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Abstract

Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri

and a thick disorganized cortical plate lacking normal lamination. We show an association between bilateral asymmetrical

polymicrogyria and mutations in a -tubulin gene, , in four patients and a 27 GW (gestational week) fetus.de novo β TUBB2B 

Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic

neuronal cells in the white matter, and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero 

RNAi-based inactivation demonstrates that is required for neuronal migration. We also show that two disease-associatedTUBB2B 

mutations lead to an impaired formation of tubulin heterodimers. These observations, together with previous data, demonstrate that

disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only

lissencephaly/pachygyria, but also polymicrogyria malformations.

The crucial role of the tubulin superfamily in diverse cellular processes  and the association of mutations with a broad[1 ] TUBA1A 

lissencephaly spectrum -  led us to hypothesize that mutations in other tubulin genes that are highly expressed during CNS[2 4 ]
development might also result in malformations of cortical development. In a previous screen of agyria/pachygyria patients, we excluded

the implication of , and . In this study we report the screening of 3 additional candidate tubulin genes (TUBA1B TUBA1C TUBB3 [3 ]
) in patients with a wide range of cortical dysgeneses, including polymicrogyria (PMG) syndromes associated with epilepsyTUBB2A,B,C 

and/or neurodevelopmental delay (see Material and Methods section). Although no non-synonymous variations were found either in

or in (see alignment in ), heterozygous missense mutations were found in ( ) inTUBB2A TUBB2C Supplementary Fig. 1 TUBB2B Fig. 1a 

four unrelated individuals and one fetus. All mutations, c.514T C (p.S172P), c.629T C (p.I210T), c.683T C (p.L228P), c.793T C> > > >
(p.F265L) and c.935C T (p.T312M) affect residues that are rigidly conserved from yeast to human and reside in> Supplementary Fig. 2 

exon 4 ( , ). Consistent with a origin of the mutations, none were found in the parents of affectedFig. 1a Table 1 de novo TUBB2B 

individuals or in 360 normal controls (see referenced polymorphisms in ). Brain MRI sequences revealed that allSupplementary Fig. 1 

patients share the presence of a complex brain dysgenesis with bilateral, asymmetrical, and anteriorly predominant polymicrogyria (PMG),

fusion of the caudate and putamen with internal capsule hypoplasia, corpus callosum agenesis or dysgenesis and, in most cases, cerebellar
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and pons atrophy ( , , ). In addition, neurohistopathological analysis of the fetal brain showedFig. 1b-j Table 1 Supplementary Fig. 3 

asymmetrical bilateral PMG with the absence of a corpus callosum, several nodular cluster of ectopic neurons in both hemispheres and a

disorganization of cortical layering ( ) including the presence of radial columnar heterotopic neurons in the white matter in the twoFig. 1k-r 

hemispheres ( ). These abnormalities strongly suggest migration defects and perturbations of axon tract formation associated withFig. 1m 

mutations in . In addition to the typical unlayered polymicrogyric cortex, the analysis of the left hemisphere revealsTUBB2B 

overmigration of MAP2  neurons through breaches in the pial basement membrane (BM) ( and ). Analysis+ Fig. 1l,n,r Supplementary Fig. 4 

of radial glial fibers revealed a striking disorganization beyond the pial BM ( ). These observations recall the phenotype of miceFig. 1p 

inactivated for , a gene associated with bilateral frontoparietal PMG in humans . The macroscopic aspect and folding of theGpr56 [5 ] [6 ]
cerebellum appeared similar to the cerebellum of a control fetus of 27 GW. At the microscopic level, many nodular heterotopia were

observed in both cerebellar hemispheres.

To investigate the association between mutations and neuronal migration disorders, we studied the expression of TUBB2B Tubb2b 

during mouse brain development by hybridization and qRT-PCR and analyzed the consequences on the cortical neuronal migrationin situ 

of loss of function induced by in utero RNA interference.TUBB2B 

Sections of embryos at embryonic day 14.5 (E14.5) and 16.5 (E16.5) showed strong labeling restricted to central and peripheral

nervous systems (See ). Using sagittal sections of the brain at E16.5, we found that expression predominated in theSupplementary Fig. 5 

cortical plate and also within a thin layer in the subplate, whereas no signal was observed in the marginal zone and fainter labeling was

seen in the ventricular and intermediate zones (Supplementary ). The strong labelling in the developing cortexSupplementary Fig. 5a-e 

subsequently decreases after birth although labeling remains intense in the adult cerebellum, hippocampus and olfactory bulb (Tubb2b 

). Taken together these data suggest that is strongly expressed in postmitotic neurons with dominantSupplementary Fig. 5 Tubb2b 

expression during neuronal migration and differentiation - , and to a lesser extent in progenitor cells. RT-PCR analysis also showed[7 9 ]
that is expressed in astro-glial cells and C6 glial cells (data not shown).Tubb2b 

We used rat RNAi approach  to knock-down expression by about 50 % at embryonic day 15.5 (E15.5), a timein utero [10 ] Tubb2b 

coincident with the migration of neurons within the cortex, to mimic the consequence of heterozygous loss of function mutations. We

tested different small hairpin RNAs (shRNA) and used two shRNAs targeting either the coding sequence (CDS-sh) or the 3  untranslated′
region (3 UTR-sh) that repressed expression in vitro by approximately 60%, while scrambled controls did not destabilize the ′ Tubb2b 

mRNA ( ). These shRNAs combined with a Red Fluorescent Protein (RFP)-encoding reporter constructTubb2b Supplementary Fig. 6a-b 

were electroporated into progenitor cells located of the ventricular zone (VZ) of E15 rat neocortices. These cells give rise to further young

neurons expressing the fluorescent protein as they migrate towards the cortical plate. In E20 brain sections, we observed that neurons

electroporated 5 days previously with RFP alone reached the cortical plate as expected ( ). However in utero expression of 3Fig. 2a-b ′
UTR-sh induced a significant arrest of cells within the sub-ventricular zone (SVZ)/intermediate zone (IZ) ( ; stratum 4:Fig. 2c-d,j-k 

F(3,42)=21.716, p 0.0001; stratum 5:F(3,42)=20.394, p 0.0001). To further validate the specificity of our results, we performed < < in utero 

RNAi with the coding sequence CDS-sh and found that it leads to the same migration arrest ( , ). We alsoFig. 2e Supplementary Fig. 7 

showed that the expression of both scrambled-sh controls did not disrupt migration ( ). Finally, we performed a rescue experimentFig. 2f,g 

in which we cotransfected a bicistronic construct driving the expression of and Green Fluorescent Protein (GFP) as a reporter.Tubb2b 

Although the expression of this construct alone does not alter migration ( ), it significantly suppresses the blocking effect ofFig. 2h 

3’UTR-sh on migration ( ; strata 8-10: F(3,42)>23.4,p 0.0001). This RNAi-based approach reinforces the evidence thatFig. 2i,k <
microtubules act as a critical node during corticogenesis and strongly implicates in neuronal migration.Tubb2b/TUBB2B 

To define the functional consequences of the mutations in , we examined the potential implications of each of the mutatedTUBB2B 

residues on the known structure of the -tubulin polypeptide ,  ( ). S172 resides in a loop that forms part of the guanosineβ [11 12 ] Fig. 3a 

nucleotide-binding site, which when mutated to a proline (S172P) is predicted to disrupt a hydrogen bond and to destabilize the GTP

pocket. L228 and F265 are either in the vicinity of or part of the GTP/GDP binding site, with potential consequences for GTP binding. The

remaining mutations appear to be less consequential in terms of the GTP binding and overall stability of the protein. Because they are

located on the surface, they may interfere with specific partner interactions.

We then investigated the ability of the -tubulin mutants to produce functional /  tubulin heterodimers through the complexβ α β
chaperone-dependent folding pathway ,  ( ) by transcription/translation in rabbit reticulocyte lysate . All mutant proteins[13 14 ] Fig. 3b 15 

were translated as efficiently as a wild type control ( ). In contrast, analysis under native conditions revealed a range of reactionFig. 3c 

products ( ) that could be assigned on the basis of their electrophoretic mobilities , . In the case of TUBB2B mutantFig. 3d,e [14 16 ]
proteins, these products frequently differed both quantitatively and qualitatively from the wild type control (See ).Supplementary Table 1 

Most conspicuously, two mutant proteins (p.F265L and p.S172P) completely failed to yield the intermediate corresponding to

Tubulinspecific Chaperone A (TBCA)/ -tubulin ( ). In addition, the yield of native /  heterodimers produced following a chaseβ Fig. 3d,e α β
with added native tubulin was either slightly reduced (in the case of p.I210T and p.T312M), dramatically reduced (in the case of p.L228P

and p.F265L), or undetectable (in the case of p.S172P) ( ). (For kinetic analyses, see also and Fig. 3e Supplementary Results 

).Supplementary Fig. 8 
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We then investigated the ability of the -tubulin mutants to produce functional /  tubulin heterodimers through the complexβ α β
chaperone-dependent folding pathway ,  ( ) by transcription/translation in rabbit reticulocyte lysate . All mutant proteins[13 14 ] Fig. 3b 15 

were translated as efficiently as a wild type control ( ). In contrast, analysis under native conditions revealed a range of reactionFig. 3c 

products ( ) that could be assigned on the basis of their electrophoretic mobilities , . In the case of TUBB2B mutantFig. 3d,e [14 16 ]
proteins, these products frequently differed both quantitatively and qualitatively from the wild type control (See ).Supplementary Table 1 

Most conspicuously, two mutant proteins (p.F265L and p.S172P) completely failed to yield the intermediate corresponding to

Tubulinspecific Chaperone A (TBCA)/ -tubulin ( ). In addition, the yield of native /  heterodimers produced following a chaseβ Fig. 3d,e α β
with added native tubulin was either slightly reduced (in the case of p.I210T and p.T312M), dramatically reduced (in the case of p.L228P

and p.F265L), or undetectable (in the case of p.S172P) ( ). (For kinetic analyses, see also and Fig. 3e Supplementary Results 

.Supplementary Fig. 8 ]

To examine the mechanism of defective heterodimer assembly of the p.F265L and p.S172P mutant polypeptides in detail, we did

reconstituted folding reactions using purified components , . We observed the generation of TBCD/ -tubulin co-complexesin vitro [14 16 ] β
in reactions performed with p.F265L and p.S172P ( ) that might be ascribable to the relatively high concentrations of CCT andFig. 4a 

TBCD in these reactions compared to the more physiological concentrations in reticulocyte lysate. Indeed, when the abundance of TBCD

was reduced by a factor of 5 in reactions performed with a constant level of CCT, the yield of the wild type -tubulin/TBCD co-complexβ
diminished to 25  of the original level, and the F265L -tubulin/TBCD co-complex was reduced to an undetectable level ( ).% β Fig. 4c,d 

Similar data were obtained for the p.S172P mutation . We conclude that in addition to a dramatic failure of[Supplementary Fig. 9 ]
p.F265L and p.S172P CCT-generated folding intermediates to stably interact with TBCA, these mutations also result in a reduced

efficiency of intermediate interaction with TBCD (See also . To assess the competence of mutant heterodimersSupplementary Results ]
expressed by transcription/translation to incorporate into microtubules, we analyzed their ability to co-cycle with native brain microtubules

and to co-assemble with microtubules upon transfection into cultured cells. In the cases of p.F265L and p.S172P we observed 1) ain vitro 

very low yield of labeled heterodimers incorporated into microtubules and 2) a further diminution between the first (1) and second (2)

cycles of polymerization/depolymerization, suggesting significant instability ( ). Upon heterologous overexpression by transfectionFig. 5a 

in cultured cells, we found that 3 mutants (p.I210T, p.L228P, p.T312M) behaved indistinguishably from the wild-type protein in that they

were efficiently incorporated into interphase microtubules (data not shown). In contrast, in the case of the p.S172P and p.F265L mutants,

there was scant evidence of incorporation into well-defined microtubules ( ) (See also for assessment ofFig. 5b Supplementary Results 

microtubule dynamics). Taken together, these experiments show that p.S172P and p.F265L are significantly compromised in their ability

to properly assemble into microtubules , and are consistent with our in vitro transcription/translation experiments in which neitherin vivo 

of these mutant proteins yielded significant amounts of polymerization competent heterodimers ( , ).Fig. 3e 5a 

We further sought to test whether expression of the p.S172P and unrelated p.T312M mutants could complement the phenotypein vivo 

caused by knockdown of . We electroporated the pCAGIG-p.S172P(or p.T312M)- -IRES-GFP construct either alone or inTubb2b Tubb2b 

combination with the 3 UTR-sh and analyzed the position of electroporated cells within the cortex. We found that, although expression of′
each mutant alone does not massively affect migration ( ), expression of each mutant in the knock-down context maintains theFig. 5e,g 

cells stalled within the SVZ/IZ ( ) and fails to complement the RNAi effect.Fig. 5f,h 

In this study, we implicate mutations in as causative of brain malformations encompassing asymmetrical PMG associatedTUBB2B 

with an unlayered cortex, heterotopic neuronal cells in the white matter and neuronal overmigration through the pial BM. It is worthwhile

mentioning that corpus callosum dysgenesis, dysmorphic basal ganglia, cerebellum dysplasia and brainstem hypoplasia are common

features to -related agyria/pachygyria and -related PMG. Mutations in and genes are also known to beTUBA1A TUBB2B GPR56 SRPX2 

associated with PMG. However the diagnosis of -related PMG could be evoked through assessment of clinical and imagingTUBB2B 

criteria highlighted in .Supplementary Table 2 

In this study, we implicate mutations in as causative of brain malformations encompassing asymmetrical PMG associatedTUBB2B 

with an unlayered cortex, heterotopic neuronal cells in the white matter and neuronal overmigration through the pial BM. It is worthwhile

mentioning that corpus callosum dysgenesis, dysmorphic basal ganglia, cerebellum dysplasia and brainstem hypoplasia are common

features to -related agyria/pachygyria and -related PMG. Mutations in and genes are also known to beTUBA1A TUBB2B GPR56 SRPX2 

associated with PMG. However the diagnosis of -related PMG could be evoked through assessment of clinical and imagingTUBB2B 

criteria highlighted in .Supplementary Table 2 

Our data show that the five newly discovered disease-associated mutations involve a spectrum of tubulinin vitro TUBB2B 

heterodimer assembly defects (summarized in ) leading to loss of function in the cases of p.S172P and p.F265L.Supplementary Table 1 

The two most severe defects observed in vitro (p.S172P and p.F265L) are associated with the most and the least severe clinical

phenotypes, respectively, suggesting that there is no simple correlation in the panel of 5 mutated patients. We also establish that loss of

function is associated with defective migration and mislocalization of developing neurons within the cortex, suggesting that in vivo 

-related forms of PMG are primarily due to haploinsufficiency, though dominant negative effect can not be excluded for theTUBB2B 
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p.S172P mutation. For those mutations that have less or no apparent impact on tubulin heterodimer assembly, the functional defect seems

likely to concern a subtle effect on either microtubule dynamics, or on the interaction with one or more microtubule interacting proteins

(MAPs) that are critical for proper cortical neuronal migration, or both. The cellular consequences of mutations, and theTUBB2B 

mechanisms by which this results in polymicrogyria, an unlayered cortex, and heterotopic neuronal cells remain unknown. We propose

that the neuropathophysiology of -related PMG might result from a combination of both neuronal migration impairment andTUBB2B 

radial glia dysfunction that lead respectively to ectopic neurons in the white matter and cerebellum, and to pial membrane breaches (see 

).Supplementary Discussion 

In higher eukaryotes, - and -tubulins are encoded by a multigene family that are evolutionary conserved  among different speciesα β [17 ]
and are differentially expressed , . To explain the need for these highly conserved multiple genes, it has been hypothesized that the[18 19 ]
different isotypes may be required to form specific sets of microtubules that carry out unique functions18. Though this hypothesis is still a

matter of debate, our data showing that mutations in and are associated with different gyral abnormalities argue inTUBA1A TUBB2B 

favor of specific roles of and during corticogenesis and neuronal migration (see ). It is alsoTUBB2B TUBA1A Supplementary Table 2 

possible that subtle differences of spatio-temporal profiles of and expression (i.e. populations of interneurons, radialTUBA1A TUBB2B 

glia cells and astro-glial cells) may account for some of the cortical phenotypic differences.

METHODS
Patients and Analysis of TUBB2B

Patients’ DNA or blood samples and informed consent (from all patients’ parents) were obtained according to the guidelines of local

institutional review boards at Cochin Hospital and INSERM (French National Institute of Health and Medical Research). wasTUBB2B 

screened in a total of 168 sporadic cases selected with clinical and brain imaging features compatible with a diagnosis of either

lissencephaly (n=120) or polymicrogyria syndromes (n=48). Patients with lissencephaly included those with agyria/pachygyria (n=105) or

subcortical laminar heterotopia (n=15) with (n=13) or without (n=107) cerebellar hypoplasia or dysplasia. In addition to this cohort of

living patients, we also screened in 5 fetuses (using DNA samples derived from skin tissue), which had been sent to ourTUBB2B 

diagnostic center after medical abortions and neuropathological analyses (See details in section).Supplementary Methods 

Neuropathological procedures

Neuropathological analyses were performed on 5 fetuses (aged from 23 to 35 gestational weeks) in accordance with French law.

Briefly, after removal from the skull, each brain was fixed in 10  (v/v) formaldehyde solution containing NaCl (9 g/l) and ZnSO (3 g/l)% 4 

for a variable time (depending on the volume of the brain) from 3 to 6 weeks. Brains were cut in a coronal plane and sections involving

one or both hemispheres were embedded in paraffin. Paraffin blocks were sectioned into either 5 m (brainstem and cerebellum) or 8 10 μ – μ
m (hemispheres) thick sections and stained using standard methods for histological and immunohistological studies.

RNAi constructs

We performed RNAi experiments using 2 different oligonucleotides targeting the coding sequence or the 3 UTR of rat :′ Tubb2b 

CDS-sh ( 318-341) and 3 UTR-sh ( 1553-1576). A BLAST search against databases confirmed the specificity of each target. Annealed# ′ #
oligonucleotides were cloned into a mU6-pro vector . For the rescue experiment, we subcloned the coding sequence of [20 ] Rattus

cDNA (IMAGE 5599369) without the UTRs, into the pCAGIG vector  (Addgene plasmid 11159, Cambridge,norvegicus Tubb2b [21 ]
MA), such that a CMV immediate early enhancer/chicken -actin promoter (CAG) drives transcription of the bicistronic β Tubb2b 

-IRES-GFP mRNA. The rescue experiment allows the expression of a 3 UTR targeting shRNA in combination with the overexpression′
construct. It implies that the overexpressed RNA is resistant to the ShRNA as the target (3 UTR) is absent.Tubb2b ′

electroporationIn utero 

Wistar rats (Janvier, Le Genest Saint Isle, France) were mated, maintained and used in our animal facilities in agreement with

European Union and French legislation. Timed pregnant rats embryonic day 15 (E15) E16; E0 was defined as the day of confirmation of[ –
sperm-positive vaginal plug  were anesthetized with ketamine/xylazine (respectively 0.1 and 0.01 mg per g body weight). The uterine]
horns were exposed, and a lateral ventricle of each embryo injected via pulled glass capillaries and a microinjector (Picospritzer II;

General Valve Corp., Fairfield, NJ) with Fast Green (2 mg/ml; Sigma, St. Louis, MO) combined with the following DNA constructs: 0.5 μ
g/ l pCAGGS-red fluorescent protein (mRFP) either alone or with 1.0 g/ l of shRNA construct targeting the mRNA. Plasmidsμ μ μ Tubb2b 

were further electroporated by discharging a 4000 F capacitor charged to 50 V with a BTX ECM 830 electroporator (BTX Harvardμ
Apparatus, Holliston, MA). The voltage was discharged in 5 electric pulses at 950 ms intervals via 5 mm electrodes placed on the head of

the embryo across the uterine wall. We performed electroporation in embryonic rats at E15.5. This moment corresponds to anin utero 

active period of both radial and tangential migration of newborn neurons in the cortex.

Protein modeling
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A model of human -tubulin was built by homology modeling using available structures (Research Collaboratory for Structuralβ
Bioinformatics PDB code 1TUB) from Nogales et al. , . The image in was rendered using PyMOL ([11 12 ] Figure 3a http://www.pymol.org 

).

translationIn Vitro 

Transcription/translation reactions were performed at 30 C for 60 min in 25 l of rabbit reticulocyte lysate (TnT T7 Quick Coupled° µ
Transcription/Translation System, Promega, Madison, WI) containing 35S-methionine (specific activity 1,000 Ci/ mol; 10 Ci/l) usingµ µ
TUBB2B wild-type and mutant cloned into the pET-23b( ) vector (Novagen, Madison, WI) as templates. For the generation of labeled+
heterodimers, transcription/translation reactions were chased for a further 2 h at 30 C by the addition of native bovine brain tubulin at 0.2°
mg/ml. Labeled reaction products were detected by autoradiography after resolution on either SDS-PAGE or on native polyacrylamide

gels as described , .[14 16 ]

Folding ReactionsIn Vitro 

folding assays were performed either directly in the rabbit reticulocyte translation cocktail, or in folding buffer containingIn vitro 

CCT (cytosolic chaperonine), ATP, GTP and tubulin chaperones (TBCB, TBCC, TBCD, TBCE) as described previously . Target[16 ]
proteins (i.e. wild type or mutant forms of TUBB2B -tubulin) were expressed as 35S-labeled proteins in BL21 DE3 pLysS cellsβ [22 ]
(Invitrogen, Carlsbad, CA) and the inclusion bodies purified and unfolded in denaturant following previously described procedures .[23 ]
Reaction products were further analyzed by electrophoresis on native polyacrylamide gels , . In some experiments, the yield of[14 16 ]
various reaction products was determined using a phosphorimager (Personal Molecular Imager, Bio-Rad Laboratories, Hercules, CA).

Microtubule Co-polymerization Experiments

Products of translation reactions were mixed with depolymerized bovine brain microtubules and taken through successivein vitro 

cycles of polymerization and depolymerization as described . At the end of each cycle, aliquots containing equal amounts of[24 ]
depolymerized material were removed and analyzed by SDSPAGE and autoradiography.

Cell Culture, Transfections and Immunofluorescence

Constructs were transfected into COS-7 cells grown on glass coverslips in Dulbecco s Modified Eagle s Medium containing 10  (v/v)’ ’ %
fetal calf serum using the FuGENE6 transfection reagent (Roche Applied Science, Indianapolis, IN). Twenty-four hours post-transfection

cells were fixed with 20 C methanol. Immunostaining was performed with a polyclonal anti-FLAG antibody (to visualize protein− °
expressed from the construct; Sigma-Aldrich Inc., St. Louis, MO) and a monoclonal anti- -tubulin antibody (to visualize the overallα
microtubule network; DM1A, Sigma-Aldrich Inc., St. Louis, MO).
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Figure 1
Magnetic Resonance Imaging and Histopathology Analysis of Patients with mutationsTUBB2B 

Linear representation of the -tubulin protein showing the position of heterozygous PMG-associated mutations. Representative brain(a) β (b j) –
imaging features of 3 patients carrying mutations: P2 (p.L228P) (b-d); P3 (p.F265L) (e-g); P1 (p.T312M) (h-j). Axial images showTUBB2B 

areas of PMG that appear more severe in frontal and parietal lobes (b,e) and involve the perisylvian region (e,h). The PMG appears either

mildly (b,h) or severely asymmetric with left-sided predominance (e) (Hatched lines highlighted by arrowheads show some of the PMG

areas). Basal ganglia appear dysmorphic with a fusion of caudate and putamen, and apparent absence of the anterior arm of the internal

capsule (b,e,h). Midline sagittal section shows corpus callosum agenesis (c), hypogenesis and abnormal thickness (f), or dysmorphy with a flat

shape (i), associated with mild to severe cerebellar vermis hypoplasia or atrophy (c,f,i) and with brainstem hypoplasia (double asterisks).

Axial section at the level of the cerebellum and temporal lobes show severe vermian dysplasia (d,j) or atrophy (g) (black asterisks). (k n,q,r) –
Nissl-stained sections of the 27GW fetus (p.S172P mutation) brain display asymmetrical bilateral polymicrogyria (black arrows in k,l) with

callosal agenesis. Left and right hemispheres present respectively typical unlayered polymicrogyric cortex (l,n) and focal polymicrogyria with

a completely disorganized cortex and radial neuronal heterotopias (black arrows in k,m). Several nodular heterotopic neuron clusters were

also observed in both hemispheres. Sections of cortical regions of left hemisphere probed for vimentin (o,p) or stained by Nissl (q,r)

respectively show either abnormalities of radial glial fiber organization (p) or a disorganized cortex (r) with neuronal overmigration through

the pial basement membrane into the leptomeningeal space (black arrows in r). Sections (o,q) correspond to a 27GW control fetus. M:

meninges. Scale bars: (k n) 500 m, (o r) 100 m.– μ – μ
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Figure 2
Knock-Down of rat Expression by RNAi Alters Neuronal Migration in the IsocortexIn Utero Tubb2b 

Nissl staining on coronal sections of E20 brains reveals the overall organization of the cortex (a) 5 days after electroporation of a RFP(a-i) 

coding reporter construct either alone (b) or in combination with 3 UTR-sh (c, overlay with Nissl in d), CDS-sh (e), or their corresponding′
scrambled controls (f,g). A rescue experiment was performed using CAG- -IRES-GFP transfected either alone (h, GFP), or combinedTubb2b 

with 3 UTR-sh (i, GFP). (j,k) Fluorescence intensities reflecting cell positions were converted into gray values and measured across cortices′
from the VZ to the MZ (j, 3 UTR-sh). k, Bars represent the mean  SEM of fluorescence intensities in 10 strata dividing the thickness of′ ±
cortices of independent brains (RFP n=5, 3 UTR-sh n=6, CDS-sh n=6, Scrambled 3 UTR-sh n=4, Scrambled CDS-sh n=5, Rescue n=6).′ ′
Knockdown of using both hairpins between E15 and E20 disrupts neuronal migration (c,d,e). RFP positive cells are significantlyTubb2b 

stalled within the deep layers of the cortex (c,k, strata 4,5: F(3,42) 20.4, p 0.0001; p 0.001( ) for 3 UTR-sh compared by Tukey-Kramer> < < *** ′
test to RFP, scrambled 3 UTR-sh and Rescue respectively) that correspond to the SV/IZ (d, higher magnification) whereas neurons have′
already reached the CP in control conditions (b,f,g). Tubb2b overexpression preserves neuronal migration (h) showing that migration

disruption is a specific consequence of RNAi as it rescued the defect (i,k strata 8-10: F(3,42) 23.7, p 0.0001, p 0.001( ) for 3Tubb2b > < < *** ′
UTR-sh compared by Tukey-Kramer test to RFP and Rescue respectively). Hatched lines in (b,c,e-i) correspond to the outer/ventricular limits

of the cortex. Scale bars : 200 m (a-i).µ



Nat Genet . Author manuscript

Page /8 11

Figure 3
Various Mutations in Result in Inefficient /  Tubulin Heterodimer Formation TUBB2B α β In Vitro

Ribbon presentation illustrating placement of side chains of mutated residues (shown in red) and the E-site guanine nucleotide (shown in(a) 

orange) within the structure of the -tubulin polypeptide , .S172 resides between two proline residues in a loop. The tubulin folding[11 12 ] (b) 

pathway involves a series of molecular chaperones whose function is to facilitate the assembly of the /  tubulin heterodimer . Newlyα β [25 ]
translated -tubulin ( ) and -tubulin ( ) polypeptides are first captured and stabilized by prefoldin (PFD) that acts as a shuttling protein toα α β β
deliver its bound target protein to the cytosolic chaperonin (CCT) . CCT generates productive quasi-native folding intermediates which[26 ]
interact with a set of downstream Tubulin-specific Chaperones (TBCs) . TBCB and TBCE capture CCT-generated -tubulin intermediates[27 ] α
in which the encapsulating GTP-binding pocket (the N-site) is already formed28 producing TBCB/ -tubulin (B/ ) and TBCE/ -tubulin (E/ )α α α α
cocomplexes. TBCA and TBCD capture and stabilize CCT-generated -tubulin intermediates forming TBCA/ -tubulin (A/ ) and TBCD/β β β β
-tubulin (D/ ) cocomplexes. TBCD/ -tubulin (D/ ) and TBCE/ -tubulin (E/ ) converge to form a supercomplex with TBCC (C-D/ E/ ).β β β α α β α
Interaction with TBCC (C) results in the triggering of GTP hydrolysis by -tubulin16. This reaction acts as a switch to signal the release ofβ
newly formed GDP-bound /  heterodimers, which are then competent for incorporation into microtubules. Analysis by SDS-PAGE (c)α β (c-e) 

or non-denaturing gels (d,e) of transcription/translation products performed with wild-type (WT) and mutant TUBB2B and furtherin vitro 

chased with bovine brain tubulin so as to generate /  tubulin heterodimers (e). The different migration pattern for p.L228P in (c) can beα β
explained by the substitution of a proline in place of leucine, disrupting the helix, and presumably resulting in a change in the binding of SDS

and hence a slight change in migration rate on the SDS gel. Note that p.F265L and p.S172P mutants yielded either only a trace or no

discernable amount of /  heterodimer. The remaining mutants all generated products present in the WT control, but in varying yield (d,e).α β
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Figure 4
Reactions Reveal a Lowered Affinity of p.S172P for TBCDIn Vitro TUBB2B 

Analysis on non-denaturing gels of the products of reconstituted folding reactions containing ATP, GTP and various combinations of the(a) 

purified components that are essential to the heterodimer assembly reaction. Analysis on non-denaturing gels of the products of (b c) – in vitro 

folding reactions performed with S-methionine-labeled, unfolded wild type (WT) or p.F265L mutant protein. Reactions contained a range35 

of concentrations of purified cytosolic chaperonin (CCT) (1x, 0.5x, 0.2x) in the presence of constant (1x molar equivalent) TBCD (control

reaction) (b) or a range of concentrations of purified TBCD (1x, 0.5x, 0.2x) in the presence of constant (1x molar equivalent) CCT (c). (d) 

Quantitation of the data shown in (b) and (c). Note that when the abundance of TBCD was reduced by a factor of 5 in reconstituted reactions

performed with a constant level of CCT, the yield of the TBCD/ -tubulin co-complex declined in the case of the wild type protein to 25  ofβ %
the original level, but declined to an undetectable level in the case of p.F265L. Similar data were obtained in the case of the p.S172P mutation

( ). The level of radioactivity present in complexes at the 1x concentration is taken as 100. Bars represent the average ofSupplementary Fig. 8 

two experiments. Arrows in (a c) denote the migration positions of the CCT/ -tubulin binary complex, the TBCD/ -tubulin co-complex, the– β β
native tubulin heterodimer ( / ).α β
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Figure 5
Loss of function of mutant , in cultured cells and .TUBB2B in vitro in vivo 

Copolymerization of labeled translation products with native bovine brain microtubules. Aliquots from two successive(a) 

polymerization/depolymerization cycles (1 and 2), show inefficient incorporation for F265L, L228P and S172P mutants. Expression of(b) 

C-terminally FLAGtagged wild-type and mutant (p.S172P and p.F265L) after construct transfection into COS-7 cells. NoteTUBB2B in vivo 

that F265L and S172P mutants do not incorporate into the MT network. Nissl staining on coronal sections of E20 brains reveals the(c-h) 

overall organization of the cortex (c), and repartition of GFP  cells within the E20 cortices thickness, on coronal sections (d-h). Expression of+
p.T312M and p.S172P either alone (e,g) or in combination with 3 UTR-sh (f,h). Note that the over-expression of these mutants in combination′
with the hairpin does not rescue the neuronal migration defect caused by the RNAi (e,f) although the expression of each mutant alone does not

lead to a major migration defect. However, we can see that upon expression of p.S172P a few cells seem to be blocked within the IZ

suggesting that p.S172P could have a dominant effect leading to slight migration impairments. Scale bar: 200 m.µ
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Table 1
Summary of clinical and imaging phenotypes associated with mutations in TUBB2B.

Sex
Mutation

P1 Male
c.935C>T (P.T312M)

P2 Male
c.683T>C (p.L228P)

P3 Male
c.793T>C (p.F265L)

P4 Male
c.629T>C (p.I210T)

Male Fetus
c.514T>C (p.S172P)

Age at last evaluation 2 years 2 years 37 years 13 years 27 weeks of gestation
OFC at birth (or brain
weight at medical
abortion)

33 cm 31 cm 31 cm 31 cm Weight approx. 5th 

percentile

OFC at last examination
(percentile)

45 cm (< 3 SD)− 43.5 cm (< 3 SD)− 51 cm (< 3 SD)− << 3 SD− NA

Motor/communication
skills at last examination

Severe neuromotor
impairment (tetraparesis)
Walks with aid, unskilful
manipulation /Limited
language

Severe neuromotor impairment
(tetraplegia)
Sits with aid, unskilful manipulation
/No visual contact

No neuromotor impairment (no diplegia, no
tetraplegia)
Sentences, severe mental retardation

Severe neuromotor impairment
(tetraparesis)
Walks with aid, unskilful
manipulation /Limited language

NA

Epilepsy No seizures Infantile spasms (3 months) Generalized occasional seizures Generalized seizures NA
Gyral pattern Polymicrogyria Polymicrogyria Polymicrogyria Polymicrogyria Polymicrogyria
Major location Predominant in left frontal and

parietal lobes
Predominant in frontal and temporal
lobes (including the hippocampus)

Asymmetrical, predominant in left frontal, parietal
and temporal lobes (including the hippocampus)

Asymetrical, predominant in left
frontal, parietal and temporal lobes

Bilateral and
asymmetrical,
fronto-temporal

Basal ganglia Dysmorphic caudate and
striatum

Dysmorphic caudate and striatum Dysmorphic caudate and striatum Dysmorphic caudate and striatum Normal

Cerebellum Vermian dysplasia Vermian dysplasia with hypoplasia Severe global atrophy Vermian dysplasia with hypoplasia Heterotopic neuronal
cells

Corpus callosum Flat shape and hypogenetic Complete agenesis Partial posterior agenesis Atrophy and posterior agenesis Agenesis
Brainstem Mild hypoplasia predominant

in pons
Mild hypoplasia Hypoplasia predominant in pons Hypoplasia predominant in pons Normal

NA, nonapplicable.


