Longyu Jiang
email: jianglongyu01412@yahoo.com.cn

Huazhong Shu

Jiasong Wu
email: jswu@seu.edu.cn

Lu Wang
email: wanglu@seu.edu.cn

Lotfi Senhadji
email: lotfi.senhadji@univ-rennes1.fr

A Novel Split-Radix Fast Algorithm for 2-D Discrete Hartley Transform

Keywords: Two-dimensional (2-D) discrete Hartley transform (DHT), split-radix, fast algorithm

This paper presents a fast split-radix-(2×2)/(8×8) algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT) of length N×N with N = q*2 m , where q is an odd integer. The proposed algorithm decomposes an N×N DHT into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs. It achieves an efficient reduction on the number of arithmetic operations, data transfers and twiddle factors compared to the split-radix-(2×2)/(4×4) algorithm. Moreover, the characteristic of expression in simple matrices leads to an easy implementation of the algorithm. If implementing the above two algorithms with fully parallel structure in hardware, it seems that the proposed algorithm can decrease the area complexity compared to the split-radix-(2×2)/(4×4) algorithm, but requires a little more time complexity. An application of the proposed algorithm to 2-D medical image compression is also provided.

I. INTRODUCTION

he discrete Hartley transform (DHT) is widely used in signal and image processing applications. The advantage of the DHT over the discrete Fourier transform (DFT) is that it can be used to avoid complex operations when the input sequence is real. Moreover, the forward and inverse DHTs differ from each other in their form only in the scaling factor. Owing to these properties, the DHT is now finding an increasing interest in the signal processing community. In the past decades, fast algorithms and implementations of one-dimensional (1-D) DHT and DFT have been extensively investigated [START_REF] Bi | Fast DHT algorithms for length N= q*2 m[END_REF]- [START_REF] Li | Generic multiphase software pipelined partial FFT on instruction level parallel architectures[END_REF]. Meantime, special attention has also been paid on the two-dimensional (2-D) and three-dimensional (3-D) DHT [START_REF] Kumaresan | Vector-radix algorithm for 2-D discrete Hartley transform[END_REF]- [START_REF] Wu | Radix-3×3 algorithm for the 2-D discrete Hartley transform[END_REF], this is due to the growing interest in applications involving multi-dimensional (M-D) signals. In this paper, fast algorithm means lower computational complexity in terms of the number of arithmetic operations, data transfers and twiddle factors.

The algorithms proposed for fast computing the 2-D DHT can be classified into four categories: i) the row-column method; ii) the vector-radix fast Hartley transform (FHT) algorithms [START_REF] Kumaresan | Vector-radix algorithm for 2-D discrete Hartley transform[END_REF]- [START_REF] Hu | Fast computation of the two dimensional generalized Hartley transforms[END_REF]; iii) the split-radix FHT algorithm [START_REF] Huang | Split vector radix algorithm for two dimensional Hartley transform[END_REF]- [START_REF] Bouguezel | An efficient multidimensional decimation-in-frequency FHT algorithm based on the radix-2/4 approach[END_REF]; and iv) the polynomial transform FHT algorithm [START_REF] Zeng | New algorithms for multidimensional discrete Hartley transform[END_REF]- [START_REF] Zeng | Fast algorithm for multi-dimensional discrete Hartley transform with size 1 2 r l l l q q q × × ×[END_REF]. The row-column method computes the 2-D DHT by taking the 1-D FHT sequentially along each dimension of the input data while in the vector-radix algorithm, the 2-D DHT is decomposed into many smaller ones until the trivial sequence length is reached. The vector-radix method reduces the number of arithmetic operations over the row-column algorithm and possesses the desirable properties such as regular structure and low implementation cost. This approach was then extended to 3-D DHT [START_REF] Boussakta | Radix-2×2×2 algorithm for the 3-D discrete Hartley transform[END_REF]- [START_REF] Shu | Radix-2 algorithm for the fast computation of type-III 3-D discrete W transform[END_REF] and M-D DHT [START_REF] Bouguezel | Multidimensional vector radix FHT algorithms[END_REF]. In [START_REF] Wu | Radix-3×3 algorithm for the 2-D discrete Hartley transform[END_REF], a vector-radix-3×3 algorithm was developed for computing the 2-D DHT of sequence whose length is 3 m ×3 m . The polynomial transform based FHT algorithms for M-D DHT have been reported in [START_REF] Zeng | New algorithms for multidimensional discrete Hartley transform[END_REF] and [START_REF] Zeng | Fast algorithm for multi-dimensional discrete Hartley transform with size 1 2 r l l l q q q × × ×[END_REF], which lead to a great reduction of the arithmetic operations at the expense of very complicated structure. The split-radix 2-D DHT algorithm is more efficient than the vector-radix algorithm in terms of arithmetic complexity and it is easy to implement. All the split-radix algorithms for 2-D DHT reported so far are based on a mixture of radix-2×2 and radix-4×4 index maps.

Huang et al. [START_REF] Huang | Split vector radix algorithm for two dimensional Hartley transform[END_REF] applied a radix-2×2 decomposition to the even-even, even-odd, odd-even indexed samples and a radix-4×4 decomposition to the odd-odd indexed samples. Thus, an N×N DHT is decomposed into three N/2×N/2 DHTs and four N/4×N/4 DHTs. By using a radix-4×4 decomposition to even-odd, odd-even and odd-odd indexed terms, an improved split-radix algorithm for 2-D DHT was further derived [START_REF] Wu | The vector split-radix algorithm for 2-D DHT[END_REF], which decomposes an N×N 2-D DHT into one N/2×N/2 DHT and twelve N/4×N/4 DHTs. The split-radix algorithms for the 2-D DHT have been presented using decimation-in-frequency (DIF) [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and decimation-in-time (DIT) [30]. It seems that the algorithms reported in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] are the most efficient ones among all the existing split-radix algorithms in terms of the arithmetic complexity.

A Novel Split-Radix Fast Algorithm for 2-D Discrete Hartley Transform

Longyu Jiang, Huazhong Shu, Senior Member, IEEE, Jiasong Wu, Lu Wang and Lotfi Senhadji, Senior Member, IEEE T Moreover, these two algorithms support various sequence lengths. Specifically, the block size can be chosen as q*2 m ×q*2 m , where q is an odd integer. In [START_REF] Bouguezel | An efficient multidimensional decimation-in-frequency FHT algorithm based on the radix-2/4 approach[END_REF], the radix-2/4 approach has been generalized to the M-D DHT. In particular, for the case of 2-D DHT, it has the same arithmetic complexity as that of the algorithms presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30]. Among all the algorithms mentioned above, the split-radix algorithms based on radix-2/4 are the most attractive ones because they provide a good comprise between the arithmetic and structural complexities. Recently, Bouguezel et al. [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] proposed a new split-radix fast algorithm based on a mixture of radix-2 and radix-8 index maps for 1-D DHT of sequences whose length is q×2 m , where q is an odd integer. This algorithm is more efficient than the conventional split radix-2/4 FHT algorithm in terms of the number of data transfers and twiddle factor evaluations, which also contribute significantly to the execution time of FHT algorithms. Inspired by the algorithm presented in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], we propose a split-radix-(2×2)/(8×8) algorithm for computing the 2-D DHT of sequences with length-q*2 m ×q*2 m , which consists of decomposing an N×N DHT into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs. Besides, the split radix-2/8 algorithm has been already used for computing the 2-D DFT [START_REF] Pei | Split vector-radix-2/8 fast Fourier transform[END_REF], [START_REF] Bouguezel | A split-radix algorit hm for 2-D DFT[END_REF].

The rest of the paper is organized as follows. Section II presents the derivation of the algorithm. In Section III, the computational complexity and the hardware area and time complexity of the proposed algorithm are analyzed, and the comparison with some existing algorithms is also provided. Section IV presents the result of software implementation of the proposed and some existing algorithms. Section V concludes the work.

II. PROPOSED RADIX-(2×2)/(8×8) ALGORITHM

The 2-D DHT X(k 1 , k 2) of real valued sequence, x(n 1 , n 2), for 0 ≤ n 1 , n 2 ≤ N -1, is defined by

1 2 1 2 1 1 2 1 2 1 2 0 0 1 (,) 2 (,)cas , 0 , 1, N N i i n n i X k k x n n n k k k N N π - - = = = ⎛ ⎞ = ≤ ≤- ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (1)
where cas() cos() sin().

θ θ θ = +
The sequence length N is assumed to be q×2 m , where q is an odd integer and m > 0.

Let us first consider the case when m = 1, that is, N = 2q.

A. The case m = 1, i.e., N = 2q

In this case, the radix-2×2 algorithm is used to decompose a length-2q×2q DHT. The even-even indexed outputs are obtained by

1 2 1 2 1 1 2 00 1 2 1 2 0 0 1 (2 , 2) 2 (,)cas , 0 , 1. q q i i n n i X k k y n n n k k k q q π - - = = = ⎛ ⎞ = ≤ ≤ - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (2)
The even-odd, odd-even, and odd-odd indexed outputs can be computed by

1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 () 1 2 0 0 1 (2 , 2) 2 (1)
(,)cas ,

q q n p n p p p i i n n i X k p q k p q y n n nk q π - - + = = = + + ⎛ ⎞ = - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (3)
where 1 2

1 2 1 2 , 0,1 , (,) (0,0), 0 , 1. p p p p k k q = ≠ ≤ ≤ -
The sequences (,), (,), (,), (

T T y n n y n n y n n y n n H H x n n x n n q x n q n x n q n q =

⊗ + + + + (4)
where T denotes the transpose,

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - = 1 1 1 1 2

H

, and " ⊗ " is the Kronecker product [START_REF] Granata | The tensor product: A mathematical programming language for FFT's and other fast DSP operations[END_REF]. Fig. 1 shows the implementation of (4).

B. The case m = 2, i.e., N = 4q

When m = 2, the decomposition of (1) for the even-even indexed outputs is given by

1 2 1 2 2 12 1 2 2 / 4 00 1 2 1 2 0 0 1 (2 , 2) 2 (,)cas , 0 , 2 1, 2 q q i i n n i X k k y n n nk k k q q π - - = = = ⎛ ⎞ = ≤ ≤ - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (5)
where

2 / 4 00 1 2 1 2 1 2 1 2 1 2 (,) [(,) (, 2)] [(2 ,) (2 , 2)]
.

y n n x n n x n n q

x n q n x n q n q

= + + + + + + + (6)
The even-odd, odd-even and odd-odd indexed outputs are obtained as follows

1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 0 0 1 1 2 / 4 2 / 4 , 1 2 , 1 2 1 2 (4 , 4) 2 (,)cas 2 (,) (,), 0 , 1,
N N i i i i n n i i p p p p X k p q k p q x n n n k n p q F k k G k k k k q π π - - = = = = ± ± ⎛ ⎞ = ± ⎜ ⎟ ⎝ ⎠ = ± ≤ ≤ - ∑ ∑ ∑ ∑ (7)
where

1 2 1 2 2 / 4 , 1 2
1 1 2 2 1 2 0 0 1 1 (,) 2 (,)cos cas , 2 p p N N i i i i n n i i F k k x n n n p n k q π π - - = = = = ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ (8) 1 2 1 2 2 / 4 , 1 2
1 1 2 2 1 2 0 0 1 1 (,) 2 (,) sin cas . 2 p p N N i i i i n n i i G k k x n n n p n k q π π - - = = = = ⎛ ⎞ ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ (9)
Using the matrix representation, (7) can be expressed as

p p p p X k p q q k p q q X N k pq q N k p q q F k k H G k k + + ⎡ ⎤ ⎢ ⎥ + - + - ⎣ ⎦ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (10)
1) Even-odd output terms (p 1 = 0, 2; p 2 = 1)

p p q q n n i i i i i i q q i i i i n n i i F k k x n n x n q n x n n q x n q n q n p n k q y n n n p nk q π π π π - - = = = = - - = = = = = + + ⎛ ⎞ - + + + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ × ⎜ ⎟ ⎝ ⎠ ⎛ ⎛ ⎞ = ⎜ ⎜ ⎟ ⎝ ⎠ ⎝ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 1 2 1 2 1 1 2 2 / 4 , 1 2 0 0 1 2 (,)cas , q q p p i i n n i f n n nk q π - - = = = ⎞ ⎟ ⎠ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (11)
where

2 / 4 01 1 2 1 2 1 2 1 2 1 2 (,) [(,) (, 2)] [(2 ,) (2 ,
2)],

y n n x n n x n n q

x n q n x n q n q

= - + + + - + + (12
) 1 1 2 1 / 2 2 / 4 2 / 4 2 / 4 , 1 2 0 1 1 2 0 1 1 2 2 (1) 2 2/4 01 1 2 1 2 / 2 2 / 4 01 1 2 1 (,) (,) (1) (,) cos (1) [(,) 2 (1) (,)]sin . 2
p p p q i i i p i i i f n n y n n y n q n n p y n n q y n q n q n p π π + = = ⎡ ⎤ = +- + ⎣ ⎦ ⎛ ⎞ × +- + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ + - + + ⎜ ⎟ ⎝ ⎠ ∑ ∑ (13)
The decomposition of

p p q q i i i i n n i i q q p p i i n n i G k k y n n n p nk q g n n nk q π π π - - = = = = - - = = = ⎛ ⎞ ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ = - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ∑ ∑ (14)
where

1 1 2 1 / 2 2 / 4 2 / 4 2 / 4 , 1 2 0 1 1 2 0 1 1 2 2 (1) 2 2/4 01 1 2 1 2 / 2 2 / 4 01 1 2 1 (,) (,) (1) (,) sin (1) (,) 2 (1)
(,) cos 2

p p p q i i i p i i i g n n y n n y n q n n p y n n q y n q n q n p π π - = = ⎡ ⎤ = +- + ⎣ ⎦ ⎛ ⎞ ⎡ × +- + ⎜ ⎟ ⎣ ⎝ ⎠ ⎛ ⎞ ⎤ + - + + ⎜ ⎟ ⎦ ⎝ ⎠ ∑ ∑ (15) 1 2 2/ 4 , 1 2
(,)

p p f n n and 1 2 2/ 4 , 1 2
(,) p p g n n (p 1 = 0, 2; p 2 = 1) defined by (13) and (15) can be expressed in matrix form as

1 0 0 0 0 1 0 0 0 0 (1) n n n n q f n n f n n g n n g n n n n n n n n n n π π π π π π π π + - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎡ ⎤ - ⎢ ⎥ ⎢ ⎥ - - ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - ⎢ ⎥ ⎣ ⎦ × - 2 / 4 01 1 2 2 / 4 01 1 2 2 2 / 4 01 1 2 (1) 2 2 / 4 01 1 2 (,) 1 0 1 0 (,) 1 0 1 0 0 1 0 1 0 (,) 0 1 0 1 0 0 0 (1) (,) q y n n y n n q y n q n y n q n q - ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ + - ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ + + ⎣ ⎦ ⎣ ⎦ (16)
The above equation can be rewritten as [START_REF] Bi | Fast DHT algorithms for length N= q*2 m[END_REF] ,

p p eo eo q eo eo p p - ⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤ × ⎢ ⎥ ⎣ ⎦ f I 0 C S 0 I S C g J R J y R J J (17)
where 2

I is the identity matrix, and (1) sin

1 2 1 2 2 / 4 2 / 4 0,1 1 2 0,1 1 2 2 / 4 2 / 4 , , 2 / 4 2 / 4 2,1 1 2 2,1 1 2 (,) (,) , , (,) (,)
p p p p f n n g n n f n n g n n ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ f g (18)
eo n eo n n α α α α π α ⎡ ⎤ = ⎢ ⎥ - ⎣ ⎦ ⎡ ⎤ = = ⎢ ⎥ - ⎣ ⎦ C S (19
) 2 / 4 1 2 1 1 0 0 1 , , diag(1, 1), 1 0 0 1 ⎡ ⎤ ⎡ ⎤ = = = - ⎢ ⎥ ⎢ ⎥ - ⎣ ⎦ ⎣ ⎦ J J R (20) 2
T y n n y n n q y n q n y n q n q

= + + + + y (21)
Fig. 2 shows the implementation of (17).

2) Odd-even output terms (p 1 = 1; p 2 = 0, 2) As for the previous case, the odd-even output terms can be obtained as (1) sin

1 2 1 2 2 / 4 2 / 4 2 / 4 , 2 2 2 / 4 10 (1)/2 2 / 4 2 / 4 2 / 4 2 2 , , (1)
p p oe oe q oe oe p p - ⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ f I 0 H 0 C S y 0 I 0 H S C g (22) where 1 2 1 2 2 / 4 2 / 4 1,0 1 2 1,0 1 2 2 / 4 2 / 4 , , 2 / 4 2 / 4 1,2 1 2 1,2 1 2 (,) (,) , , (,) (,)
p p p p f n n g n n f n n g n n ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ f g (23)
oe n oe n n α α α α π α ⎡ ⎤ = ⎢ ⎥ - ⎣ ⎦ ⎡ ⎤ = = ⎢ ⎥ - ⎣ ⎦ C S (24
) 2 / 4 2 / 4 2 / 4 10 10 1 2 10 1 2 2 / 4 2 / 4 1 0 1 2 1 0 1 2 ((,) (,) (,) (,)) ,
T y n n y n n q y n q n y n q n q

= + + + + y (25) 2 / 4 10 1 2 1 2 1 2 1 2 1 2 (,) [(,) (, 2)] [(2 ,) (2 , 2)].
y n n x n n x n n q

x n q n x n q n q

= + + - + + + + (26)
3) Odd-odd output terms (p 1 = 1, -1; p 2 = 1)

We have the following decomposition for the odd-odd output terms [START_REF] Jonkheere | Split-radix fast Hartley transform in one and two dimensions[END_REF] where

p p oo oo q oo oo p p - ⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ f I 0 J J C S y 0 I R J R J S C g
1 2 1 2 2 / 4 2 / 4 1,1 1 2 1,1 1 2 2 / 4 2 / 4 , , 2 / 4 2 / 4 1,1 1 2 1,1 1 2 2 / 4 2 (,) (,) , , (,) (,)
diag(1,1),

p p p p f n n g n n f n n g n n - - ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ = - f g R (28
) 11 11 2 / 4 2 / 4 11 11 11 2 1 11 1 2 cos 0 sin 0 , , 0 cos 0 sin [()] 2, [()] 2, oo oo n n n n α α α α α π α π ⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ′ ′ ⎣ ⎦ ⎣ ⎦ ′ = - = + C S (29) 2
T y n n y n n q y n q n y n q n q

= + + + + y (30
) 2 / 4 11 1 2 1 2 1 2 1 2 1 2 (,) [(,) (, 2)] [(2 ,) (2 , 2)]
.

y n n x n n x n n q

x n q n x n q n q

= - + - + - + + (31)
C. The case m ≥ 3 By introducing a mixture of radix-2×2 and radix-8×8 index maps, we propose a novel decomposition of (1). The even-even output terms can be computed by

1 2 1 2 2 1 2 1 2 2 / 8 00 1 2 1 2 0 0 1 (2 , 2) 2 (,)cas , 0 , 2 1, 2 N N i i n n i X k k y n n nk k k N N π - - = = = ⎛ ⎞ = ≤ ≤ - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (32)
where

2 / 8 00 1 2 1 2 1 2 1 2 1 2 (,) [(,) (, 2)] [(2,) (2, 2)]. y n n x n n x n n N x n N n x n N n N = + + + + + + + (33)
The even-odd, odd-even, and odd-odd output terms can be derived as follows.

1 2

1 2 1 2 1 1 2 2 1 1 2 2 1 2 0 0 1 1 2 / 8 2 / 8 , 1 2 , 1 2 1 2 (8 ,8) 2 2 (,)cas 8 (,) (,), 0 , 8 1, N N i i i i n n i i p p p p X k p q k p q x n n n k n p N Nq F k k G k k k k N π π - - = = = = ± ± ⎛ ⎞ = ± ⎜ ⎟ ⎝ ⎠ = ± ≤ ≤ - ∑ ∑ ∑ ∑ (34)
where

1 2 1 2 2 / 8 , 1 2
1 1 2 2 1 2 0 0 1 1 (,) 2 2 (,) cos cas , 8 p p N N i i i i n n i i F k k x n n n p n k N q N π π - - = = = = ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ (35) 1 2 1 2 2 / 8 , 1 2
1 1 2 2 1 2 0 0 1 1 (,) 2 2 (,) sin cas . 8 p p N N i i i i n n i i G k k x n n n p n k N q N π π - - = = = = ⎛ ⎞ ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ (36)
Equation (34) can be written in matrix form as

p p p p X k p q N k p q N X N k pq N N k p q N F k k H G k k + + ⎡ ⎤ ⎢ ⎥ + - + - ⎣ ⎦ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (37)
The input data sequences

p p N N i i i i n n i i N N p p i i n n i F k k y n n n p nk N q N f n n nk N π π π - - = = = = - - = = = ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ∑ ∑ (38)
where

[] [] 2/ 8 01 1 2 1 2 1 2 1 2 1 2 (,) (,) (, 2) (2,) (2, 2)
,

y n n x n n x n n N x n N n x n N n N = - + + + - + + (39)
1 2

1 2 3 3 2 / 8 2 / 8 1 2 , 1 2 0 1 1 2 0 0 2 1 1 2 2 1 (,) , 8 8 2 cos () . 4 p p l l i i i l N l N f n n y n n n p q p l p l N q π π = = = ⎛ ⎞ = + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ × + + ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (40)
Equation (36) can be decomposed in a similar manner as

1 2 1 2 1 2 /8 1 /8 1 2 2/8 2/8 , 1 2 , 1 2 0 0 1 2 (,) (,)cas 8 N N p p p p i i n n i G k k g n n nk N π - - = = = ⎛ ⎞ = - ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (41)
where 1 2

1 2 3 3 2 / 8 2 / 8 1 2 , 1 2 0 1 1 2 0 0 2 1 1 2 2 1 (,) , 8 8 2 sin () . 4 p p l l i i i l N l N g n n y n n n p q p l p l N q π π = = = ⎛ ⎞ = + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ × + + ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ (42
)
We need to use the following lemma, which was stated in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF].

Lemma 1: Let q c π β 2 2)) 4 (cos(= and q s π β 2 2)) 4 (sin(=
, where β is an odd integer. Then the following is true i) For ()

q β = , 2) 1 () 1 (- - = q q q s c . ii) For q β 3 = , q q c c - = 3 and q q s s = 3 . Letting 2 01 1 2 i i i n p N q π γ = = ∑ (
1 1 2 2 () / 4 01 1 1 2 2 01 cos () (1) cos , 4 p l p l q p l p l π γ γ + ⎛ ⎞ + + = - ⎜ ⎟ ⎝ ⎠ (44a)
()

1 1 2 2 () / 4 01 1 1 2 2 01 sin () (1) sin . 4 p l p l q p l p l π γ γ + ⎛ ⎞ + + = - ⎜ ⎟ ⎝ ⎠ (44b) b) 1 1 2 2 ()m o d4 1 p l p l + = () () 1 1 2 2 1 1 2 2 01 1 1 2 2 () / 4 01
() / 4 (1) 2 01 01 cos () 4
(1) cos 4

(1) cos (1) sin , 2 p l p l q p l p l q q p l p l q c π γ

π γ γ γ + ⎢ ⎥ ⎣ ⎦ + ⎢ ⎥ - ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ = - + ⎜ ⎟ ⎝ ⎠ ⎡ ⎤ = - -- ⎣ ⎦ (45a) () () 1
p l p l q p l p l q q p l p l q c π γ

π γ γ γ + ⎢ ⎥ ⎣ ⎦ + ⎢ ⎥ - ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ = - + ⎜ ⎟ ⎝ ⎠ ⎡ ⎤ = - + - ⎣ ⎦ (45b)
where x ⎢ ⎥ ⎣ ⎦ denotes the integer part of x. (1) sin , p l p l q q p l p l

c) 1 1 2 2 ()m o d4 2 p l p l + = () 1
π γ γ + + - ⎢ ⎥ ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ = - (46a)
()

1 1 2 2 01 1 1 2 2 () / 4 (1) / 2 01 sin () 4
(1) cos .

p l p l q q p l p l p l p l q p l p l q q p l p l q c π γ

π γ γ + + - ⎢ ⎥ ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ = - (46b) d) 1 1 2 2 ()m o d4 3 p l p l + = () () 1
p l p l q p l p l q q p l p l q c π γ π γ γ γ + ⎢ ⎥ ⎣ ⎦ + + ⎢ ⎥ - ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ = - + ⎜ ⎟ ⎝ ⎠ ⎡ ⎤ = - + - ⎣ ⎦ (47a) () () 1
π γ γ γ + ⎢ ⎥ ⎣ ⎦ + + ⎢ ⎥ + ⎣ ⎦ ⎛ ⎞ + + ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ = - + ⎜ ⎟ ⎝ ⎠ ⎡ ⎤ = - + - ⎣ ⎦ (47b)
Using the above results, defined by (40) and (42) can be expressed in matrix form as

⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤ × ⊗ ⎢ ⎥ ⎣ ⎦ f I C S I S C g A R A I Q y B RB (48)
where L I is an identity matrix of order L, the pth component of the vectors

1 1 0 1 1 1 0 1 1 10 1 1 1 0 1 1 1 0 1 0 1 1 1 1 10 1 0 1 1 1 eo eo eo eo eo eo eo - - ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ - - = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - --- - ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ - - - ⎣ ⎦ ⎣ ⎦ A A A A A A A (52)
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ - - = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ ⎣ ⎦ B B B B B B B (53
) 1 diag(1,1, 1, 1,1,1, 1, 1), = -- -- R (54) 1 2 2 2 2 1, , 1, ,1, ,1, . 2 2 2 2
q q q q d iag c c c c ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Q (55)
Fig. 3 shows the implementation of (48).

2) Odd-even output terms (p 1 = 1, 3; p 2 = 0, 2, 4, 6)

We have

⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤ × ⊗ ⎢ ⎥ ⎣ ⎦ f I C S I S C g A R B I Q y B R A (56)
where the pth component of the vectors

⎡ ⎤ ⎡ ⎤ = = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ A A B B A B A A B B (61) 01 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 oe oe oe ---- ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ - -- -- ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - - - - - ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - -- - - ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ A A A (62) 01 10 11 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 oe oe oe ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ - -- -- ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - - - ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - -- -- ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ B B B (63
) 2 3 diag(1, 1, 1, 1, 1, 1, 1, 1), diag(1, 1, 1, 1, 1, 1, 1, 1), = ---- = ---- R R (64) 2 2 2 2 2 1, 1, 1, 1, , , , . 2 2 2 2 q q q q diag c c c c ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Q (65)
3) Odd-odd output terms (p 1 = -3, -1, 1, 3;

p 2 = 1, 3) We have 1 2 1 2 2 / 8 2 / 8 2 / 8 , 8 (1)
⎡ ⎤ ⎡ ⎤ - ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ⎤ × ⊗ ⎢ ⎥ ⎣ ⎦ f I C S I S C g A R B I Q y B R A (66)
where the pth component of the vectors

= + + = = = ⎢ ⎥ ⎣ ⎦ (69) () () () 2/8 11 1 2 1 2 1 2 1 2 1 2 (,) (,) , /2 / 2, / 2, / 2 , y n n x n n x n n N x n N n x n N n N = - + ⎡ ⎤ ⎣ ⎦ - + - + + ⎡ ⎤ ⎣ ⎦ (
- - ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ - -- = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ ⎣ ⎦ A A A A A A A (
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ - - - = = = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ -- ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ - - ⎣ ⎦ ⎣ ⎦ B B B B B B B (72) 4 diag(1, 1, 1, 1, 1, 1, 1, 1), = -- -- R (73) 3 2 2 2 2 1, ,1, , ,1, ,1 . 2 2 2 2 q q q q diag c c c c ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Q (74)

III. COMPUTATIONAL COMPLEXITY AND HARDWARE AREA AND TIME ANALYSIS

In this section, we analyze the performance of the proposed 2-D split-radix-(2×2)/(8×8) algorithm and compare it with some existing algorithms. The analysis and comparison will not only include the arithmetic operations, but also the operations such as data transfers and twiddle factor evaluations since they contribute significantly to the execution time of the algorithm. The analysis of the area and time complexities is also provided.

A. Arithmetic complexity

It is assumed that the butterfly computations are implemented by four multiplications and two additions. 1) When N = 2q, from (2) and (3), the number of multiplications and additions is given by

2 2 2 2 2 4 , 4 8 .
q q q q q q q q M M A A q

× × × × = = + (75)
2) When N = 4q, the twiddle factors in (17), (22) and (27) become trivial. Therefore q q q q q q q q q q q q M M M A A A q

× × × × × × = + = + + (76) 3) When N ≥ 8q a)
The computation of the input data sequences (,) y n n defined by (33), [START_REF] Wu | Radix-3×3 algorithm for the 2-D discrete Hartley transform[END_REF], (60 , cos(π/8), sin(π/8), cos(3π/8) and sin(3π/8). Specifically, we can obtain the number of additions and multiplications saved from the special cases of twiddle factors as follows: When p 1 = 0 and p 2 = 1, 3 for a given value of n 1 and 0 ≤ n 2 ≤ N/8-1, this case can be taken as an 1-D DHT for the special twiddle factors. The saved number of additions and multiplications can be derived in a way similar to the one presented in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], they are respectively 6q and 10q. So that the total saved number of additions and multiplications in the case of p 1 = 0, p 2 = 1, 3, for 0 ≤n 1 , n 2 ≤ N/8-1 is 3qN/4 and 5qN/4. Thus, for all the combination of (p 1 , p 2) in (48), we can obtain A s = 3qN and M s = 5qN. d) The computation of the matrix

N N N N N N N N N N N N A A A N qN M M M N q N × × × × × × = + + - = + + - (77)
For N = 8q, the twiddle factors are given by 2 2

1 2 1 1 2 cos cos , 0 , 1. 4 i i i i i i n p n p n n q N q π π = = ⎛ ⎞ ⎛ ⎞ = ≤ ≤ - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑
In this case, only (3/8)×(8q) 2 =24q 2 multiplications are needed in the computation of even-odd, odd-even and odd-odd output terms. Thus, the arithmetic complexity when N = 8q, is given by q q q q q q q q q q q q A A A q

M M M q × × × × × × = + + = + + (78)
The initial values for q = 1 are given by 1

A A A A M M M M × × × × × × × × = = = = = = = = 1 2 2 4 4 8 8 1 1 2 2 4 4 8 8 0, 8, 64, 384, 0, 0, 0, 24.
Similarly, for q = 3 47,

A A A A M M M M × × × × × × × × = = = = = = = = 260, 1328, 6680, 4, 16, 64, 472.
The flowgraph of length-3×3 DHT is shown in Fig. 4. Tables I andII show respectively the arithmetic complexities for q = 1 and q = 3 of the proposed algorithm, the radix-(2×2)/(4×4) algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], and the row-column method based on the 1-D algorithm in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF]. It can be seen from these tables that the proposed algorithm can save almost 10% multiplications and has lower total number of additions and multiplications than that of the algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], and saves about 60% multiplications and 40% additions compared to the row-column method.

B. Data transfers

Based on the fact that the on-chip memory can be accessed faster than external memory (off-chip memory), an appropriate use of the internal registers (on-chip memory) is becoming an important strategy. It is assumed that sufficient registers are available in the processor without using any intermediate transfer operation. The implementation scheme of the proposed algorithm is shown in Fig. 5. The implementation of the butterfly for a given value of n 1 , n 2 , consists of reading two points from the external memory of the processor and performing the operations of addition and subtraction using these two points. The result of addition is returned to the external memory whereas that of the subtraction is kept in an internal register. The points kept in the processor are grouped to 56), (66) and to compute the outputs of (48), (56), (66), which are the inputs of the N/8×N/8 DHT in [START_REF] Pei | Split vector-radix-2/8 fast Fourier transform[END_REF] and [START_REF] Granata | The tensor product: A mathematical programming language for FFT's and other fast DSP operations[END_REF]. The number of data transfers is analyzed as follows: 1) Reading all the input terms x(n 1 , n 2), x(n 1 , n 2 +N/2), x(n 1 +N/2, n 2), and x(n 1 +N/2, n 2 +N/2) for 0 ≤n 1 , n 2 ≤ N/2-1from external memory, which requires N 2 /2 data transfers. 2) Writing 2 / 8 00 1 2

(,) y n n for 0 ≤ n 1 , n 2 ≤ N/2-1, into external memory to form the input sequences of [START_REF] Zeng | New algorithms for multidimensional discrete Hartley transform[END_REF]

D D D D N D D × × × × × × = = = = + + = (82)
Similarly, the data transfers of the radix-(2×2)/(4×4) algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] III andIV show respectively the number of data transfers for q = 1 and q = 3 of the different methods for certain value of N. The proposed algorithm leads to a reduction of data transfers over 20% compared to radix-(2×2)/(4×4) algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] and approximately 60% compared to the row-column algorithm.

C. Twiddle factors

It is assumed that the coefficients required by the special butterflies, such as 2 2 , cos(π/8) and sin(π/8) are initialized and kept in the internal registers of the processor during the processing time. Firstly, equations (48), (56) and (66) require 3×16× (N/8)×(N/8) =3N 2 /4 twiddle factors. Secondly, we can obtain the number of twiddle factors for the special cases as follows: When p 1 = 0 and p 2 = 1, 3, for a given value of n 1 and 0 ≤ n 2 ≤ N/8-1, the number of the twiddle factors required in this case can be derived in a way similar to the one presented in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], it is 8q. So that the total number of the twiddle factors for the case where p 1 = 0, p 2 = 1, 3, for 0 ≤ n 1 , n 2 ≤ N/8-1 is qN. Thus, for all the combinations of (p 1 , p 2) in (48), (56) and (66), the number of the twiddle factors is 12qN. Therefore, the twiddle factors of the proposed algorithm are given by

× × × = + + - > (85)
For q = 1, we have (90) Tables V and VI show respectively the comparison of twiddle factors for q = 1 and q = 3 for different methods. It can be seen that, in most cases, our algorithm saves approximately 35% compared to the algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], and approximately 40% compared to the row-column method.

D. Area complexity and time complexity analysis

In this subsection, we compare the area complexity and time complexity of the proposed split-radix-(2×2)/(8×8) algorithm with the split-radix-(2×2)/(4×4) algorithm presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and the row-column method using [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] based on single multipliers, multiplier/accumulators and butterfly processors. The algorithm presented in [30] has the same area and time complexity as that of [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF].

1) Systems Using Multiplier or Multiplier/Accumulator Primitives

As described in [START_REF] Richards | On hardware implementation of the split-radix FFT[END_REF], in systems using software in conjunction with a hardware adder to accomplish multiplications, such as general-purpose microcomputers without coprocessors, the computation time of the algorithm is determined primarily by the number of multiplications. In systems using a single hardware multiplier, such as DSP microcomputers, both multiplies and additions contribute heavily in determining the run time. In both cases, the area complexity (the area of one multiplier or multiplier/accumulator) of three algorithms is the same. Therefore, the area-time complexity is determined by the computational time. As can be seen from Tables I and II, the proposed split-radix-(2×2)/(8×8) is clearly preferable to the split-radix-(2×2)/(4×4) presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] in terms of computational time.

2) Multiprocessor Implementations Based on Butterflies

In this subsection, for simplicity, we implement strictly the algorithms according to the flowgraph. That is to say, we dedicate one multiplier (or one adder) to implement one multiplicative (or additive) operation. Let T M and T A be respectively the computational time of one multiplication and one addition. The designed modules of the three algorithms are described as follows.

a) Implementation of the split-radix-(2×2)/(8×8) algorithm with 5 modules

The first module is used to implement (33), (39), (60) and (70) to obtain (,) y n n for 0 ≤ n 1 , n 2 ≤ N/2-1. We design the butterfly shown in Fig. 1 as type-I butterfly, which consists of four radix-2 butterflies. Totally, (N×N)/4 type-I butterflies are required. The computational time of the first module is 2T A .

The second module is designed to obtain the even-even output terms, that is, to implement one (N/2)×(N/2) DHT. The computational time of the second module is

2/8 / 2 / 2 N N T × .
The third module is used to obtain the even-odd output terms, including (48) and 16 parallel (N/8)×(N/8) DHTs and one third data processing of [START_REF] Shu | Radix-2 algorithm for the fast computation of type-III 3-D discrete W transform[END_REF]. We divide further this module into 3 smaller modules. The module 3-1 is used to implement (48). We design the butterfly shown in Fig. 3 as the type-II butterfly, which can be decomposed into five stages. The first stage consists of four radix-2 butterflies and four modified multiplier-adder butterflies. The second stage, the third stage and the fourth stage consist of six, six and eight radix-2 butterflies, respectively. The last stage consists of eight multiplier-adder butterflies. Note that for the last stage, we assume that some special twiddle factors, such as

T T T T

× + + + .
The fourth module is used to obtain the odd-even output terms, including (56) and 16 parallel (N/8)×(N/8) DHTs and one third data processing of [START_REF] Shu | Radix-2 algorithm for the fast computation of type-III 3-D discrete W transform[END_REF].

The fifth module is used to obtain the odd-odd output terms, including (66) and 16 parallel (N/8)×(N/8) DHTs and one third data processing of [START_REF] Shu | Radix-2 algorithm for the fast computation of type-III 3-D discrete W transform[END_REF].

The design of the fourth and the fifth module is similar to the third one. We assume that when the first module is finished, the second module, the third module, the fourth module and the fifth module are working in parallel. Under this assumption, the total computational time for the proposed algorithm is given by { }

N N A N N M A N N T T T T T T × × × = + + + (91)
For q = 1, the initial values of (91) are

T T T T T T

× × × = = + = (92)
For q = 3, as can be seen in Fig. 4, the initial values of (91) are

M A A M A M A M A T T T T T T T T T T T T T T × × × × × = + = + = + = + + = + (93)
Substituting the above initial values into (,) , , 0 or 1, (,) , (, Table I Comparison of Arithmetic Complexities for q = 1 (Saving denotes the saving of arithmetic complexity compared to the algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30]).

Algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] Row-column method based on [Table VIII Comparison of Computer Run Time for q = 1 on an Intel Core2 Duo CPU using the VC++ compiler (Saving1, Saving2 and Saving3 denote respectively the saving of Computer run time compared to algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF], [30], and row-column algorithm based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF]) Computer run time (s) Saving (%)

N×N (N)

Algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] Algorithm in [30] Row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] Proposed Algorithm

Saving1

Saving2 Saving3 Table IX Comparison of Computer Run Time for q = 3 on an Intel Core2 Duo CPU using the VC++ compiler(Saving1, Saving2 and Saving3 denote respectively the saving of Computer run time compared to algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF], [30], and row-column algorithm based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF]) Computer run time (s) Saving (%)

N×N (N)

Algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] Algorithm in [30] Row-column method based on [

) and (70) requires 2N 2 additions. b) In (47), for each given pair (n 1 , n 2), the matrix since the elements of the matrices are either 1 or -1, so that 7N 2 /8 additions are needed for 0 ≤ n 1 , n 2 ≤ N/8-1. c) In equation (48), the computation of the matrix composed by twiddle factors, requires N 2 /4-A s additions and N 2 /2-M s multiplications, where A s and M s are the savings from the special cases of twiddle factors such as 0, ±1, 2 2 ±

 Since the multiplication by (1/2) in Fig.4is simply a right-shift operation, hence, the computational time is not taken into account in this analysis. b) Implementation of the split-radix-(2×2)/(4×4) algorithm with 5 modules

Fig. 1 .Fig. 2 . 1 Fig. 4 .

 1214 Fig. 1. Flowgraph for implementing equation (4)

Fig. 5 .Fig. 6 .Fig. 7 .

 567 Fig. 5. The implementation scheme of the proposed algorithm

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their constructive comments and suggestions to greatly improve both of the quality and the clarity of this paper.

This work was supported by the National Natural Science Foundation of China under Grant 60873048, the Program for Changjiang Scholars and Innovative Research Team in University and the Natural Science Foundation of Jiangsu Province of China under Grant BK2008279.

L.

The first module is used to implement [START_REF] Amira | Power modeling and efficient FPGA implementation of FHT for signal processing[END_REF], [START_REF] Cheng | Low-cost fast VLSI algorithm for discrete Fourier transform[END_REF], [START_REF] Ma | Number of multiplications necessary to compute length-2 n two-dimensional discrete Hartley transform DHT (2 n ; 2)[END_REF] (,) y n n for 0 ≤ n 1 , n 2 ≤ N/2-1. The computational time is 2T A .

The second module is used to obtain the even-even output terms. The computational time is 2/ 4 / 2 / 2 N N T × .

The third module is used to obtain the even-odd output terms, including [START_REF] Lee | Balanced binary-tree decomposition for area-efficient pipelined FFT processing[END_REF], 4 parallel (N/4)×(N/4) DHTs and one third data processing of [START_REF] Yeh | High-speed and low-power split-radix FFT[END_REF]. The implementation is similar to that of the split-radix-(2×2)/(8×8) algorithm. The computational time of the third module is The fourth module and the fifth module are used to obtain the odd-even and odd-odd output terms, respectively. Their design is similar to the third module.

The total computational time for the split-radix-(2×2)/(4×4) algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] is given by { }

The initial values of (95) for q = 1 and q = 3 are the same as those of (92) and (93).

c) Implementation of the row-column method Using the similar implemental scheme as the aforementioned two algorithms, we can easily obtain the computational time for the 1-D split-radix-2/8 DHT algorithm [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] as follows:

For q = 1, the initial values of (96) are

T T T T T T

For q = 3, the initial values of (96) are

M

Therefore, the total computational time for the row-column method is given by:

The initial values of (99) for q = 1 and q = 3 are the same as those of (97) and (98).

Table VII shows the comparison of computational time for q = 1 and q = 3. As can be seen from this table, the proposed algorithm requires less computational time than row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] but a little more computational time than that of the algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30]. The additional time complexity will be discussed in the following. When using the parallel implementation structure described above, the required multipliers and adders are the same as the number of multiplications and additions given in Tables I and II. Therefore, the area complexity can be directly evaluated from these two tables. It can be seen that the proposed algorithm requires less area complexity than that of the algorithm presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] and the row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF].

As a conclusion of this section, we explain why the proposed algorithm achieves the above attractive results (reductions in arithmetic complexity, data transfers and twiddle factors) compared to the algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30]. There are mainly three reasons. Firstly, the pair of special angles (π/8) and (3π/8), just like the 1-D split-radix-2/8 algorithm in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], is taken into consideration in the proposed algorithm to reduce both the arithmetic complexity and the twiddle factors. However, these cases have not been considered in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30]. Secondly, the proposed approach, decomposing an N×N DHT into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs, can save the data transfer. Meanwhile, the new scheme decreases the number of multiplications at the cost of a little more additions, as can be seen in Tables I andII. Finally, the computation process is recursive, the savings in arithmetic complexity, data transfers and twiddle factors of initial values (or relative smaller transform length) are accumulated with the increases of the value of transform length N. However, for the hardware time complexity analysis, the additional time complexity of the proposed algorithm is mainly caused by the spread of cosine and sine functions in [START_REF] Pei | Split vector-radix-2/8 fast Fourier transform[END_REF] and (42). This can be observed from the first stage of Fig. 3. When implementing the proposed algorithm, we have to dedicate an additional group of multipliers compared to the algorithm in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30].

IV. SOFTWARE IMPLEMENTATION OF THE PROPOSED AND SOME EXISTING 2-D DHT ALGORITHMS

In this section, just like [START_REF] Boussakta | Fast algorithm for the 3-D DCT-II[END_REF], we compare the proposed algorithm with some existing algorithms for the 2-D DHT in terms of computer run times, which include fetch instruction time, decoding time and write back time. These algorithms have been implemented with "C" programming language and carried out on a PC machine, which has an Intel Core2 Duo CPU with speed of 2200MHz and 3072 MB RAM. The run-time of these algorithms has been calculated using Visual C++ (VC++) Version [START_REF] Richards | On hardware implementation of the split-radix FFT[END_REF].

A. Comparison of the proposed algorithm with some existing 2-D DHT algorithms in terms of computer run times

We compare the proposed algorithm with the algorithms presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] and the row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] in terms of computer run-times. Tables VIII and IX show respectively the run times required in these algorithms for q = 1 and q = 3. The times in Table VIII and IX represent the average obtained by repeating the execution of the algorithm. As it can be seen from these tables, the proposed algorithm approximately saves average 11% compared to the algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] and 60% compared to the row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF]. Since we use the recursive structure to implement the algorithms, the C codes are still far from optimal and there is much room for performance improvement.

B. Comparison of the proposed algorithm with some existing 2-D DHT algorithms in terms of the image compression

As stated in [START_REF] Villasenor | Alternatives to the discrete cosine transform for irreversible tomographic image compression[END_REF] and [START_REF] Sunder | Medical image compression using 3-D Hartley transform[END_REF], the DHT outperforms the discrete cosine transform (DCT) in terms of the compression performance when applying to the magnetic resonance (MR) images and positron emission tomography (PET) images. Therefore, we have designed a compression scheme to evaluate the computer run time of the above noted algorithms on MR image compression and decompression. The encoder consists of applying the 2-D DHT to an MR image, and then using the set partitioning in hierarchical trees (SPIHT) algorithm [START_REF] Said | A new fast and efficient implementation of an image codec based on set partitioning in hierarchical trees[END_REF] to encode the DHT coefficients to obtain the binary output. The decoder executes the inverse process: decoding the binary code using the inverse SPIHT algorithm, and then applying the inverse 2-D DHT, rounding the decompressed pixel values into integer. The steps of the scheme are shown in Fig. 6, where the 2-D DHT and IDHT have been calculated by the proposed algorithm and the algorithms presented in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], respectively. Fig. 7 shows an example of a 512×512 MR image compression using the aforementioned scheme. The related errors between the original image and the decompressed images, subtracted by 64 in order to be visible, are shown in the last row of Fig. 7. For this example, the compression ratio is restricted to 16:1, 32:1 and 64:1, and the computer run times and the peak signal to noise ratio (PSNR) values have been calculated. The results are shown in Table X. It can be seen that, to obtain the same PSNR values, the proposed algorithm requires less computer run time than that of the algorithms in [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF], [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30].

V. CONCLUSION

In this paper, we have proposed a split radix-(2×2)/(8×8) algorithm for 2-D DHT. Compared to the existing best algorithm presented in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], the proposed algorithm not only preserves the good properties such as providing a wider choice on sequence lengths, having a regular computational structure and in-place computation, but also has a lower arithmetic complexity and reduces around 30% data transfers and 35% twiddle factors, which contribute significantly to the execution time of FHT algorithms. The algorithm is expressed in a simple matrix form, which facilitates the implementation of the algorithm in both software and hardware systems. (,) (1)

(1)

(1)

(1)

(1)

(1)

(1) [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30], and the row-column algorithm based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF]) N×N (N)

Algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] Row-column method based on [Table VII Comparison of Computational Time (based on hardware implementation analysis) for q = 1 and q = 3. T M and T A are the computational time of one multiplication and one addition, respectively. q=1 q=3 N×N (N)

Algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] Row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] Proposed algorithm

N×N (N)

Algorithms in [START_REF] Bi | Split-radix algorithm for 2-D discrete Hartley transform[END_REF] and [30] Row-column method based on [START_REF] Bouguezel | A new split-radix FHT algorithm for length-q*2 m DHTs[END_REF] Proposed algorithm 8