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Introduction 

Despite their enormous potential to facilitate bedside management, the practical role of computers 

in critical care environments is generally restricted to the storage and the retrieval of data coming 

from electronic medical devices and hospital information networks. Benefits of the use of 

computers in health care may be extended by the design of computerized medical assistants that 

can efficiently discharge the clinical staff of repetitive tasks (which, in practice, often are not 

performed) and, importantly, help practitioners to make efficient decisions in time. In intensive 

care and anesthesia, the demand for computerized medical assistants is potentially considerable, 

in order to filter and synthesize the growing mass of clinical parameters and information 

available. The progressive introduction of computerized protocols has been proposed to 

standardize the bedside decision making process for mechanical ventilation and to reduce 

unnecessary variation among practitioners32, reinforcing the potential impact of computerized 

medical assistants. Designing such assistants for intelligent monitoring, diagnosis and therapy 

planning tasks in Intensive Care and Anesthesia is a challenging goal that requires the modeling 

of several levels of knowledge ranging from low level data interpretation to high level cognitive 

tasks, such as planning (for a review of recent research work in this field see12, 25). Our goal in 

this special issue is to show how knowledge-based computerized assistants can be used to 

practically improve the closed-loop control of mechanical ventilation.  

Control and Planning: Two Key Points for Automatic Ventilation 

Management 



 

  3 

Modern methods of mechanical ventilation partially assist the patient's ventilation by adding a 

variable amount of mechanical support to his/her spontaneous activity. In this context, since the 

needs of the patient are evolutive, it is essential to continuously control the ventilatory support, in 

order to avoid excessive work of breathing and effort, discomfort and dyspnea on the one hand, or 

excessive support, hyperinflation and dyssynchrony on the other hand. In parallel to this ideal 

automatic adaptation, it may be necessary to plan the long term adaptation of the therapy 

according to specific medical goals. For instance, it may be indicated to gradually decrease the 

level of assistance in order to facilitate the weaning from the ventilator or to take into account 

large variations of physiological needs during the patient wake-up from anesthesia or drug 

intoxication.  

Planning and control are two different tasks that have a common goal: choosing actions over time 

to influence a process, based on some model of that process9. Control is a local task to determine 

what to do the next instant. Planning is a strategic task to regulate the process evolution. For 

control and planning, numerous techniques are available, respectively coming from two 

disciplines: Control Theory and Artificial Intelligence (AI), which differ mainly in the types of 

process models used. Control and planning are two complementary and essential tasks that must 

be combined to design multi-level controllers for the automatic supervision of complex systems 

such as mechanical ventilation of patients. 

Basic Control Loops in Mechanical Ventilation 

In the field of mechanical ventilation we can identify three levels of control (L1, L2 and L3)14 

(see Fig. 1). The complexity and the response time of the levels increase from the lowest to the 

highest level of control. Each level controls the levels below and is in turn controlled by the levels 

above: 
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•  L1 is a highly reactive basic control loop of the ventilator (response time ≈ 1ms.) that controls 

essentially the flow or the pressure sent to the patient by driving a servo-valve. This can be 

used in complex modes like proportional assist ventilation (PAV). 

•  L2 determines the mode of ventilation and has been used for minute mandatory ventilation 

(MMV) for instance. The response time of L2 is approximately of 1 or 2 cycles (few seconds).  

• L3 represents the adaptation of the mechanical assistance using information about the current 

state of the patient, its evolution and the predefined therapeutic goals. This level of control, 

relying on specific medical knowledge and therapeutic strategies, is traditionally realized by 

the clinician in charge. The response time at this level varies from a few seconds in alarming 

situations to a few minutes in routine patient observation.  

 

therapeutic strategies
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Figure 1: Different levels of control (Reprinted from Artif Intell in Med, 11,  Dojat M, Pachet F, 

Guessoum Z, et al, NeoGanesh: A Working System for the Automated Control of Assisted ventilation 

in ICUs, 97-117, Copyright (1997), with permission from Elsevier Science). 

Thick arrows indicate the control from the highest levels over the lowest levels. Thin arrows indicate 

the information flux (alarms, acknowledgments, ...) which goes through the hierarchy. 
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L1 and L2 may be directly assimilated to low-level control or tactical component that 

continuously adjusts the mechanical assistance in function of the patient's state evolution, and L3 

to high-level planning or strategic component that influences the behavior of the tactical 

component in order to follow specific therapeutic plans9.  

 

Low-Level Controllers 

Based on control theory we can design a component which, starting from direct observations of 

the system behavior (measured variables), estimates its current state and regulates it by 

performing actions (on set variables) to reach a target state (the set-point). L1 and L2 are designed 

using such a standard principle. To estimate and to regulate, L1 relies on mathematical models of 

the physical components of the ventilator and L2 on a physiological model of the patient based on 

equations of ventilatory mechanics. For L3, several sophisticated automatic controllers have been 

proposed, some of them are detailed in this special issue3, and are implemented in ventilators. To 

compensate their lack of prediction, these controllers react as quickly as possible to any change 

between the current state and the target state. They are efficient, robust and rely on well-mastered 

techniques of control theory. However, their view of the patient is restricted to the model they are 

based on. Therefore, the performance of these automatic controllers may be poor, when they are 

applied to various pathologies and emergency situations where the underlying assumptions of the 

model are generally no more valid. For instance, parameters considered as constant in the model 

may change over time with the disease evolution. The algorithms they are based on can not reflect 

the attitude of the physician who dynamically adapts the strategy over time, based on the 
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evolution of patient's state and therapeutic goals. The integration of heuristics such as "never 

envisage full weaning at night" is difficult.  

In order to perform a diagnosis, determine a therapy and act on the ventilator, a substantial part of 

L3 might be integrated into the overall system. An attempt to integrate into the controller an 

active clinical strategy, represented with production rules (IF conditions THEN actions), has been 

proposed by Strickland and Hasson46, 47. Their system used two parameters, tidal volume (Vt) and 

respiratory frequency (RR), to estimate the current patient's ventilation and modify, if necessary, 

the mandatory frequency and the pressure support level (the SIMV with Pressure Support mode 

was used). Oxygen saturation was used as a safety parameter. When ventilation was judged 

correct (Vt ≥ 5ml/kg and 8≤RR≤30 cycles/min), mandatory frequency and pressure support level 

were systematically decreased. The clinical results indicated that the use of the system reduced 

the time spent with an incorrect ventilation and the number of blood gas measurements 

performed. In this system, the weaning strategy was reactive, fixed and did not take into account 

the temporal evolution of ventilation, a central point in the clinician's decision making process. 

Consequently, only candidates for weaning were ventilated with this system.  

The work performed since several years at the LDS Hospital for the elaboration of computerized 

protocols is relevant here17, 32, 37. The algorithmic-oriented approach chosen at the LDS Hospital 

leads to a complex logic where temporal aspects are intricate. It is largely recognized in 

knowledge acquisition community that the elicitation of the knowledge level36 (such as for 

instance temporal abstractions42 applied to the context of the management of mechanical 

ventilation) is essential to facilitate reuse, sharing and maintenance of knowledge-based 

systems34. Recently, the need to base automatic control on clinical experience rather than on 

mathematical models of the couple patient-ventilator has led to the introduction of fuzzy logic in 

working closed-loop41 or open-loop35 systems. Fuzzy logic is used to represent the subjective 

human notions employed in decision-making, such as "high", "low", "normal" or "too high". 

Rules, sets and membership functions (the central elements of the fuzzy logic approach) are 
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designed according to medical practice. Promising results were obtained using this type of fuzzy 

controller for automatic pressure support level adjustment35. Here again, the introduction of 

(fuzzy) temporal reasoning is essential to envisage the automation of the entire mechanical 

ventilation process. Indeed, integrating L3 in the system should allow the construction of a more 

comprehensive view of the time course of the patient's state, thereby providing it the ability to 

manage several ventilation strategies depending on the patient's state. The results we have 

recently obtained at Henri Mondor Hospital (Créteil, France), demonstrate that this is feasible and 

that a knowledge-based approach is suitable to model a substantial part of the clinician's expertise 

relevant for L3.  

Knowledge-Based Systems for Ventilation Management 

Standard systems for patient monitoring are built with three functions: acquisition, storage and 

visualization of medical data to facilitate their management by the clinical staff. Knowledge-

based systems applied to this context (see Figure 2) are enriched with two main modules, the 

scenario recognition module that recognizes the current situation as it is developing, based on 

past and present information available, and the action planning module that defines the best 

therapeutic actions to be performed and their expected effects for restoring acceptable 

physiological conditions. The envisaged actions plan can be proposed to the user (open-loop 

system) or directly performed by the computerized system (closed-loop system). A minority of 

medical systems work currently in closed-loop. For scenario recognition and decision making, 

knowledge-based systems can rely on an explicit model either of the patient or of  the medical 

expertise required to perform a task.  
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Each rectangle represents a specific step. After data acquisition step, numeric data are 

transformed to symbolic values (signal-to-symbol conversion) used to described the process 

(classification of the ventilation, qualitative trends, stability, ...). After recognition of the situation 

(scenario recognition), therapeutic actions (action planning) are performed on the ventilator in 

case of a closed-loop system. Modifications of the data acquisition conditions for instance, 

sample frequency rate or acquisition of additional parameters,  can be realized.  

 

Planning consists in the explicit definition of the actions sequencing to be executed in a given 

context to reach the goal. For ventilation management the general plan showed in Figure 3a can 

be used. After data acquisition, the ventilation is classified and the current patient's state is 

determined. Based on the history of patient's ventilation, temporal reasoning allows to assess the 

evolution of the patient's state. The therapy prescription implies the evaluation of the adequacy of 

the current therapy, function of its expected effects and its evolution. This evaluation allows for 

the definition of the actions to perform and of the new state to expect. The decomposition of each 
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Figure 2: Architecture of a knowledge-based system for ventilation management  (Adapted 
from Artif Intell in Med, 14, Dojat M, Ramaux N, and Fontaine D, Scenario Recognition for 
Temporal Reasoning in Medical Domains, 139-155, Copyright (1998), with permission from 
Elsevier Science). 
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task is realized up to the description of simple actions to be executed. This general plan is 

instantiated for specific situations as shown in the example in Figure 3b.  

Fig. 3a-b: Plans for ventilation management 

3a (Left): The general plan for the set of steps during ventilation management. The steps are ordered but the 

sequencing is interrupted in case of alarming situation. 

3b (Right): This figure represents the instantiation of the general plan for a specific situation:  the restoration of 

correct ventilation after a short episode of tachypnea. After observation of the patient's ventilation (T1), correct 

ventilation is confirmed (T2). The ventilation is globally correct and the short episode of tachypnea is eliminated 

(T3).  Persistence of correct ventilation is predicted (T4) and then the current therapy is adapted (T5). Mechanical 

assistance has been increased to combat the tachypnea episode. The replacement of the low initial level of pressure 

support is proposed (T6). The maintain of correct ventilation is expected (T7). The global plan is not modified (T8) 

and the ventilator settings is modified. 

 

They are three essential aspects in knowledge-based systems applied to patient monitoring that 

are addressed by specific research efforts in artificial intelligence: 

• Temporal Reasoning: starting from time-stamped physiological raw data, the system has to 

built several abstraction levels in order to assess the global evolution of the controlled process 

(i.e. the couple patient-ventilator). Temporal abstraction mechanisms have been proposed to 

tackle this problem15, 22, 42, 45. Temporal aspect has to be handled also at the acquisition level to 
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assure the quality of the data and the distinction of significant events from artifacts4, 24. The 

system should be able to maintain (in closed-loop) the patient into a zone of respiratory 

comfort and to react in time to alarming situations. Ideally, the amount of time to take a 

decision must be known in advance to judge of its adequacy to the situation. Specific 

mechanisms for the preemption of decisions at any time are required to respect real-time 

constraints51. 

• Reusing knowledge: elicitation, validation and maintenance of knowledge-rich clinical 

decision-support systems are laborious efforts. Several research works are performed to 

facilitate, via the design of specific knowledge acquisition tools33, 43 or of standardized medical 

ontologies7, 38, the sharing, reuse and maintenance of knowledge bases.  

• Distributed components: Automatic supervision of patient is a complex task that implies 

solving different kind of problems. Distributed architectures, where several heterogeneous 

specialized modules cooperate, can help to partition problems and implement efficient systems 

integrated into the clinical environment21, 26.  

Current State of the Art 

A few knowledge-based systems for automatic management of mechanical ventilation have 

already been proposed. Despite several interesting results, this application remains a challenging 

task for researchers in medical AI, whereas there is a real clinical need for such systems. A recent 

review of different systems can be found18. We would like here to stress the major contribution of 

some selected systems that can help to design the next generation of medical assistants for 

mechanical ventilation. The crucial importance of time and context to interpret physiological raw 

data and to propose a therapy has been emphasized in the precursor system Ventilator Manager 
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(VM)20. The integration of the system into the hospital information network is a prerequisite for 

its acceptation by the clinical staff. COMPASS44 was based on a distributed blackboard 

architecture and connected to the information network HELP at the LDS Hospital. Besides the 

modeling of the clinician's expertise with production rules, KUSIVAR39 integrated a 

mathematical model of the couple patient-ventilator to simulate the effects of ventilator setting's 

modification on the physiological data. The potential interest of fuzzy logic to classify 

physiological parameters was firstly introduced in VRM1. The notion of advisor that criticizes the 

settings proposed by the clinician in charge was introduced with the VQ-ATTENDING system30. 

Such computerized advisors could be useful for the supervision of difficult patients such as those 

suffering from ARDS, or to control the compliance to computerized protocols or guidelines43. 

Elicitation of knowledge is a well-known difficult problem. RESPAID6 was the first attempt to 

use machine learning techniques (ID3 algorithm) to automatically create, from a set of examples, 

production rules linking physiological raw data to clinical events. The resulting set of rules was 

able to classify correctly alarming events in the remaining data set. Recent systems confirm the 

clinical interest of such an approach31, 48. 

The main characteristic of this first generation of systems is the difficulty to use them outside the 

laboratory where they have been built. At the opposite, recent systems are open architectures 

applied to intelligent patient monitoring, generally connected to the hospital network and 

integrating original techniques that can be used in other contexts40, 23, 27. The current AIDIAG 

project at Lille University Hospital (France)4, 49, aims to collect, process, synthesize and interpret, 

using knowledge bases, the set of information available at bedside. The SIMON architecture8 is 

an extensible clinical platform to support clinical decision-making over the course of patient care, 
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and operates in the Vanderbilt University Medical Center. The construction of knowledge bases 

to be incorporated into these two architectures is under development. 

A Practical and Successful Experience Using the NéoGanesh System 

The initial objective of the design of the knowledge-based system called NéoGanesh, was to build 

a closed-loop system 1) efficient for the automatic control of mechanical support, 2) which could 

be extended to gradually improve its reasoning and planning capabilities and 3) which could be 

tested at the patient's bedside to measure  its performance at each step.  

A Knowledge-Based System Working in Closed-Loop 

Instead of computerizing a specific recipe for ventilation management37, 47, in designing 

NéoGanesh we tried to respect the golden rules of knowledge engineering: make an explicit 

model of medical tasks and reasoning involved, and distinguish between the conceptual model 

(knowledge level, see for instance Figure 3) and the representation paradigms (symbolic level) 

used to implement it13. NéoGanesh is based on current AI techniques: a knowledge representation 

that mixes objects, rules and temporal abstractions16 in a distributed architecture14. It combines a 

"tactical" component and a ''strategic'' component. The "strategic" component relies on the model 

and representation of the intensivist's decision-making process. The "tactical" component uses 

three physiological parameters to modify the level of assistance during pressure support mode 

ventilation, and to maintain the patient within a zone of acceptable ventilation defined as Zone of 

Respiratory Comfort: 12<RR<28 cycles/min, Vt>300 ml or 250 if weight < 55 Kg, PetCO2<55 

mmHg or 65 mmHg if COPD). Therefore, compared to general architectures such as 

VENTPLAN40 or GUARDIAN23, 27, the approach is more modest. The originality of NéoGanesh 

can be stressed in three points:  
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• Our system is based on the modeling of the medical expertise required to mechanically 

ventilate patients with the pressure support ventilation mode. It does not include mathematical 

equations of a physiological model. There are three reasons for that: i) in pathological situations, 

physiological models are uncertain and can require data that are not  available in real-time, or data 

whose the estimation is difficult or imprecise. Data validation is still an open problem; ii) 

physiological models do not always represent useful information to the clinician in decision 

making. For instance, to follow up the recovery of patient after anaesthesia, pharmacological 

equations are imprecise and not used in practice; iii) the decision making process of clinicians 

may be less variable than the complex physiology of patients. This is reinforced by the 

introduction of protocols or guidelines for mechanical ventilation based on objective 

measurements like respiratory frequency or the rapid shallow breathing index. In conclusion, it 

seems simpler to model decision-making based on objective measurements, rather than based on 

physiology and multiple assumptions of the patient's behavior. Therefore the NéoGanesh system 

is more a "decision-driven" system than a "patient-driven" system, although it indeed uses data 

coming from the patient. 

• The introduction of a new mode of ventilation such as PAV50, ALV28 or ARIS5 is a long and 

difficult process. Therefore, we chose i) to ventilate patients with a standard ventilation mode, 

pressure support ventilation, largely used for weaning, and ii) to add heuristic knowledge to 

improve its use and to facilitate the weaning process. 

• It is essential to build extensible architectures for patient monitoring and implementation of 

mechanical ventilation protocols. Most of the recent systems proposed are very ambitious and 

their validation is only possible through simulators27. Our approach is more progressive. Starting 

from an extensible architecture, we integrated modules that are validated through clinical trials. 



 

  14 

NéoGanesh is based on a pragmatic bottom-up approach guided by a tight collaboration with 

intensivists and a continuous clinical evaluation. Our current module is devoted to the closed-

loop control of pressure support ventilation and decision for extubation. Our approach is closed to 

the VIE-VENT project at Vienna (Austria)24, that is devoted to the development of a knowledge-

based system for mechanically ventilated newborn infants to optimize therapy planning and to 

support neonatologists in their daily routine. With VIE-VENT, a change of the ventilator's 

settings is evaluated by monitoring the trend of the subsequent changes of the transcutaneous 

blood gases. A new recommendation is formulated if the short-term trend does not meet present 

requirements concerning the direction and the amount of the expected change29. Therapy 

recommendations, based on transcutaneously and invasively determined blood gas measurements, 

are formulated in terms of recommended changes of the ventilator settings. 

Some Clinical Results 

NéoGanesh has been used in closed-loop and tested in more than sixty ventilated patients at Henri 

Mondor hospital (Créteil, France). We performed two types of evaluation i) one set of tests to 

assess the capacity of the system to control the level of assistance in accordance to the patient's 

needs (evaluation of the tactical level) and ii) a second set of tests to assess the decision of 

extubation provided by the system (evaluation of the strategic level). 

Evaluation of the Management of Mechanical Ventilation 

In a preliminary study, we have ventilated two different groups of patients, both with NéoGanesh.  

The two groups represented two different steps in the course of mechanical ventilation. The first 

group (n=9) was composed of patients considered as candidates for weaning, and the second one 

(n=10) of severe patients needing to be maintained under mechanical ventilation. The mean time 
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spent within the Zone of Respiratory Comfort (see above) expressed as the percentage of the total 

ventilation duration was 99%  for the first group and 90% for the second group (see details in10).  

 

In a more recent study, we ventilated randomly 10 patients 24±4 hours with NéoGanesh and 23±3 

hours without standard pressure support ventilation (PSV) without NéoGanesh. In standard PSV, 

the clinician in charge could modify the pressure support level at his/her discretion. The mean 

pressure support level was similar with the two modes (17±4 cmH2O and 19±6 cm H2O without 

and with NéoGanesh, respectively). The mean time spent into the Zone of Respiratory Comfort 

was 66 ±24% and 93±8 % without and with NéoGanesh, respectively. These results are shown in 

Figure 4.  
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 Figure 4: Mean time spent in the zone of respiratory comfort without 
(standard PS) and with NéoGanesh (Computer Controlled PS) 
expressed as the percentage of the total ventilation duration. 
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The number of changes in PSV setting was considerably higher with NéoGanesh (56±40)  than 

with standard PSV (1±2). The mean time spent in a condition of  critical ventilation (RR > 35 

cycles/min, Vt < 300 ml or PetCO2 ≥ 55 mmHg) was 3% with NéoGanesh compared to 23% 

with standard standard PSV. Lastly, the time spent with a high level of occlusion pressure (P0.1), 

suggesting a high work of breathing, was significantly reduced with the knowledge-based system. 

NéoGanesh tries to automatically decrease the level of pressure support. This is illustrated for the 

patient in Figure 5A, where the pressure support level was modulated, depending on the 

respiratory rate values, when using NéoGanesh, while it remained constant when using standard 

PSV. The patient shown in Figure 5B was hyper-assisted (RR < 12 cycles/min) during 49% of 

total ventilation time with standard PSV. With NéoGanesh this situation never happened. When 

such a condition of  hyper-assistance is detected, the pressure support level is automatically 

decreased by NéoGanesh. 

 

Figure 5: Evolution of pressure support level (PS) in cmH2O and respiratory rate (RR) in 

cycles/min with NéoGanesh (APS), and with standard pressure support ventilation without 

NéoGanesh (SPS). 
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5A (Left): Results for patient 1 5B (Right): Results for patient 3 

 

As indicated in Figure 6A, frequent episodes of transient tachypnea were avoided for patient 8 

when using NéoGanesh. The price to pay was an increase of the mean pressure support level (17 

cmH2O for standard PSV compared to 24 cmH2O with NéoGanesh). The patient shown in Figure 

6B spent 54% of total time of ventilation in the Zone of Comfort for Ventilation when ventilated 

with standard PSV, and 97% of when ventilated with NéoGanesh. Again for this patient, 

NéoGanesh avoided episodes of tachypnea and contributed to the reduction of the rapid shallow 

breathing index (RR/Vt). Finally, the time spent with an estimated P0.1 > 4 cmH2O was lower 

with NéoGanesh than with standard PSV.  

 

 

Figure 6: Evolution of pressure support level (PS) in cmH2O and respiratory rate (RR) in 

cycles/min or rapid shallow breathing index (RR/Vt) in cycles/min/l with NéoGanesh (APS), and 

with standard pressure support ventilation without NéoGanesh (SPS). 
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For some patients weaning can be a long and difficult process. Continuous adjustment of 

mechanical assistance as performed by NéoGanesh  may positively influence the weaning 

outcome. The level of pressure support may be a useful guide for determining the optimal time 

for performing tracheal extubation. This strategy was implemented in NéoGanesh: when the 

patient is ventilated with a low level of assistance (9 cmH2O for patients with an endotracheal 

tube or 5 cmH2O for patients with a tracheotomy cannula), an observation period is triggered (1 

or 2 hours depending whether the level of pressure support after one hour of ventilation is 15 < or 

≥ 15 cmH2O respectively) and a decision about extubation is displayed on the computer screen. 

For 38 patients, we compared the decision given by NéoGanesh to the standard set of weaning 

tests (pre-weaning tests + 2 hours on T-piece + 48 hours of follow-up). The negative predictive 

value was equal in the two cases. However, the positive predictive value was of 89% for 

NéoGanesh and 77% for standard PSV, and 81% for the rapid shallow breathing index alone11. 

NéoGanesh predicted failure of weaning for 5 patients who tolerated the 2-hour T-piece trial but 

eventually failed weaning.  

Towards Smart Ventilators  

We have proposed to integrate medical knowledge into closed-loop controllers. Our clinical 

results indicate the potential interests of such an approach: adaptation of assistance to the needs of 

the patient, reduced need for monitoring and better weaning outcomes. Further studies should 

now be launched to demonstrate that this new technology improves patient care or that it 

maintains patient care while decreasing cost. Up to now, none of the sophisticated closed-loop 

controllers proposed in the literature have had a major impact on clinical care. One reason 

suggested18 is that these systems are pure engineer-oriented products not related to common 
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clinical practice. Clearly, in designing knowledge-based closed-loop controllers, we changed this 

view in adopting a clinician-oriented approach. Based on objective criteria, weaning protocols 

have been proposed by medical experts2, 19. Results from a prospective multi-centre randomized 

clinical trial indicate that a computerized system for directing ventilator therapy can significantly 

improve morbidity17. We consider that, for ventilation management, medical knowledge is 

mature enough to be incorporated into smart ventilators that can really assist clinicians in bedside 

care. Our work with the NéoGanesh system constitutes a first step towards the construction of 

such machines. For ventilator manufacturers the introduction of decision support capabilities into 

ventilators is attractive: it may allow to optimize the therapeutic efficiency of their products, and 

it is technically feasible due to the power of the embedded chips. Figure 7 shows the possible 

architecture for a smart ventilator. This machine integrates all data processing steps: i) to give to 

the clinician a synthetic view of the patient's state evolution, through an easy to use interface; ii) 

and to operate automatically some parts of mechanical ventilation process, such as the weaning. 

This machine is connected to several monitors (cardiac frequency monitor, pulse oxymeter, ...) 

and to the hospital network for additional data (such as blood gas measurements). Above a real-

time kernel for the tactical component functions (i.e. data acquisition, data processing and 

ventilation mode generation), via the standard components of the ventilator (i.e. electronics 

sensors and pneumatic actuators), the strategic layer is decomposed in several interconnected 

layers. For purposes of maintenance and reuse of knowledge bases developed and validated in 

several medical centres, a specific expert interface is available.  
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Figure 7: Architecture for a smart ventilator 

A simple interface synthesizes the ventilation and therapy evolution. Automatic adjustment of  ventilator settings is 

performed. The device integrates additional information via external monitors or the hospital network. Inside the 

ventilator, a specific architecture combines real-time functionnalities, such as data acquisition or ventilation modes 

generation, and knowledge-based functionnalities. An expert interface allows the maintenance and exchange of 

medical knowledge incorporated into the device. 

 

Specific lung function testing manoeuvres could be automatically performed by the smart 

ventilator in order to refine the evaluation of the patient's state, and then the therapy. This 

information could be used to manage several ventilatory modes. Improvement of planning 

capacities, via the automatic recognition of high level clinical scenarios as they are developing, is 

a prerequisite to improve the predictions and the dynamic adaptation of the strategy. Interaction 

with the clinician could contribute to a dynamic adaptation of the strategy depending on 

information that cannot be directly accessible for the machine. Ventilatory care should be adapted 

to the patient's needs. Information provided directly by the patient about the quality of the 

assistance received could be incorporated into our future smart ventilators. 
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