2

1
8/2

8/2
1

8/2

eoeo

eoeo

BRB
ARA

 requires 56 additions since the

elements of the matrices are either 1 or –1, so that 7N2/8
additions are needed for 0 ≤ n1, n2 ≤ N/8–1.

c) In equation (48), the computation of the matrix

⎥
⎦

⎤
⎢
⎣

⎡ −
8/28/2

8/28/2

eoeo

eoeo

CS
SC

, which is composed by twiddle factors,

requires N2/4–As additions and N2/2–Ms multiplications,
where As and Ms are the savings from the special cases of
twiddle factors such as 0, ±1, 22± , cos(π/8), sin(π/8),
cos(3π/8) and sin(3π/8). Specifically, we can obtain the
number of additions and multiplications saved from the
special cases of twiddle factors as follows: When p1 = 0
and p2 = 1, 3 for a given value of n1 and 0 ≤ n2 ≤ N/8–1, this
case can be taken as an 1-D DHT for the special twiddle
factors. The saved number of additions and multiplications
can be derived in a way similar to the one presented in [3],
they are respectively 6q and 10q. So that the total saved
number of additions and multiplications in the case of p1 =
0, p2 = 1, 3, for 0 ≤n1, n2 ≤ N/8–1 is 3qN/4 and 5qN/4. Thus,
for all the combination of (p1, p2) in (48), we can obtain As
= 3qN and Ms = 5qN.

d) The computation of the matrix 12 QI ⊗ requires N2/8
multiplications.

 7

e) The analysis described from (b) to (d) shows that the
computation of

1 2

2 / 8
, 1 2(,)p pF k k and

1 2

2 / 8
, 1 2(,)p pG k k for

even-odd output terms needs 9N2/8–3qN additions and
5N2/8–5qN multiplications. The same number of arithmetic
operation is required for odd-even and odd-odd cases.

f) The computation of equation (34) requires 3N2/4 additions
for even-odd, odd-even and odd-odd output terms.

From the above discussion, it can be seen that the total
number of additions and multiplications involved in the
proposed algorithm for N > 8q is as follows

2
/ 2 / 2 / 8 / 8

2
/ 2 / 2 / 8 / 8

48 49 /8 9 ,

48 15 / 8 15 .
N N N N N N

N N N N N N

A A A N qN

M M M N qN
× × ×

× × ×

= + + −

= + + −
 (77)

For N = 8q, the twiddle factors are given by
2 2

1 2
1 1

2cos cos , 0 , 1.
4i i i i

i i
n p n p n n q

N q
π π

= =

⎛ ⎞ ⎛ ⎞
= ≤ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ In this

case, only (3/8)×(8q)2 =24q2 multiplications are needed in the
computation of even-odd, odd-even and odd-odd output terms.
Thus, the arithmetic complexity when N = 8q, is given by

2
8 8 4 4

2
8 8 4 4

48 344 ,

48 24 .
q q q q q q

q q q q q q

A A A q

M M M q
× × ×

× × ×

= + +

= + +
 (78)

The initial values for q = 1 are given by
1 1 2 2 4 4 8 8

1 1 2 2 4 4 8 8

0, 8, 64, 384,
0, 0, 0, 24.

A A A A
M M M M

× × × ×

× × × ×

= = = =

= = = =
 (79)

Similarly, for q = 3
3 3 6 6 12 12 24 24

3 3 6 6 12 12 24 24

47, 260, 1328, 6680,
4, 16, 64, 472.

A A A A
M M M M

× × × ×

× × × ×

= = = =

= = = =
 (80)

The flowgraph of length-3×3 DHT is shown in Fig. 4.
Tables I and II show respectively the arithmetic

complexities for q = 1 and q = 3 of the proposed algorithm, the
radix-(2×2)/(4×4) algorithms in [29] and [30], and the
row-column method based on the 1-D algorithm in [3]. It can
be seen from these tables that the proposed algorithm can save
almost 10% multiplications and has lower total number of
additions and multiplications than that of the algorithms in [29]
and [30], and saves about 60% multiplications and 40%
additions compared to the row-column method.

B. Data transfers

Based on the fact that the on-chip memory can be accessed
faster than external memory (off-chip memory), an appropriate
use of the internal registers (on-chip memory) is becoming an
important strategy. It is assumed that sufficient registers are
available in the processor without using any intermediate
transfer operation. The implementation scheme of the proposed
algorithm is shown in Fig. 5. The implementation of the
butterfly for a given value of n1, n2, consists of reading two
points from the external memory of the processor and
performing the operations of addition and subtraction using
these two points. The result of addition is returned to the
external memory whereas that of the subtraction is kept in an
internal register. The points kept in the processor are grouped to
form 8/2

01y , 8/2
10y and 8/2

11y in (48), (56), (66) and to compute
the outputs of (48), (56), (66), which are the inputs of the

N/8×N/8 DHT in (40) and (42). The number of data transfers is
analyzed as follows:
1) Reading all the input terms x(n1, n2), x(n1, n2+N/2), x(n1+N/2,
n2), and x(n1+N/2, n2+N/2) for 0 ≤n1, n2 ≤ N/2–1from external
memory, which requires N2/2 data transfers.
2) Writing 2 / 8

00 1 2(,)y n n for 0 ≤ n1, n2 ≤ N/2–1, into external
memory to form the input sequences of (32). It needs N2/8 data
transfers.
3) Writing 2 / 8

01 1 2(,)y n n , 2 / 8
10 1 2(,)y n n and 2 / 8

11 1 2(,)y n n for 0 ≤
n1, n2 ≤ N/2–1, into the external memory to form the input
sequences of forty-eight N/8×N/8 DHTs in (48), (56) and (66).
It requires 3N2/8 data transfers.
4) Computation of (37) needs 3N2/4 data transfers.
Thus, the data transfers of the proposed algorithm are given by

2 / 8 2 / 8 2 / 8 2
/ 2 / 2 / 8 / 848 +7 / 4, 8,N N N N N ND D D N N× × ×= + > (81)

with
2 / 8 2 / 8 2 / 8

1 1 2 2 4 4
2 / 8 2 2 / 8 2 / 8
8 8 4 4 1 1

0, 4, 20,

48 84.

D D D

D N D D
× × ×

× × ×

= = =

= + + =
 (82)

Similarly, the data transfers of the radix-(2×2)/(4×4)
algorithm in [29] and [30] are given by

2 / 4 2 / 4 2 / 4 2
/ 2 / 2 / 4 / 412 +7 / 4, 8,N N N N N ND D D N N× × ×= + ≥ (83)

with
2 / 4 2 / 4 2 / 4
1 1 2 2 4 40, 4, 20. D D D× × ×= = = (84)
Tables III and IV show respectively the number of data

transfers for q = 1 and q = 3 of the different methods for certain
value of N. The proposed algorithm leads to a reduction of data
transfers over 20% compared to radix-(2×2)/(4×4) algorithm in
[29] and [30] and approximately 60% compared to the
row-column algorithm.

C. Twiddle factors

It is assumed that the coefficients required by the special
butterflies, such as 22 , cos(π/8) and sin(π/8) are initialized
and kept in the internal registers of the processor during the
processing time. Firstly, equations (48), (56) and (66) require
3×16× (N/8)×(N/8) =3N2/4 twiddle factors. Secondly, we can
obtain the number of twiddle factors for the special cases as
follows: When p1 = 0 and p2 = 1, 3, for a given value of n1 and 0
≤ n2 ≤ N/8–1, the number of the twiddle factors required in this
case can be derived in a way similar to the one presented in [3],
it is 8q. So that the total number of the twiddle factors for the
case where p1 = 0, p2 = 1, 3, for 0 ≤ n1, n2 ≤ N/8–1 is qN. Thus,
for all the combinations of (p1, p2) in (48), (56) and (66), the
number of the twiddle factors is 12qN. Therefore, the twiddle
factors of the proposed algorithm are given by

2 / 8 2 / 8 2 / 8 2
2 2 8 848 3 / 4 12 , 8 .N N N N N NTF TF TF N qN N q× × ×= + + − > (85)

For q = 1, we have
2 /8 2 /8 2/8 2/8

1 1 2 2 4 4 8 80 0 0 0TF TF TF TF× × × ×= = = = . (86)
For q = 3, we have

2 /8 2 /8 2/8 2/8
3 3 6 6 12 12 24 240 0 0 0TF TF TF TF× × × ×= = = = . (87)
Analyzing the twiddle factors required in the

radix-(2×2)/(4×4) algorithm in [29] in a similar way, we have
2 / 4 2 / 4 2 / 4 2

2 2 4 412 3 / 4 6 , 4 .N N N N N NTF TF TF N qN N q× × ×= + + − > (88)

 8

For q = 1
2 /8 2/8 2 /8

1 1 2 2 4 40 0 0.TF TF TF× × ×= = = (89)
For q = 3

2 /8 2 /8 2 /8
3 3 6 6 12 120 0 0.TF TF TF× × ×= = = (90)

Tables V and VI show respectively the comparison of
twiddle factors for q = 1 and q = 3 for different methods. It can
be seen that, in most cases, our algorithm saves approximately
35% compared to the algorithm in [29] and [30], and
approximately 40% compared to the row-column method.

D. Area complexity and time complexity analysis

In this subsection, we compare the area complexity and
time complexity of the proposed split-radix-(2×2)/(8×8)
algorithm with the split-radix-(2×2)/(4×4) algorithm presented
in [29] and the row-column method using [3] based on single
multipliers, multiplier/accumulators and butterfly processors.
The algorithm presented in [30] has the same area and time
complexity as that of [29].

1) Systems Using Multiplier or Multiplier/Accumulator
Primitives

As described in [9], in systems using software in
conjunction with a hardware adder to accomplish
multiplications, such as general-purpose microcomputers
without coprocessors, the computation time of the algorithm is
determined primarily by the number of multiplications. In
systems using a single hardware multiplier, such as DSP
microcomputers, both multiplies and additions contribute
heavily in determining the run time. In both cases, the area
complexity (the area of one multiplier or
multiplier/accumulator) of three algorithms is the same.
Therefore, the area-time complexity is determined by the
computational time. As can be seen from Tables I and II, the
proposed split-radix-(2×2)/(8×8) is clearly preferable to the
split-radix-(2×2)/(4×4) presented in [29] and row-column
method based on [3] in terms of computational time.

2) Multiprocessor Implementations Based on Butterflies
In this subsection, for simplicity, we implement strictly the

algorithms according to the flowgraph. That is to say, we
dedicate one multiplier (or one adder) to implement one
multiplicative (or additive) operation. Let TM and TA be
respectively the computational time of one multiplication and
one addition. The designed modules of the three algorithms are
described as follows.

a) Implementation of the split-radix-(2×2)/(8×8) algorithm

with 5 modules
 The first module is used to implement (33), (39), (60) and
(70) to obtain 2 / 8

00 1 2(,),y n n 2 / 8
01 1 2(,),y n n 2 / 8

10 1 2(,)y n n and
2 / 8
11 1 2(,)y n n for 0 ≤ n1, n2 ≤ N/2–1. We design the butterfly

shown in Fig. 1 as type-I butterfly, which consists of four
radix-2 butterflies. Totally, (N×N)/4 type-I butterflies are
required. The computational time of the first module is 2TA.

The second module is designed to obtain the even-even
output terms, that is, to implement one (N/2)×(N/2) DHT. The
computational time of the second module is 2/8

/ 2 / 2N NT × .

The third module is used to obtain the even-odd output terms,
including (48) and 16 parallel (N/8)×(N/8) DHTs and one third
data processing of (37). We divide further this module into 3
smaller modules. The module 3-1 is used to implement (48).
We design the butterfly shown in Fig. 3 as the type-II butterfly,
which can be decomposed into five stages. The first stage
consists of four radix-2 butterflies and four modified
multiplier-adder butterflies. The second stage, the third stage
and the fourth stage consist of six, six and eight radix-2
butterflies, respectively. The last stage consists of eight
multiplier-adder butterflies. Note that for the last stage, we
assume that some special twiddle factors, such as 22 ,
cos(π/8) and sin(π/8), are implemented by the special
butterflies. Therefore, (N/8)×(N/8) type-III butterflies are
required. The computational time is 2TM+5TA. The module 3-2
is used to implement 16 parallel (N/8)×(N/8) DHTs. The
computational time is 2/8

/8 /8N NT × . The module 3-3 is used to
implement one third data of (37). This module is implemented
by 8×(N/8)×(N/8) radix-2 butterflies. The computational time is
TA. Totally, The computational time of the third module is

2/8
/ 2 / 22 5M A N N AT T T T×+ + + .

The fourth module is used to obtain the odd-even output
terms, including (56) and 16 parallel (N/8)×(N/8) DHTs and
one third data processing of (37).

The fifth module is used to obtain the odd-odd output
terms, including (66) and 16 parallel (N/8)×(N/8) DHTs and
one third data processing of (37).

The design of the fourth and the fifth module is similar to
the third one. We assume that when the first module is finished,
the second module, the third module, the fourth module and the
fifth module are working in parallel. Under this assumption, the
total computational time for the proposed algorithm is given by

{ }2/8 2/8 2/8
/ 2 / 2 /8 /82 max ,2 6 .N N A N N M A N NT T T T T T× × ×= + + + (91)

For q = 1, the initial values of (91) are
2/8

2 2
2/8 2/8

4 4 2 2

2 ,

2 4 .
A

A A

T T

T T T T
×

× ×

=

= + =
 (92)

For q = 3, as can be seen in Fig. 4, the initial values of (91) are

2 /8
3 3
2/8 2/8

6 6 3 3
2/8 2/8

12 12 3 3

9 ,

2 11

5 2 14 .

M A

A M A

M A M A

T T T

T T T T T

T T T T T T

×

× ×

× ×

= +

= + = +

= + + = +

 (93)

Substituting the above initial values into 2/8
/ 2 / 2N NT × and

2 /8
/8 /82 6M A N NT T T ×+ + , we find that the former is always

smaller than the latter. Thus, (91) becomes
2 /8 2/8

/8 /82 8 .N N M A N NT T T T× ×= + + (94)
Since the multiplication by (1/2) in Fig. 4 is simply a

right-shift operation, hence, the computational time is not taken
into account in this analysis.

b) Implementation of the split-radix-(2×2)/(4×4) algorithm

with 5 modules

 9

The first module is used to implement (6), (12), (26) and (31)
to obtain 2 / 4

00 1 2(,),y n n 2 / 4
01 1 2(,),y n n 2 / 4

10 1 2(,),y n n and
2 / 4
11 1 2(,)y n n for 0 ≤ n1, n2 ≤ N/2–1. The computational time is

2TA.
The second module is used to obtain the even-even output

terms. The computational time is 2/ 4
/ 2 / 2N NT × .

The third module is used to obtain the even-odd output terms,
including (17), 4 parallel (N/4)×(N/4) DHTs and one third data
processing of (10). The implementation is similar to that of the
split-radix-(2×2)/(8×8) algorithm. The computational time of
the third module is 2/ 4

/ 2 / 22M A N N AT T T T×+ + + .
The fourth module and the fifth module are used to obtain the

odd-even and odd-odd output terms, respectively. Their design
is similar to the third module.

The total computational time for the split-radix-(2×2)/(4×4)
algorithm in [29] is given by

{ }2 / 4 2/ 4 2/ 4
/ 2 / 2 / 4 / 4

2 / 4
/ 4 / 4

2 max , 3

 5

N N A N N M A N N

M A N N

T T T T T T

T T T

× × ×

×

= + + +

= + +
 (95)

The initial values of (95) for q = 1 and q = 3 are the same as
those of (92) and (93).

c) Implementation of the row-column method

Using the similar implemental scheme as the aforementioned
two algorithms, we can easily obtain the computational time for
the 1-D split-radix-2/8 DHT algorithm [3] as follows:

{ }2/8 2/8 2 /8
/ 2 /82 max ,2 3N A N M A NT T T T T T= + + + (96)

For q = 1, the initial values of (96) are
2/8

2
2/8 2/8

4 2

,

2 .
A

A A

T T

T T T T

=

= + =
 (97)

For q = 3, the initial values of (96) are

2 /8
3
2/8 2/8

6 3
2/8 2 /8

12 3

2 ,

3 ,

3 2 5 .

M A

A M A

M A M A

T T T

T T T T T

T T T T T T

= +

= + = +

= + + = +

 (98)

Therefore, the total computational time for the row-column
method is given by:

{ }
2/8

2/8 2/8
/ 2 /8

2 2

 6 2max ,2 3

RC
N A N

A N M A N

T T T

T T T T T

= +

= + + +
 (99)

The initial values of (99) for q = 1 and q = 3 are the same as
those of (97) and (98).
Table VII shows the comparison of computational time for q =
1 and q = 3. As can be seen from this table, the proposed
algorithm requires less computational time than row-column
method based on [3] but a little more computational time than
that of the algorithm in [29] and [30]. The additional time
complexity will be discussed in the following.

When using the parallel implementation structure described
above, the required multipliers and adders are the same as the
number of multiplications and additions given in Tables I and II.
Therefore, the area complexity can be directly evaluated from
these two tables. It can be seen that the proposed algorithm

requires less area complexity than that of the algorithm
presented in [29] and [30] and the row-column method based
on [3].

As a conclusion of this section, we explain why the proposed
algorithm achieves the above attractive results (reductions in
arithmetic complexity, data transfers and twiddle factors)
compared to the algorithms in [29] and [30]. There are mainly
three reasons. Firstly, the pair of special angles (π/8) and (3π/8),
just like the 1-D split-radix-2/8 algorithm in [3], is taken into
consideration in the proposed algorithm to reduce both the
arithmetic complexity and the twiddle factors. However, these
cases have not been considered in [29] and [30]. Secondly, the
proposed approach, decomposing an N×N DHT into one
N/2×N/2 DHT and forty-eight N/8×N/8 DHTs, can save the
data transfer. Meanwhile, the new scheme decreases the
number of multiplications at the cost of a little more additions,
as can be seen in Tables I and II. Finally, the computation
process is recursive, the savings in arithmetic complexity, data
transfers and twiddle factors of initial values (or relative
smaller transform length) are accumulated with the increases of
the value of transform length N. However, for the hardware
time complexity analysis, the additional time complexity of the
proposed algorithm is mainly caused by the spread of cosine
and sine functions in (40) and (42). This can be observed from
the first stage of Fig. 3. When implementing the proposed
algorithm, we have to dedicate an additional group of
multipliers compared to the algorithm in [29] and [30].

IV. SOFTWARE IMPLEMENTATION OF THE PROPOSED AND
SOME EXISTING 2-D DHT ALGORITHMS

In this section, just like [43], we compare the proposed
algorithm with some existing algorithms for the 2-D DHT in
terms of computer run times, which include fetch instruction
time, decoding time and write back time. These algorithms
have been implemented with “C” programming language and
carried out on a PC machine, which has an Intel Core2 Duo
CPU with speed of 2200MHz and 3072 MB RAM. The
run-time of these algorithms has been calculated using Visual
C++ (VC++) Version (9).

A. Comparison of the proposed algorithm with some existing

2-D DHT algorithms in terms of computer run times
 We compare the proposed algorithm with the algorithms
presented in [29] and [30] and the row-column method based
on [3] in terms of computer run-times. Tables VIII and IX show
respectively the run times required in these algorithms for q = 1
and q = 3. The times in Table VIII and IX represent the average
obtained by repeating the execution of the algorithm. As it can
be seen from these tables, the proposed algorithm
approximately saves average 11% compared to the algorithms
in [29] and [30] and 60% compared to the row-column method
based on [3]. Since we use the recursive structure to implement
the algorithms, the C codes are still far from optimal and there
is much room for performance improvement.

B. Comparison of the proposed algorithm with some existing

2-D DHT algorithms in terms of the image compression

 10

 As stated in [44] and [45], the DHT outperforms the discrete
cosine transform (DCT) in terms of the compression
performance when applying to the magnetic resonance (MR)
images and positron emission tomography (PET) images.
Therefore, we have designed a compression scheme to evaluate
the computer run time of the above noted algorithms on MR
image compression and decompression. The encoder consists
of applying the 2-D DHT to an MR image, and then using the
set partitioning in hierarchical trees (SPIHT) algorithm [46] to
encode the DHT coefficients to obtain the binary output. The
decoder executes the inverse process: decoding the binary code
using the inverse SPIHT algorithm, and then applying the
inverse 2-D DHT, rounding the decompressed pixel values into
integer. The steps of the scheme are shown in Fig. 6, where the
2-D DHT and IDHT have been calculated by the proposed
algorithm and the algorithms presented in [3], [29] and [30],
respectively. Fig. 7 shows an example of a 512×512 MR image
compression using the aforementioned scheme. The related
errors between the original image and the decompressed
images, subtracted by 64 in order to be visible, are shown in the
last row of Fig. 7. For this example, the compression ratio is
restricted to 16:1, 32:1 and 64:1, and the computer run times
and the peak signal to noise ratio (PSNR) values have been
calculated. The results are shown in Table X. It can be seen that,
to obtain the same PSNR values, the proposed algorithm
requires less computer run time than that of the algorithms in
[3], [29] and [30].

V. CONCLUSION
In this paper, we have proposed a split radix-(2×2)/(8×8)

algorithm for 2-D DHT. Compared to the existing best
algorithm presented in [29] and [30], the proposed algorithm
not only preserves the good properties such as providing a
wider choice on sequence lengths, having a regular
computational structure and in-place computation, but also has
a lower arithmetic complexity and reduces around 30% data
transfers and 35% twiddle factors, which contribute
significantly to the execution time of FHT algorithms. The
algorithm is expressed in a simple matrix form, which
facilitates the implementation of the algorithm in both software
and hardware systems.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers for

their constructive comments and suggestions to greatly
improve both of the quality and the clarity of this paper.

REFERENCES
[1] G. Bi and Y. Q. Chen, “Fast DHT algorithms for length N= q*2m,” IEEE

Trans. Signal Process., vol. 47, no. 3, pp. 900-903, Mar. 1999.
[2] A. M. Grigoryan, “A novel algorithm for computing the 1-D discrete

Hartley transform,” IEEE Signal Process. Lett., vol. 11, no. 2, pp. 156-159,
Feb. 2004.

[3] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new split-radix
FHT algorithm for length-q*2m DHTs,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 51, no. 10, pp. 2031-2043, Oct. 2004.

[4] P. K. Meher, T. Srikanthan, and J. C. Patra, “Scalable and modular
memory-based systolic architectures for discrete Hartley transform,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 5, pp. 1065-1077,
May 2006.

[5] P. K. Meher, J. C. Patra, and M. N. S. Swamy, “High-throughput
memory-based architecture for DHT using a new convolutional
formulation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 7, pp.
606-610, Jul. 2007.

[6] A. Amira and S. Chandrasekaran, “Power modeling and efficient FPGA
implementation of FHT for signal processing,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 286-295, Mar. 2007.

[7] H. Shu, Y. Wang, L. Senhadji, and L. Luo, “Direct computation of type-II
discrete Hartley transform, ” IEEE Signal Process. Lett., vol. 14, no. 5, pp.
329-332, May 2007.

[8] P. Jain, B. Kumar, and S. B. Jain, “Fast computation of the discrete
Hartley transform,” Int. J. Circ. Theor. Appl,. doi: 10.1002/cta.574.

[9] M. A. Richards, “On hardware implementation of the split-radix FFT,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 10, pp.
1575-1581, Oct. 1988.

[10] W. -C. Yeh and C. -W. Jen, “High-speed and low-power split-radix FFT,”
IEEE Trans. Signal Process., vol. 51, no. 3, pp. 864–874, Mar. 2003.

[11] P. K. Meher, “Efficient systolic implementation of DFT using a
low-complexity convolution-like formulation,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 53, no. 8, pp. 702-706, Aug. 2006.

[12] C. Cheng and K. K. Parhi, “Low-cost fast VLSI algorithm for discrete
Fourier transform,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no.
4, pp. 791-806, Apr. 2007.

[13] C. Cheng and K. K. Parhi, “High-throughput VLSI architecture for FFT
computation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 10,
pp. 863-867, Oct. 2007.

[14] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
arithmetic operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
111-119, Jan. 2007.

[15] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A general class of
split-radix FFT algorithms for the computation of the DFT of length-2m,”
IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4127-4138, Aug. 2007.

[16] Y. -W. Lin and C. -Y. Lee, “Design of an FFT/IFFT processor for MIMO
OFDM systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4,
pp. 807–815, Apr. 2007.

[17] H. -Y. Lee and I. -C. Park, “Balanced binary-tree decomposition for
area-efficient pipelined FFT processing,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 54, no. 4, pp. 889 – 900, Apr. 2007.

[18] Y. -N. Chang, “An efficient VLSI architecture for normal I/O order
pipeline FFT design,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55,
no. 12, pp. 1234-1238, Dec. 2008.

[19] A. Makur, “Computational Schemes for Warped DFT and Its Inverse,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 9, pp. 2686 – 2695,
Oct. 2008.

[20] Y. Voronenko and M. Püschel, “Algebraic signal processing theory:
Cooley–Tukey type algorithms for real DFTs,” IEEE Trans. Signal
Process., vol. 57, no. 1, pp. 205–222, Jan. 2009.

[21] M. Li, D. Novo, B. Bougard, T. Carlson, L. Van Der Perre, and F.
Catthoor, “Generic multiphase software pipelined partial FFT on
instruction level parallel architectures,” IEEE Trans. Signal Process., vol.
57, no. 4, pp. 1604-1615, Apr. 2009.

[22] R. Kumaresan and P. K. Gupta, “Vector-radix algorithm for 2-D discrete
Hartley transform,” Proc. IEEE, vol. 74, no. 5, pp. 755–757, May 1986.

[23] S. Bouguezel, M. N. S. Swamy, and M. O. Ahmad, “Multidimensional
vector radix FHT algorithms,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 53, no. 4, pp. 905-917, Apr. 2006.

[24] N. -C. Hu and F. -F. Lu, “Fast computation of the two dimensional
generalized Hartley transforms,” IEE Proc. Vis. Image. Signal Process.,
vol. 142, no. l, pp. 35-39, Feb.1995.

[25] S. -J. Huang, J. -G. Wang, and H. -Z. Qiu, “Split vector radix algorithm
for two dimensional Hartley transform,” IEEE Trans. Aerosp. Electron.
Syst., vol. 27, no. 6, pp. 865-868, Nov. 1991.

[26] W. Ma, “Number of multiplications necessary to compute length-2n
two-dimensional discrete Hartley transform DHT (2n; 2),” Electron. Lett.,
vol. 28, no. 5, pp. 480-482, Feb. 1992.

[27] E. A. Jonkheere and C. Ma, “Split-radix fast Hartley transform in one and
two dimensions,” IEEE Trans. Signal Process., vol. 39, no. 2, pp.
499-503, Feb. 1991.

[28] J. -L .Wu and S.-C. Pei, “The vector split-radix algorithm for 2-D DHT,”
IEEE Trans. Signal Process., vol. 41, no. 2, pp. 960-965, Feb. 1993.

[29] G. Bi, “Split-radix algorithm for 2-D discrete Hartley transform,” Signal
Process., vol. 63, no. 1, pp. 45-53, Nov. 1997.

 11

[30] G. Bi, A.C. Kot and Z. Meng, “Computation of 2D discrete Hartley
transform,” Electron. Lett., vol. 34, no. 11, pp. 1058-1059, May 1998.

[31] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “An efficient
multidimensional decimation-in-frequency FHT algorithm based on the
radix-2/4 approach,” Proc. IEEE ISCAS, vol. 3, May 2005, pp.
2405-2408.

[32] Y. -H. Zeng, G. Bi, and A. R. Leyman, “New algorithms for
multidimensional discrete Hartley transform,” Signal Process., vol. 82,
no. 8, pp.1086–1095, Aug. 2002.

[33] S. C. Chan and K. L. Ho, “Polynomial Transform Fast Hartley transform,”
Proc. IEEE ISCAS, vol. 1, Jun. 1991, pp. 642-645.

[34] Y. -H. Zeng, G. Bi, and A. C. Kot, “Fast algorithm for multi-dimensional
discrete Hartley transform with size 1 2 rl l lq q q× × × ,” Signal Process.,
vol. 82, no. 3, pp. 497–502, Mar. 2002.

[35] S. Boussakta, O. H. Alshibami, and M. Y. Aziz, “Radix-2×2×2 algorithm
for the 3-D discrete Hartley transform,” IEEE Trans. Signal Process., vol.
49, no. 12, pp. 3145-3156, Dec. 2001.

[36] O. Alshibami and S. Boussakta, “Fast 3-D decimation-in-frequency
algorithm for 3-D Hartley transform,” Signal Process., vol. 82, no. 1, pp.
121-126, Jan. 2002.

[37] H. Z. Shu, J. S. Wu, L. Senhadji, and L. M. Luo, “Radix-2 algorithm for
the fast computation of type-III 3-D discrete W transform,” Signal
Process., vol. 88, no. 1, pp. 210-215, Jan. 2008.

[38] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “A split vector-radix
algorithm for the 3-D discrete Hartley transform,” IEEE Trans. Circuits
Syst.-I: Regular papers, vol. 53, no. 9, pp. 1966-1976, Sept. 2006.

[39] J. S. Wu, H. Z. Shu, L. Senhadji, and L. M. Luo, “Radix-3×3 algorithm for
the 2-D discrete Hartley transform,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 55, no. 6, pp. 566-570, Jun. 2008.

[40] S. C. Pei and W. Y. Chen, “Split vector-radix-2/8 fast Fourier transform,”
IEEE Signal Process. Lett., vol. 11, no. 5, pp. 459-462, 2004.

[41] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A split-radix algorit
hm for 2-D DFT,” Proc. IEEE ISCAS, vol. 3, May 2003, pp. 698-701.

[42] J. Granata, M. Conner, and R. Tolimieri, “The tensor product: A
mathematical programming language for FFT’s and other fast DSP
operations,” IEEE Signal Process. Mag., vol. 9, no. 1, pp. 40–48, Jan.
1992.

[43] S. Boussakta and H. O. Alshibami, “Fast algorithm for the 3-D DCT-II,”
IEEE Trans. Signal Process., vol. 52, no. 4, pp. 992-1001, Apr. 2004.

[44] J. D. Villasenor, “Alternatives to the discrete cosine transform for
irreversible tomographic image compression,” IEEE Trans. Med. Imag.,
vol. 12, no. 4, pp. 803–811, Dec. 1993.

[45] R. Shyam Sunder, C. Eswaran, and N. Sriraam, “Medical image
compression using 3-D Hartley transform,” Comput. Biol. Med., vol. 36,
no. 9, pp. 958–973, Sept. 2006.

[46] A. Said and W. A. Pearlman, “A new fast and efficient implementation of
an image codec based on set partitioning in hierarchical trees,” IEEE
Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 243-250, June
1996. SPIHT Matlab Program, [Online]. Available:
http://www.cipr.rpi.edu/research/SPIHT/spiht3.html.

 12

Fig. 1. Flowgraph for implementing equation (4) 1 12 2 2 2
0 0 1 1cos , sin , (1) cos , (1) sin

2 2 2 2
n nn n n nC S C Sπ π π π

= = = − = −

 Fig. 2. Flowgraph for implementing equation (17)

1c
1s

2
2 qc

2
2 qc

2
2 qc

2
2 qc

2
2 qc

(1)
2(1)

q−

−

01 1 2(,)y b c

01 1 2(,)y a a

01 1 2(,)y a c

01 1 2(,)y b n

01 1 2(,)y c c

01 1 2(,)y c a

01 1 2(,)y n c

01 1 2(,)y a b

01 1 2(,)y c b

01 1 2(,)y c n

01 1 2(,)y a n

01 1 2(,)y b b

01 1 2(,)y n b

01 1 2(,)y n a

01 1 2(,)y b a

0s
0c

2s

2c

3s
3c

4c
4s

5s
5c

6s
6c

7s
7c

1c

0c

2c

3c

4c

5c

6c

7c

1s

0s

2s

3s

4s

5s

6s

7s

2/8
0,1 1 2(,)f n n

2/8
2,1 1 2(,)f n n

2/8
6,1 1 2(,)f n n

2/8
4,1 1 2(,)f n n

2/8
0,3 1 2(,)f n n

2/8
2,3 1 2(,)f n n

2/8
6,3 1 2(,)f n n

2/8
4,3 1 2(,)f n n

2/8
6,3 1 2(,)g n n

2/8
4,3 1 2(,)g n n

2/8
0,1 1 2(,)g n n

2/8
2,1 1 2(,)g n n

2/8
6,1 1 2(,)g n n

2/8
4,1 1 2(,)g n n

2/8
0,3 1 2(,)g n n

2/8
2,3 1 2(,)g n n

01 1 2(,)y n n

(1)
2(1)

q−

−

(1)
2(1)

q−

−

(1)
2(1)

q−

−

(1)
2(1)

q−

−

(1)
2(1)

q−

−

(1)
2(1)

q−

−

(1)
2(1)

q−

−

2
2 qc

2
2 qc

2
2 qc

1 1 2 2 1 1 2 2 1 1 2 28, 8, 4, 4, 3 8, 3 8,a n N a n N b n N b n N c n N c n N= + = + = + = + = + = +

(,) and (,)eo eoC p p S p p defined in (49) are as follows: 1 2
1(,) , (,) , (1)
2eo p eo pC p p C S p p S p p p= = = + −

Fig. 3. Flowgraph for implementing equation (48)

 13

Fig. 4. Flowgraph of a length-3×3 DHT

1 2 1 2, 1 2 , 1 2 1 2 00 1 2 01 1 2 10 1 2 11(,) , , 0 or 1, (,) , (, 2) , (2 ,) , (2 , 2)p p p py n n y p p x n n x x n n N x x n N n x x n N n N x= = = + = + = + + =

Fig. 5. The implementation scheme of the proposed algorithm

Fig. 6. Scheme of encoding and decoding process for MRI image compression

Fig. 7. Compression a 512×512 MRI image using FHT and SPIHT scheme

 14

Table I Comparison of Arithmetic Complexities for q = 1 (Saving denotes the saving of arithmetic complexity compared to the algorithm in [29] and [30]).
 Algorithms in [29] and [30] Row-column method based on [3] Proposed Algorithm

N×N
(N) Muls Adds Total Muls Adds Total Muls Savin

g(%) Adds Savin
g(%) Total Saving(

%)
8 24 408 432 32 608 640 24 0 408 0 432 0
16 264 2216 2480 384 3072 3456 264 0 2216 0 2480 0
32 1800 11368 13168 2688 14976 17664 1704 5.33 11272 0.84 12976 1.46
64 10536 55176 65712 15360 71168 86528 9576 9.11 55368 -0.35 64944 1.17

128 55560 260840 316400 81408 329216 410624 51048 8.12 260936 -0.04 311984 1.40
256 277992 1200712 1478704 407552 1495040 1902592 251880 9.39 1201096 -0.03 1452976 1.74
512 1333320 5443368 6776688 1951744 6703104 8654848 1195368 10.35 5459784 -0.30 6655152 1.79
1024 6232872 24305288 30538160 9109504 29696000 38805504 5596392 10.21 24398024 -0.38 29994416 1.78

Table II Comparison of Arithmetic Complexities for q = 3 (Saving denotes the saving of arithmetic complexity compared to the algorithm in [29] and [30]).

 Algorithms in [29] and [30] Row-column method based on [3] Proposed Algorithm
N×N
(N) Muls Adds Total Muls Adds Total Muls Savin

g(%) Adds Savin
g(%) Total Saving(

%)
24 472 6680 7152 576 7776 8352 472 0 6680 0 7152 0
48 3400 31976 35376 4800 36864 41664 3400 0 31976 0 35376 0
96 20296 150440 170736 29952 171648 201600 19432 4.26 149576 0.57 169008 1.01

192 111208 689096 800304 158976 787968 946944 102568 7.77 690824 -0.25 793392 0.86
384 565576 3117608 3683184 817152 3552768 4369920 524968 7.18 3118472 -0.03 3643440 1.08
768 2764072 13886600 16650672 4021248 15814656 19835904 2529064 8.50 13890056 -0.02 16419120 1.39
1536 13048456 61311080 74359536 18935808 69765120 88700928 11806888 9.52 61458824 -0.24 73265712 1.47
3072 60290152 268030664 328320816 87429120 305012736 392441856 54561832 9.50 268865288 -0.31 323427120 1.49

Table III Comparison of Data Transfers for q = 1 (Saving1 and Saving2 denote respectively the saving of data transfers compared to the algorithm in [29] and [30],
and the row-column algorithm based on [3]).

N×N
(N)

Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

Saving1
(%)

Saving2
(%)

8 180 448 84 53.33 81.25
16 868 2432 724 16.59 70.23
32 4820 9984 3476 27.88 65.18
64 22404 44544 14676 34.49 67.05
128 108916 207872 78100 28.29 62.43
256 492452 931840 359636 26.97 61.41
512 2258196 4075520 1522836 32.56 62.63
1024 10002628 17948672 7106644 28.95 60.41

Table IV Comparison of Data Transfers for q = 3(Saving1 and Saving2 denote respectively the saving of data transfers compared to the algorithm in [29] and [30],

and the row-column algorithm based on [3]).
N×N
(N)

Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

Saving1
(%)

Saving2
(%)

24 2368 6144 1936 18.24 68.49
48 11776 28032 10048 14.67 64.16
96 56320 128256 47680 15.34 62.82
192 262144 563712 205120 21.75 63.61
384 1196032 2466816 945472 20.95 61.67
768 5373952 10807296 4266304 20.61 60.52

1536 23855100 46731264 18240830 23.53 60.97
3072 104857600 200712192 80138560 23.57 60.07

Table V Comparison of Twiddle Factors for q = 1 (Saving1 and Saving2 denote respectively the saving of twiddle factors compared to radix algorithm in [29] and

[30], and the row-column algorithm based on [3])
N×N
(N)

Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

Saving1
(%)

Saving2
(%)

8 0 0 0 0 0
16 96 0 0 100 0
32 672 512 384 42.86 25.00
64 4512 4096 2688 40.43 34.38
128 24096 22528 13440 44.22 40.34
256 125856 122880 77952 38.06 36.56
512 608544 630784 397440 34.69 36.99
1024 2899104 3014656 1816704 37.34 39.74

 15

Table VI Comparison of Twiddle Factors for q = 3 (Saving1 and Saving2 denote respectively the saving of twiddle factors compared to radix algorithm in [29] and
[30], and the row-column algorithm based on [3])

N×N
(N)

Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

Saving1
(%)

Saving2
(%)

24 0 0 0 0 0
48 864 0 0 100 0
96 6048 4608 3456 42.86 25.00
192 40608 36864 24192 40.42 34.38
384 216864 202752 120960 44.22 40.34
768 1132704 1105920 701568 38.06 36.56

1536 5476896 5677056 3576960 34.69 36.99
3072 26091936 27131904 16350336 37.34 39.74

Table VII Comparison of Computational Time (based on hardware implementation analysis) for q = 1 and q = 3. TM and TA are the computational time of one

multiplication and one addition, respectively.
q=1 q=3

N×N
(N)

 Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

N×N
(N)

Algorithms in
[29] and [30]

Row-column
method based on [3]

Proposed
algorithm

8 TM+7TA 4TM+12TA 2TM+8TA 24 2TM+16TA 6TM+16TA 3TM+17TA
16 TM+9TA 4TM+16TA 2TM+10TA 48 3TM+19TA 6TM+20TA 3TM+19TA
32 2TM+12TA 4TM+20TA 2TM+12TA 96 3TM+21TA 8TM+22TA 4TM+22TA
64 2TM+14TA 8TM+22TA 4TM+16TA 192 4TM+24TA 10TM+26TA 5TM+25TA

128 3TM+17TA 8TM+26TA 4TM+18TA 384 4TM+26TA 10TM+30TA 5TM+27TA
256 3TM+19TA 8TM+30TA 4TM+20TA 768 5TM+29TA 12TM+32TA 6TM+30TA
512 4TM+22TA 12TM+32TA 6TM+24TA 1536 5TM+31TA 14TM+36TA 7TM+33TA
1024 4TM+24TA 12TM+36TA 6TM+26TA 3072 6TM+34TA 14TM+40TA 7TM+35TA

Table VIII Comparison of Computer Run Time for q = 1 on an Intel Core2 Duo CPU using the VC++ compiler (Saving1, Saving2 and Saving3 denote respectively

the saving of Computer run time compared to algorithm in [29], [30], and row-column algorithm based on [3])
 Computer run time (s) Saving (%)

N×N
(N)

Algorithm
 in [29]

Algorithm
 in [30]

Row-column
method based on [3]

Proposed
 Algorithm

Saving1 Saving2 Saving3

8 0.000197 0.000198 0.000453 0.0001489 24.42 24.80 67.13
16 0.000721 0.000715 0.002090 0.0006562 8.99 8.22 68.60
32 0.003163 0.003196 0.008625 0.0028138 11.04 11.96 67.38
64 0.012201 0.012277 0.032723 0.0102803 15.74 16.26 68.58

128 0.051230 0.052806 0.135540 0.0481164 6.08 8.88 65.50
256 0.203512 0.206572 0.556896 0.1897476 6.76 8.14 65.93
512 0.843680 0.863356 2.202470 0.7184260 14.85 16.79 67.38
1024 3.355970 3.4331520 8.798221 3.1265798 6.84 8.93 64.46

Table IX Comparison of Computer Run Time for q = 3 on an Intel Core2 Duo CPU using the VC++ compiler(Saving1, Saving2 and Saving3 denote respectively the

saving of Computer run time compared to algorithm in [29], [30], and row-column algorithm based on [3])
 Computer run time (s) Saving (%)

N×N
(N)

Algorithm
 in [29]

Algorithm
 in [30]

Row-column
method based on [3]

Proposed
 Algorithm

Saving1 Saving2 Saving3

24 0.000855 0.000862 0.001668 0.000683 20.12 20.77 59.05
48 0.003731 0.003739 0.007536 0.003112 16.59 16.77 58.70
96 0.012270 0.012965 0.032201 0.011669 4.90 7.13 63.76
192 0.056782 0.055875 0.121261 0.050535 11.00 9.56 58.33
384 0.234900 0.234696 0.493468 0.213239 9.22 9.14 56.79
768 0.918632 0.939634 2.082430 0.840478 8.51 10.55 59.64

1536 3.843278 3.788372 8.141732 3.543753 7.79 6.46 56.47
3072 18.152742 18.214835 46.228839 16.788220 7.52 7.83 63.68

Table X Comparison of running time and PSNR for MRI image compression

 Algorithm
 in [29]

Algorithm
 in [30]

Row-column
method based on [3]

Proposed
 Algorithm

Compress(DHT/Total) 0.8388/15.3988 0.8527/15.4127 2.1720/16.7320 0.7042/15.264
Decompress(DHT/Total) 0.8407/12.6707 0.8542/12.6842 2.1900/14.0200 0.7067/12.5367

1:16

PSNR(dB) 26.81 26.81 26.81 26.81
Compress (DHT/Total) 0.8388/5.4888 0.8527/5.5027 2.1720/6.8220 0.7042/5.3542

Decompress (DHT/Total) 0.8481/4.5981 0.8482/4.5982 2.1951/5.9451 0.7075/4.4575
1:32

PSNR(dB) 25.88 25.88 25.88 25.88
Compress (DHT/Total) 0.8388/2.9588 0.8527/2.9727 2.1720/4.2920 0.7042/2.8242

Decompress (DHT/Total) 0.8479/1.9479 0.8563/1.9563 2.2005/3.3005 0.7100/1.8100
1:64

PSNR(dB) 24.76 24.76 24.76 24.76

