
HAL Id: inserm-00402432
https://inserm.hal.science/inserm-00402432v1

Submitted on 7 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a general theory of time and change in patient
monitoring: experiment and evaluation.

Luca Chittaro, Michel Dojat

To cite this version:
Luca Chittaro, Michel Dojat. Using a general theory of time and change in patient monitoring:
experiment and evaluation.. Computers in Biology and Medicine, 1997, 27 (5), pp.435-52. �inserm-
00402432�

https://inserm.hal.science/inserm-00402432v1
https://hal.archives-ouvertes.fr

USING A GENERAL THEORY OF TIME AND CHANGE IN
PATIENT MONITORING: EXPERIMENT AND EVALUATION

LUCA CHITTARO * AND MICHEL DOJAT †

*Dipartimento di Matematica ed Informatica, Università di Udine,Via delle Scienze, 33100 Udine, Italy; and

†INSERM U.296, Faculté de Médecine, 8, Rue du Général-Sarrail, 94010 Créteil Cedex, FRANCE

 E-MAIL: chittaro@dimi.uniud.it; and dojat@laforia.ibp.fr

Abstract

In this paper, we propose to use one of the well-known general theories of time and change,

namely the Event Calculus [1], to represent temporal aspects in intelligent medical monitoring

systems. In particular, we explore the application of CEC [2] (an efficient implementation of the

Event Calculus) to the management of mechanical ventilation. First, we present the prototype we

have built, which has been extensively tested on patient's data from real clinical cases. Then, we

provide a thorough evaluation of the obtained results, pointing out both strengths and weaknesses

of the approach, and identifying a number of extensions which can be extremely useful to scale up

the medical application of the approach.

KEYWORDS: temporal reasoning, Event Calculus, mechanical ventilation management, patient

monitoring, knowledge-based systems, PROLOG.

1 Introduction and Motivation

In data-rich clinical environments such as Intensive Care Units (ICUs) or operating rooms,

there is a crucial need for intelligent monitoring systems that can help the clinician to deal with the

massive flux of information. These systems should be able: (i) to acquire and exploit the mass of

data available to propose a diagnosis of the patient's state, (ii) to filter the numerous alarms from

monitors to indicate only those that require a human intervention, and (iii) to propose specific

therapeutic strategies depending on the evolution of the patient's state. Explicit time and change

representation is essential for building such intelligent monitoring systems. In this Section, we

point out the motivations for our work, both from the temporal reasoning and the application

point of view.

1.1 The Temporal Dimension

Time is a central factor in intelligent monitoring systems that are supposed to interact with real

dynamic environments. The need for time representation in these systems concerns two major

aspects:

- Modelling of temporal concepts and inferences performed by the physician: the physician i)

builds dynamically an interpretation of the time course of the patient's disease, ii) predicts the

patient's evolution with regard to previous states, and iii) constructs and executes a plan of

actions to drive the patient to an expected state. The physician adapts his/her strategy to the

history of the patient's disease and to the time the patient spent in a given state. To build a

global dynamic interpretation of the patient's behaviour, he/she must construct gradually

specific abstractions at several levels, recognizing relevant changes for each level [3].

- Respect of real-time constraints: the system should be able to i) acquire physiological data

provided by several monitors and the clinical staff, ii) plan the sequencing of the three

fundamental tasks in medical reasoning [4] - observation, diagnosis, and then therapy - each

task being in turn decomposable in several sub-tasks, and iii) have a prompt reaction in

alarming situations, which impose to short-cut some sub-tasks.

The need for an explicit representation of time in medical systems has been advocated by

several researchers, but very few clinical decision support systems incorporate clear formalisms

for temporal reasoning [5]. Recently, several research efforts have been devoted to define

ontologies and mechanisms for medical temporal reasoning and abstraction independently of a

specific medical application [3, 6, 7, 8, 9]. From this point of view, the Event Calculus (EC), the

well-known general theory of time and change proposed by [1], appears to be an interesting

framework. In particular, EC (i) is a general and thus likely to be re-usable approach, (ii) is well-

founded and has been thoroughly formally studied (some works dealing with formal aspects of

EC are [10, 11, 12, 13], just to mention the most recent ones), and (iii) adheres to a model with

events, states and cause-effect relationships, which seems well adapted for temporal reasoning in

medical domains [3, 6, 14]. The Situation Calculus [15] shares the same general aim of EC, i.e.

to formalise common sense reasoning about the initiation and persistence of properties and

relationships over the course of time. We prefer EC for our domain, because, as pointed out by

[16]: (i) whereas EC was intended primarily for reasoning about actual events, the Situation

Calculus was designed primarily for reasoning about hypothetical actions and situations (which is

not our case), and (ii) whereas the Situation Calculus deals with transitions between global

situations, EC allows to deal with the effect of actions on local states.

Although EC derives a significant representational power from its roots in Logic Programming

augmented with negation-as-failure as a mechanism for default reasoning, it was found to be

rather inefficient to meet the harsh requirements of fast decision-support response [12]. For this

reason, EC has not been used for the design of intelligent monitoring systems up to now, but an

efficient implementation [2] of EC has been recently proposed. In this paper, we exploit this

implementation in order to explore the application of EC in the context of mechanical ventilation

management, with the general aim of testing the adequacy of EC to model temporal reasoning in

medical monitoring.

1.2 Intelligent Systems for Mechanical Ventilation Management

A typical clinical application of intelligent monitoring systems is the management of the

mechanical respiratory assistance provided to patients who suffer from a lung disease and are

hospitalised in ICUs. Recent physiological studies [17, 18] have convinced physicians to

mechanically ventilate patients as soon as possible with partial assistance modalities: a variable

level of mechanical assistance is added to the spontaneous respiratory activity of the patient.

Although partial mechanical support such as pressure support ventilation (PSV) [19] is simple in

its principle, its use generally requires the presence of a trained and experienced physician who

adapts the level of assistance to the evolution of the patient's state. This is emphasised when the

physician, applying specific strategies, tries to decrease gradually the assistance and appreciates

the patient's capability to breathe alone. This procedure (called weaning procedure) must be

performed carefully to improve the quality and the success rate of such a difficult process.

Many decisions and adjustments performed on the ventilator settings are based on objective

data and can be formalised and modeled with appropriate knowledge representation techniques.

Ideally, the advantages of a knowledge-based system for the management of ventilator therapy

are: (i) to function on a 24 hours per day basis, allowing a continuous adaptation of the level of

the assistance and a reduction of total duration of ventilation, and (ii) to develop specific weaning

strategies, including a gradual decrease of the mechanical support, difficult to obtain in clinical

practice without the assistance of a computerised system. Such a system must work in a closed-

loop to be useful to the clinical staff. Recently, clinical studies have validated this approach [20,

21].

Since the precursor work of Fagan [22], several systems have been designed to assist

respiratory management (see [23] for a broad survey on recent intelligent patient monitoring

projects). Briefly, systems can be divided in two categories:

- Systems solving a practical clinical problem: for example, [24] deals with the complex task of

ventilating patients with Acute Respiratory Distress Syndrome, while [25] tackles the problem

of assisting therapists and nurses in weaning post-operative cardiovascular patients from

mechanical ventilation. These systems are hardly adaptable to other clinical contexts.

- General architectures for intelligent monitoring: these are long term research projects, such as

[26], which proposes a general architecture for intelligent agents and is applied to intensive

care monitoring problems, and [27], which mixes qualitative and quantitative computation in a

ventilator-management advisor. The first objective of these researches is not to design a

prototype working at the patient's bedside, but to explore novel AI techniques potentially

useful to solve medical problems.

Our project is intermediate. On one hand, our goal is to solve a clinical problem (i.e. the

management of PSV) and to test a closed-loop prototype at the patient's bedside. On the other

hand, we aim at generic reasoning mechanisms for temporal medical reasoning validated in the

clinical environment. Existing systems often use an embedded implicit temporal representation

(e.g. [22], [28]). Unlike these systems, we adopt an explicit and general representation of

temporal knowledge and reasoning (i.e., the Event Calculus [1]), to monitor and control

ventilator therapy in real-time. Therefore, the prototype we built serves also the purpose of

evaluating strengths and weaknesses of the Event Calculus in the medical monitoring domain.

2 Temporal Ontology and Inference in EC

Kowalski and Sergot's Event Calculus (EC) is a general approach to representing and

reasoning about events and their effects in a logic programming framework [1]. From a

description of events which occur in the real world and properties they initiate or terminate, EC

derives the maximal validity intervals (MVIs) over which properties hold. It takes the notions of

event, property, time-point and time-interval as primitives and defines a model of change in which

events happen at time-points and initiate and/or terminate time-intervals over which some property

holds. It embodies a notion of default persistence according to which properties are assumed to

persist until an event occurs that interrupts them*. A model of the world based on events, whose

occurrence modifies the state of the world and properties that have a tendency to persist during

time, is well adapted to our applications [3].

In the following axioms, we adopt PROLOG's convention of beginning variables' names with

an uppercase letter and constants with a lowercase letter. In order to help the reader who is not

familiar with PROLOG syntax, we provide a natural language formulation to the right of each

axiom we introduce.

2.1 Basic Event Calculus

Formally, we represent an event occurrence by means of the happens_at(event, timePoint)

clause† . The relation between events and properties is defined by means of initiates_at and

terminates_at clauses:

initiates_at(event1,prop,T):-

 happens_at(event1,T),

 holds_at(prop_a1,T),

 ...,

 holds_at(prop_aN,T).

"event1 initiates property prop at time T

 if event1 happens at T,

 and property prop_a1 holds at T,

 and ...,

 and property prop_aN holds at T"

terminates_at(event2,prop,T):-

 happens_at(event2,T),

holds_at(prop_b1,T),

...,

holds_at(prop_bM,T).

"event2 terminates property prop at time T

 if event2 happens at T,

 and property prop_b1 holds at T,

 and ...,

 and property prop_bM holds at T"

The initiates_at (terminates_at) clause states that each event of type event1 (event2) initiates

* The implicit default persistance assumption of EC may not be natural in some medical problems. For these
cases, some authors (e.g. [3], [9], [22]) allow also the use of explicit persistence functions to determine intervals of
validity.
† In general, the requirement of knowing the exact time point when each event happened can be relaxed (we dealt
with the case of partially ordered events in [29]) at the expense of efficiency. Fortunately, all the events in the
considered application can be time-stamped.

(terminates) a period of time during which property prop holds, provided that a number (possibly

zero) of given conditions hold at instant T. In EC, both initiates_at and terminates_at are

context-independent predicates: they do not admit preconditions. However, even when modeling

very simple real-world examples, the context is essential to decide which properties are initiated or

terminated by the occurrence of an event. For example, the event "turn on the switch" in a simple

light bulb circuit, initiates the property "the light is on" at a given instant, only if the property

"electrical power is supplied" holds at that instant [2]. Thus, as indicated above, we added

preconditions to initiates_at and terminates_at in order to model complex domains, such as

mechanical ventilation management.

Initial conditions describe the (possibly partial) initial state of the world and are specified by

means of a number of events of type initially(prop).

The EC model of time and change is defined by means of the following axioms:

mholds_for(P,[Start,End]):-

 initiates_at(Ei,P,Start),

 terminates_at(Et,P,End),

 Start < End,

 \+broken_during(P,[Start,End]).

mholds_for(P,[Start,infPlus]):-

 initiates_at(Ei,P,Start),

 \+broken_during(P,[Start,infPlus]).

broken_during(P,[Start,End]):-

 terminates_at(E,P,T),

 Start < T, T < End.

"property P maximally holds over interval [Start,End],

 if event Ei initiates P at instant Start,

 and event Et terminates P at instant End,

 and Start is before End,

 and P is not broken during [Start,End]"

"property P maximally holds over interval [Start,+∞],

 if event Ei initiates P at instant Start,

 and P is not broken during [Start,+∞]"

"property P is broken during [Start,End],

 if event E terminates P at instant T,

 and T is between Start and End"

The mholds_for axiom states that a property P maximally holds between events Ei and Et, if Ei

initiates P and occurs before Et that terminates P, provided there is no known interruption in

between (the negation involving the broken_during predicate is indeed interpreted using negation-

as-failure). The interval [Start,End] is thus a Maximal Validity Interval (MVI) for property P. The

broken_during axiom states that a given property P is interrupted between Start and End if there is

an event E that happens between them and terminates P. This axiom provides a so-called weak

interpretation [30] of initiates_at clauses (in a strong interpretation [30], the broken_during

axiom would consider also initiating events for P and not just terminating ones as possible

interruptions for the interval [Start,End]). In general, the choice between weak and strong

interpretation is domain-dependent [30].

Finally, the holds_at axiom relates a property to a time-point rather than to a time-interval:

