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Abstract

fMRI retinotopic mapping provides detailed information about the cor-

respondence between the visual field and its cortical representation in the

individual subject. Besides providing for the possibility to unambiguously

localize functional imaging data with respect to the functional architecture

of the visual system, it is a powerful tool for the investigation of retinotopic

properties of visual areas in the healthy and impaired brain. fMRI retino-

topic mapping differs conceptually from a more traditional volume-based,

block-type or event related analysis, both, in terms of the surface-based anal-

ysis of the data and the phase-encoded paradigm. Several methodological

works related to fMRI retinotopic mapping have been published. However,

a detailed description of all the methods involved, discussing the steps from

stimulus design to the processing of phase data on the surface, is still miss-

ing. We describe here step by step our methodology for the complete pro-

cessing chain. Besides reusing methods proposed by other researchers in the

field, we introduce original ones: improved stimuli for the mapping of po-

lar angle retinotopy, a method of assigning volume based functional data to

the surface and a way of weighting phase information optimally to account

for the SNR obtained locally. To assess the robustness of these methods we

present a study performed on three subjects, demonstrating the reproducibil-

ity of the delineation of low order visual areas.

Keywords: Human Cortex, Vision, Visual Areas, Surface Maps, Retinotopy,

Functional Magnetic Resonance Imaging
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Introduction

The human visual cortex is divided into several functional areas with distinct local

neural properties (Zeki and Shipp, 1988). The positions of functionally special-

ized visual areas are only loosely linked to cortical anatomy and are subject to

variability between individuals (Amunts et al., 2000). Several of these areas are

retinotopic, that is, their neurons respond to stimulation of limited receptive fields

whose centers are organized to form a continuous mapping between the cortical

surface and the visual field. The boundaries between most of the low order visual

areas can be determined from their retinotopic properties: the local representa-

tion of the visual field on the cortical surface changes its orientation — the local

visual field sign (VFS) — between adjacent visual areas (Sereno et al., 1994).

Thus, the knowledge of retinotopy, mapped by fMRI (Engel et al., 1994), allows

for a precise delineation of some low order retinotopic visual areas (Sereno et al.,

1995).

Precise delineation presents multiple interests, such as in establishing intersub-

ject and interspecies comparisons of the visual system (Van Essen et al., 2001), in

improving our insight into its organization in humans (Tootell et al., 1997; Had-

jikhani et al., 1998; Tootell and Hadjikhani, 2001; Wade et al., pear), in allowing

for quantitative investigations of parameters such as the cortical magnification

factor (Sereno et al., 1995) or receptive field size (Smith et al., 2001) and in con-

straining source localization in EEG/MEG imaging (Di Russo et al., 2002). Fur-

thermore, it greatly enhances interpretation of the visual responses in numerous

cognitive experiments (Wandell, 1999; Tootell et al., 1998a), and it opens clinical

perspectives in permitting detailed investigation of the pathologic visual system
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(Baseler et al., 1999; Morland et al., 2001).

fMRI retinotopic mapping differs in at least two respects from a more “tra-

ditional” three-dimensional amplitude-based functional analysis: the analysis of

retinotopy requires the interpretation of functional data in their local spatial con-

text of the sheet-like, highly folded cortical gray matter. This context is not ob-

vious in the three-dimensional Cartesian space in which the data are acquired. It

is usually provided by an explicit model of the individual cortical surface used in

a surface-based analysis of the functional data. Secondly, due to the Fourier-type

paradigm commonly used for fMRI retinotopic mapping, the main parameter of

interest for the functional analysis is the delay (phase) of the observed response,

not its amplitude. The processing of this information differs conceptually from an

analysis based on the response amplitude alone.

The basic principle of fMRI retinotopic mapping using phase encoding stimuli

has been the subject of several publications (Engel et al., 1994; DeYoe et al.,

1994; Sereno et al., 1995). Some methodological aspects have been addressed

in reports of applications of the method: optimization of the duty cycle and the

pattern of stimuli (Tootell et al., 1997; Hadjikhani et al., 1998) and the equivalence

between cross-correlation and Fourier transform in the delay analysis (Engel et al.,

1997). Other aspects have been dealt with in detail, but independently of their

application to retinotopic mapping: the construction of the cortical surface model,

in particular the segmentation of structural MRI data (Wells et al., 1996; Teo et al.,

1997; Van Leemput et al., 1999b; Dale et al., 1999; Zeng et al., 1999; MacDonald

et al., 2000; Zhang et al., 2001; Shattuck et al., 2001), the flattening or unfolding

of the cortical surface model (Van Essen and Maunsell, 1980; Schwartz et al.,

1989; Carman et al., 1995; Drury et al., 1996; Teo et al., 1997; Fischl et al., 1999;
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Angenent et al., 1999; Hermosillo et al., 1999; Wandell et al., 2000; Guérin-Dugúe

et al., 2000) and the correction of topological errors in the surface (Shattuck and

Leahy, 2001; Fischl et al., 2001; Kriegeskorte and Goebel, 2001; Han et al., 2002),

the analysis of fMRI response delays (Saad et al., 2001) and the smoothing of

functional data along the cortical surface (Andrade et al., 2001). Despite these

efforts, implementing fMRI retinotopic mapping procedures remains a difficult

endeavor, partly because a detailed description of the complete process, discussing

all the steps from stimulus design to the processing of phase data on the surface,

is still missing.

In this paper, we point out the challenges involved in retinotopic mapping and

give a detailed description of our methodology for the complete processing chain,

leading up to the delineation of low order visual areas. We combine methods

proposed by other researchers in the domain, and original ones: improved stimuli

for the mapping of polar angle retinotopy and a method of assigning volume based

functional phase data to the surface, including an optimal weighting accounting

for the uncertainty of the phase estimation.

Background

Figure 1 gives an overview of the procedures involved in fMRI retinotopic map-

ping and the corresponding neural and physiological processes.

[Figure 1 about here.]
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Neural and physiological processes

The processes that link stimulation of the retina to a physiologic response in terms

of local variations of blood oxygenation in the visual cortex comprise a multitude

of steps some of which are not yet fully understood. In the context of retinotopic

mapping, it is useful to distinguish three stages in this processing chain:

Receptive fields The stimulus is processed through multiple neural stages to

yield an input to a given population of cortical retinotopic neurons. During this

processing, information is integrated over a certain region in the visual field. Us-

ing the concept of receptive fields, this integration can be summarized in a sensi-

tivity profile in the visual field for each neuron of the population considered. The

transformation of the stimulus by the spatial integration can then be described as

a spatial widening or “blurring” of the stimulus (fig. 1 a). The resulting “blurred”

stimulus is a fictive intermediate state between the “real” stimulus and its pro-

jection on the cortical surface according to retinotopy (in reality, integration and

projection by retinotopy occur simultaneously, across several processing stages).

Receptive field properties vary between different populations of neurons, are gen-

erally not precisely known, and may even depend on the stimulus (Sceniak et al.,

1999).

Retinotopy Retinotopy links the position of each retinotopic neuron to the point

in the visual field corresponding to the center of its receptive field. In this context,

the position of neurons is best described in terms of two-dimensional coordinates

on the cortical surface, an idealized, two-dimensional representation of the cor-

tical sheet (rather than in three dimensional Cartesian coordinates). There are
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mainly two reasons. First, for a given point on the cortical surface, receptive

fields of neurons from different cortical layers are centered on the same point in

the visual field. And second, adjacent points on the cortical surface represent ad-

jacent points in the visual field. More precisely, the mapping between the cortical

surface and the visual field is locally homeomorphic, that is, it is locally bijective

and continuous and the inverse mapping is also continuous.

In terms of steps involved in the processing of the stimulus, retinotopy transforms

the “blurred” stimulus (a spatio-temporal pattern of stimulation in the visual field)

into a corresponding spatio-temporal pattern of neural activation on the cortical

surface. The goal of retinotopic mapping experiments is to determine this corre-

spondence.

Neurophysiology and anatomy The neurophysiologic properties of the cortex,

notably its metabolic and hemodynamic properties, link a given spatio-temporal

pattern of neural activation to spatio-temporal variations of blood oxygenation.

These variations are at the origin of the signal observed in BOLD fMRI. While

we can assume the neural processing described above to be quasi-instantaneous

in the context of fMRI, the variation of blood oxygenation exhibits a temporal lag

and is smoothed, temporally as well as spatially, with respect to the neural activa-

tion. The resulting variation of blood oxygenation will be measured in three di-

mensional Cartesian space. Anatomy defines the way the surface-based response

is embedded in three dimensions. The relationship between the surface-based and

volume-based representations of the functional response is not homeomorphic.

Due to the strong folding of the cortex, gray matter points that are adjacent in

three dimensions (e.g. on opposite banks of a sulcus) are not necessarily close to
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each other when their distance is measured along the cortical surface.

Retinotopic mapping procedures

The challenge of retinotopic mapping by fMRI is to accurately measure the prop-

erties of the second one of these stages, while being insensitive to, or correcting

for, the other ones. In the following, we will describe the steps necessary to ob-

tain retinotopic maps by fMRI and the methodological challenges involved. We

distinguish five steps in the retinotopic mapping procedure:

Acquisition and segmentation of structural data In order to obtain a two-

dimensional map of retinotopy, an explicit model of the cortical surface is re-

quired. The first step in the construction of this model is the acquisition of a high

resolution, high contrast-to-noise structural MR image of the brain. This volume

is subsequently segmented to obtain representations of the different brain tissues.

Accurate and automatic segmentation of the structural volume to obtain a topo-

logical correct representation of the cortical surface is a major challenge. In the

context of construction of a model of the cortical surface, several descriptions of

brain segmentation algorithms exist (Teo et al., 1997; Dale et al., 1999; Joshi et al.,

1999; Zeng et al., 1999; Germond et al., 2000; MacDonald et al., 2000; Shattuck

et al., 2001). Most commonly, voxels are labeled as either of three tissue types:

white matter (WM), gray matter (GM) or cerebrospinal fluid (CSF).

Construction and unfolding of the surface model A model of the cortical sur-

face is extracted from the segmented volume, based on one or both of the borders

between cortical GM and the adjacent tissues. Ideally, it represents the center
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of the cortical GM, where functional activation is expected. The ensuing surface

based analysis of functional data requires that the surface model be anatomically

and topologically correct. Topological defects usually need to be corrected man-

ually, although recently efforts have been made to automatically correct some

of those errors (Shattuck and Leahy, 2001; Fischl et al., 2001; Kriegeskorte and

Goebel, 2001; Han et al., 2002).

A major advantage of a surface based analysis — convenient display — can only

be reaped by unfolding the surface model, a procedure presenting a challenge in

terms of computational complexity. The unfolding needs to be homeomorphic to

be useful. This means in particular that partially folding the surface onto itself

in the flattened representation must be avoided. Homeomorphic flattening of the

surface is only possible if the folded model is free from topological errors.

Stimuli for retinotopic mapping Stimuli for retinotopic mapping are designed

to encode the position in the visual field by a unique pattern of temporal activa-

tion. This is achieved by means of slowly moving periodic stimuli consisting of

concentric expanding or contracting rings and clockwise or counterclockwise ro-

tating wedges, presented while the subject is fixating their center or apex (Engel

et al., 1994; DeYoe et al., 1994). These stimuli link each position along a visual

field coordinate (eccentricity / polar angle) to a unique delay of the periodic stim-

ulation. This delay is usually quantified as a phase in the frequency domain. This

encoding is robust with respect to the (unknown) spatial and temporal smoothing

applied by the visual fields and the hemodynamic response, provided the tempo-

ral and spatial frequency of the stimuli is low enough. The hemodynamic delay

creates a phase shift of the response that needs to be corrected for. This is done
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by comparing the responses to two stimuli moving in opposite directions for each

visual field coordinate (four stimuli in total) (Sereno et al., 1995).

Acquisition and volume-based analysis of functional data BOLD sensitive

fMRI data are acquired throughout the occipital lobe. The MR images usually

present distortions with respect to the structural data acquired, due to susceptibil-

ity artifacts and gradient non-linearities. As discussed below, misalignment be-

tween functional and structural images can severely degrade the two-dimensional

representation of the functional data. One of the challenges in the acquisition of

fMRI data is to minimize susceptibility artifacts, while maintaining a high level of

sensitivity to BOLD contrast and short acquisition times. Distortions due to gra-

dient non-linearities are independent of the acquisition sequence. Depending on

the gradient hardware, appropriate correction of the data may be necessary (Wald

et al., 2001).

The volume-based analysis in retinotopic mapping experiments involves estimat-

ing the response phase for all voxels. Importantly, the individual uncertainties of

these phase estimations can be quantified and can be taken into account in the sub-

sequent analysis. The responses of the stimuli of opposite direction of movement

are combined to correct for the phase shift induced by the hemodynamic delay.

Assignment of functional data to the surface model The task is to obtain a

surface based representation of the cortical response from the functional data ac-

quired in three dimensional Cartesian space. Two issues need to be addressed.

The first concerns the problems inherent in the reduction of dimensionality, as-

signing volume-based data to the surface model. This step is necessarily non-
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homeomorphic. In the presence of misalignment (local and/or global) between

functional and structural data, the assignment may induce large errors in the two-

dimensional representation of the data. These errors are best exemplified by the

case of assigning functional data to the wrong bank of the calcarine sulcus. The

issue of alignment needs to be addressed at the moment of data acquisition or

by appropriate correction of distorsions prior to assignment of data to the surface

model. The second issue is the potential mismatch between the data at the in-

dividual voxels and the original cortical response, due to noise and the distance

between voxel centers and surface elements. Sources of this mismatch need to be

identified and their respective contributions estimated and taken into account in

the context of the assignment of phase information.

Processing of the retinotopic maps

Retinotopic mapping is usually not a goal in itself. Consequently, the obtained

maps are to be processed further to extract information such as the position of

the borders between retinotopic functional areas. We will use the example of

delineation of visual areas to illustrate and evaluate our retinotopic mapping pro-

cedures.

Between adjacent retinotopic visual areas the visual field sign (VFS, (Sereno et al.,

1994)) changes, which allows for a reconstruction of their borders (Sereno et al.,

1995). The visual field sign designates the orientation of the representation of

the visual field on the cortical surface. To determine the visual field sign, it is

convenient to calculate the ratio of an oriented area measured using the local rep-

resentation of the visual field coordinates with respect to the same area measured
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using a locally isometric parametrization of the surface.1 We refer to this quantity

as the visual field ratio (VFR). The visual field sign is then the sign of the VFR,

and the visual area borders correspond to contour lines of zero VFR. The size of

the zone of small absolute VFR around visual area borders gives an immediate

visual impression of the uncertainty of the position of the delineated borders, an

information that is absent from the VFS. Most of the spatial features of the VFR

are present in the representation of the polar angle coordinate whose gradient re-

verses direction at the borders between visual areas. In contrast, the eccentricity

gradient is smooth across visual area borders.

Two dimensional processing of the retinotopic maps presents a computational

challenge linked to the representation of the data on an irregular two dimensional

grid embedded in three dimensions. Standard image processing approaches are

therefore not always easily implemented.

Methods

Acquisition and segmentation of structural data

Acquisition and data pre-processing All MRI data were acquired on a Philips

Intera 1.5 T system equipped with a Powertrack 6000 gradient system (23 mT/m

with a slew rate of 105 T/m · s). Structural data were acquired by means of a

spoiled 3D GRE Flash sequence, TR of 23.7 ms, TE of 6.9 ms, flip angle of 28◦

and an isotropic resolution of 1 mm. The body coil was used for RF excitation

and a volume head coil for signal detection. Slices were oriented approximately
1This is the Jacobian of the visual field representation on the surface.
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parallel to the calcarine sulcus, inclined by about 45◦ with respect to AC – PC. To

optimize the contrast-to-noise ratio, three volumes of 256×256×160 voxels were

acquired in the same scanning session for a total acquisition time of 35 min. Head

motion was constrained by means of small sand bags to the right and left of the

subjects head. Residual motion was corrected for by realigning the three volumes

using the SPM software (Ashburner and Friston, 1997). In the ensuing analysis,

only the mean of the realigned structural images was used.

Segmentation The details of the algorithm employed are beyond the scope of

this paper. Briefly, voxels are labeled sequentially, starting with CSF and proceed-

ing to GM and WM. The image intensity distributions of the tissues are modeled

as normal distributions (Wells et al., 1996). Their parameters are estimated sepa-

rately for each slice to take into account inhomogeneities in the z-direction. More

sophisticated techniques incorporating Expectation-Maximization and Markov

random field models could be introduced to better account for the full three-

dimensional bias field distortion (Van Leemput et al., 1999a; Zhang et al., 2001;

Shattuck et al., 2001). The sulci are initially detected as dark and narrow regions

using a morphological operator (Guérin-Dugúe et al., 2000). This allows for an

estimation of their intensity distribution and subsequent refinement of their label-

ing. In a similar fashion, voxels close to sulci are considered belonging to GM,

providing an initial estimation of their intensity distribution. This labeling is in

turn refined in a region growing process seeded around the sulci, aggregating vox-

els based on their intensity and on the topology of their neighborhood. Using the

same procedure, WM is segmented starting from voxels close to the GM. After

this first segmentation, voxel labeling is refined over several cycles, iteratively
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updating the estimation of the intensity distributions for all tissues and the voxel

labeling. The whole process is controlled by two parameters, one indicating the

maximum intensity to take into account and the other tuning the attribution of vox-

els that have borderline intensities between GM and WM. For a given acquisition

sequence, these parameters need usually not be readjusted manually.

After the segmentation, the interface between the volumes labeled GM and

WM is extended to represent approximately the center of the GM by a series of

constrained region growing steps applied to CSF and WM. At each of these steps,

only voxels initially labeled as GM can be re-affected, and a layer of at least

one voxel of GM is imposed between WM and CSF. Many of the topological

defects initially present in the volume labeled as WM disappear during this post-

processing step. However, to obtain a topologically correct model of the occipital

lobe, manual editing is still required.

Construction and unfolding of the surface model

The first step in the construction of a model of the cortical surface is the selection

of the brain region to be represented. This depends on the region studied, but also

on the way the surface should be visualized: by flattening or inflation. Inflation

allows for the representation of an entire hemisphere without cutting, but not all

of that surface is visible at once. Flattening displays all of the model at once,

but requires surface cuts if the intrinsic curvature of the surface is too strong, thus

loosing in that case some of the connectivity information. In the context of studies

pertaining to the retinotopic visual areas, we found it useful to model only part of

the cortical surface situated in the occipital lobe. This allows us to completely
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flatten this surface without the need for further cuts. The entire region under

investigation can then be visualized simultaneously, while faithfully representing

connectivity information throughout the surface.

[Figure 2 about here.]

The portion of the surface to be unfolded is defined manually for each of the two

hemispheres from the segmented volume. It is delimited by two perpendicular

planar cuts. One is made approximately parallel to, and just posteriorly-ventrally

to, the parieto-occipital sulcus, and the other is approximately parallel to, and

about 3 cm ventrally-anteriorly to, the calcarine sulcus (Fig. 2). Within the delim-

ited region, a triangulated model of the interface between voxels labeled WM and

GM is created using the marching cubes algorithm (Lorensen and Cline, 1987)2.

Due to the post-processing steps applied to the segmented volume, this model ap-

proximatively represents the center of the GM. Its nodes are initially positioned

on a regular grid. The model is subsequently smoothed slightly by iteratively

displacing each node a fraction of the distance to the mean position of its near-

est neighbors. Ten iterations of smoothing are applied, displacing nodes at each

iteration a tenth of the distance to the center of its neighbors.

The flattening algorithm employed is described elsewhere (Guérin-Dugúe

et al., 2000). Further details will be provided in a forthcoming paper. This al-

gorithm is a modified version of a multidimensional scaling like algorithm, called

Curvilinear Components Analysis (Demartinez and Herault, 1997). Briefly, the

approximate geodesic distances from each node to all its neighbors within a tenth

order neighborhood are calculated. These distances provide information about the
2Slight modifications from the original algorithm were made to avoid holes in the surfaces

generated.
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local structure of the surface. Information about the global structure is provided

by ten “representative” nodes that are selected automatically using the K-means

technique (MacQueen, 1967). These nodes serve as “anchors”. For each of the

anchors, the distances to all the other nodes of the surface are determined using

the Dijkstra algorithm (Dijkstra, 1959). This leads to a sparse distance matrix,

which contains only about 2% of all the mutual distances between nodes. The

unfolding is initialized by a projection of all nodes from their 3D positions to the

plane formed by the two first principal components of their spatial distribution.

The 2D node positions are then iteratively updated during 5000 iterations. Nodes

are selected one at a time and all the neighbors of the node currently chosen are

repositioned, according to the mismatch observed between the distances in the

plane and the geodesic distances. At each iteration, each of the anchors is selected

once, updating the global structure of the unfolded model, and a fixed number of

“ordinary” nodes are selected randomly, refining the local structure. The global

structure of the unfolded model settles rapidly. After 500 iterations, the anchors

are dropped from the calculations, and node positions are only refined locally. The

method proposed is computationally efficient mainly due to two aspects: first, the

distance matrix is sparse and therefore only a fraction of the mutual distances

needs to be calculated. And second, for each node selected during the unfolding

process, the positions of all neighbors are updated. This contributes to a higher

mobility of the nodes compared to an approach displacing only the selected node,

like classical stochastic gradient descent techniques. As a result, the model con-

verges rapidly toward a low-distortion representation of the unfolded surface, at

the same time avoiding local minima that would lead to the surface being folded

onto itself. The flattening produced is homeomorphic over the vast majority of the
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surface area.

The step of unfolding necessarily induces some amount of distortion of dis-

tances and/or angles, because intrinsic curvature is present in the cortical surface.

As far as display purposes are concerned, this distortion is a small price to pay

to be able to view the entire surface under investigation at once. The functional

analysis can be performed entirely based on the folded model and is therefore not

hampered by this distortion.

Stimuli for retinotopic mapping

[Figure 3 about here.]

The stimuli we used are similar in design to those described by other groups (En-

gel et al., 1994; Sereno et al., 1995; Tootell et al., 1997). Eccentricity is mapped

by a slowly expanding or contracting ring, polar angle is mapped by two rotat-

ing wedges (Fig. 3). For the stimuli mapping eccentricity, the speed of expansion

or contraction varies linearly with eccentricity (exponentially with time). Due to

the approximately exponential cortical magnification factor (Engel et al., 1994;

Tootell et al., 1998b) this stimulus produces a wave of activation on the corti-

cal surface traveling at approximately constant speed. When the ring reaches

maximum eccentricity, it wraps around to be replaced by a new one at minimum

eccentricity, and vice versa.

When optimizing these stimuli, essentially four parameters can be adjusted

independently: temporal frequency, number of rings and wedges, duty cycle of

the stimulation and the pattern (color, contrast) of the stimuli.

Temporal frequency
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[Figure 4 about here.]

The temporal frequency is limited by two principal constraints: the presence of

strong low frequency noise (baseline drift) and the lowpass filtering due to the

hemodynamic response. We chose a temporal period of 32 s for both polar an-

gle and eccentricity stimulation. This period allows for a full return to baseline

between activations, and thus leads to maximal response amplitude (Bandettini

et al., 1993; Friston et al., 1994). At the same time, the frequency is high enough

to avoid the strong low frequency noise caused for example by subject movement

and scanner instability (Fig. 4). Physiologic noise from cardiac pulsation and res-

piratory events needs also to be considered. Both processes occur at frequencies

sufficiently high, not to interfere directly with the stimulation frequency. But due

to the discrete temporal sampling of functional data, these signals may be aliased

back into the spectrum. In our case of a repetition time of 1.28 s for functional

volumes, typical (fundamental) frequencies for respiration are not aliased. The

aliased cardiac noise does not coincide with the stimulation frequency for cardiac

frequencies in a range from 50 to 90 pulsations per minute.

Number of rings/wedges The number of rings or wedges the stimulus contains

determines the correspondence between the observed response phase and the po-

sition (eccentricity or polar angle, respectively) in the visual field. This corre-

spondence is one of the factors determining the accuracy of the final retinotopic

map, the other one being the accuracy of the response phase measurement. We

will describe this correspondence for the case of the polar angle stimulus, the case

of the stimulus mapping eccentricity being similar.

[Figure 5 about here.]
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A polar angle stimulus consisting ofn equally spaced rotating wedges can be

described by the phase of the periodic stimulation

φ̃α = (nα̃) mod2π

corresponding to each polar angleα̃ ∈ [0;2π[ of the visual field. This stimulus

creates a unique phase encoding of polar angles within each ofn regions of the

visual field, subtending2π
n of polar angle each. Ifn> 1, the encoding of the entire

visual field is not unique since any two visual field positions that are an integer

multiple of 2π
n apart have identical phases (they are stimulated simultaneously).

Let φα ∈ [0;2π[ be the estimated phase of the response. The corresponding esti-

mated position of stimulation in the visual field can then be calculated as

α =
φα
n

+ i
2π
n

,

wherei ∈ [0. . .n−1] indicates which of then uniquely stimulated regions of the

visual field is represented locally. The estimation ofi needs to be based ona priori

information about retinotopy. Assuming thati can be determined accurately, the

uncertaintyσα of the estimated visual field position due to the uncertaintyσφ of

the phase measurement is then given by

σα =
σφ

n
.

Thus, the accuracy of the polar angle retinotopic map is proportional to the num-

ber of wedges, provided the accuracy of phase estimation is constant and pro-

vided sufficienta priori knowledge is available to unwrap the response phase.
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More generally, the accuracy is proportional to the local derivative of the function

translating the response phase observed into a visual field position.

Note that the choice of the number of wedges (rings) links the temporal fre-

quency of stimulation to an angular (radial) speed of the rotation (expansion or

contraction). An increase of the number of elements leads to a slower displace-

ment of the stimulus in the visual field at constant temporal frequency.

Retinotopic stimuli with more than one element have been used before. En-

gel et al. (1994) used two rings in their original report on the Fourier method

for retinotopic mapping. Later, the same group used three wedges to map po-

lar angle (and a single ring to map eccentricity) (Engel et al., 1997). In a recent

report, the group uses the standard stimuli comprising a single ring and a single

wedge (Press et al., 2001). To our knowledge, the relationship between the num-

ber of rings/wedges and the accuracy of the retinotopic maps obtained has not

been mentioned.

We chose to use two wedges for the polar angle stimulus, because distinguish-

ing between the two visual hemifields usinga priori information is particularly

simple. Only the contralateral hemifield is represented in the low order visual

areas of each hemisphere, so that positions that are sufficiently far from the verti-

cal meridians can be uniquely identified. Positions close to the vertical meridians

can be correctly attributed, since retinotopy varies smoothly over the cortical sur-

face (Sereno et al., 1994), and the representation of the upper and lower vertical

meridians are surrounded by representations of the upper and lower quadrants,

respectively.

Retinotopy with respect to eccentricity is less important for the delineation.

It contains little information about the position of the visual area limits. Since
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distinguishing between the responses to several rings usinga priori information

seems to introduce more difficulties than a higher accuracy would resolve, we

chose to use only a single ring stimulus.

Duty cycle A case has been made for stimuli with a very low duty cycle,

to improve the responses in visual areas where neurons have large receptive

fields (Tootell et al., 1997). We found that the amplitude of the response at the

fundamental stimulation frequency decreased for very thin stimuli and obtained

better results with somewhat higher duty cycles of 25% for the polar angle stim-

uli (two wedges subtending 45◦ each) and 17% for the eccentricity stimuli (one

ring, two checks wide). This corresponds to a width of two checks of the radial

checkerboard, creating a line of high local contrast at the center of the stimulus.

Pattern Rings and wedges consist of a radial checkerboard. The aspect ratio

of the checks is kept constant by scaling their height linearly with eccentricity.

In order to maximize local luminance and color contrast, neighboring checks

are of complementary color. The stimulus had the same mean luminance as the

gray background. Equiluminance values for three color combinations (red/green,

blue/red and green/blue) are measured for each subject using a minimum of mo-

tion test (Anstis and Cavanagh, 1983) and are used for individual luminance cor-

rection. Colors change at a frequency of 4 Hz. During all scans, the subject’s task

is to fixate a central dot on the screen, while focusing attention to the stimulus.

To control and maintain attention, the subject is asked to press a button at each

occurrence of a given pair of yellow and blue checks, which appears at random

positions and times in the stimulus at a mean frequency of one target every 6 to 8
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seconds.

Stimuli are back-projected on a translucent screen situated outside of the mag-

net. The subject views this screen at a distance of about 150 cm via an angled

mirror. Our stimuli cover eccentricities from 0.2◦ to 8.5◦. The movement of

the stimuli occurs in small steps of four images per second and appears almost

smooth. Four retinotopic functional scans are acquired, one for each of the two

directions of motion for each of the two stimulus types. The stimuli start 10 s

before the actual acquisition begins, to be able to detect responses from the be-

ginning of the acquisition period. The start of the stimuli is triggered by a signal

from the scanner.

Acquisition and volume-based analysis of functional data

Acquisition The goal in the choice of an acquisition sequence for functional

data based on BOLD contrast is to provide fast T2∗-sensitive imaging, while re-

ducing the distortion often present in single shot EPI sequences due to the narrow

“bandwidth” in the phase encoding direction. A means of reducing loss of phase

coherence during the echo train is to shorten it, using segmented EPI. However, at

fixed echo time, required for T2∗ sensitivity, this leads to an unused delay between

the RF pulse and the start of the echo train. Thus, measurement time is to a certain

extent wasted, at the expense of the SNR achievable during a fixed measurement

time. The 3D PRESTO sequence shifts the echoes, acquiring during this lapse the

echo train corresponding to the preceding RF pulse (Liu et al., 1993; van Gelderen

et al., 1995). The expected relative distortions between functional and structural

data due to susceptibility artifacts are reduced by a factor of 4.5 with respect to
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single shot EPI, while the minimal scan time remains essentially unchanged. This

reduction of distortion comes at the cost of a slightly lower sensitivity due to the

decrease in repetition time and a corresponding decrease in longitudinal magneti-

zation. At the same time, the decreased repetition time has the benefit of reducing

the signal contributions from large blood vessels presenting a long T1 relaxation

time, leading to a lower sensitivity to macrovascular artifacts.

Functional data were acquired in the same scanning session as the structural

scans. 12 slices oriented approximately perpendicular to the calcarine sulcus were

scanned by means of a 3D PRESTO sequence, acquiring 21 echoes for each RF

pulse, with a repetition time of 28 ms, an echo time of 40 ms, a flip angle of 14◦

and a resolution of 3×3×4 mm3. A single loop surface coil, positioned inside

the volume coil used for the structural scans, was used for signal reception. The

body RF coil was used for excitation. The acquisition time was 7 min 16 s per

functional run containing 341 volumes of 64×64×12 voxels. Thus, 25 functional

volumes are acquired during each period of stimulation.

Data import and pre-processing Functional volumes are converted from the

proprietary scanner image format to SPM / Analyze, taking into account relative

position at acquisition of the functional volumes with respect to the structural

data. To faithfully represent sub-voxel offsets and rotations between functional

and structural images, a linear spatial transformation matrix is stored for each ac-

quired volume. This transformation matrix is taken into account in all subsequent

processing steps. We consistently observed an overall shift of the functional im-

ages with respect to the structural volumes by about one voxel in phase encoding

direction (right-left). This shift is corrected for by simple translation of the func-
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tional volumes.

If gradient non-linearity is a problem, appropriate correction might be needed

at this stage to allow for accurate assignment of the functional data to the surface

model (Wald et al., 2001). In our case, gradient non-linearity did not noticeably

affect images. According to the figures provided by the manufacturer of our gra-

dient system, non-linearity does not exceed 1% over a volume of 25 cm diameter

(1.4% over 53 cm).

Finally, some of the effects of head movement during functional scans are

removed by realigning the functional volumes with respect to the one acquired

closest in time to the structural scan using the SPM package (Friston et al., 1995).

Data are re-sampled using a windowed sinus cardinal kernel. Since the acquisition

is done with a 3D technique, rather than with a multiple slice method (as is usually

done with EPI acquisitions), there is no difference in timing of the acquisition of

the slices to be taken into account.

3D analysis of retinotopic mapping data The estimation of the response phase

and amplitude is done in three dimensions on a voxel per voxel basis. With the

timing used here, the response to the periodic stimulus is close to sinusoidal, with

only a small amount of energy present in higher harmonics (Fig. 4). However,

the amplitude of the signal present at those harmonics varies greatly between in-

dividual voxels and is generally very low. We chose to base our analysis on the

fundamental frequency only.

Both, signal amplitude and phase can be calculated from the complex valued
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Fourier transform at the stimulation frequency (Engel et al., 1997):

Fν0

(
~x j
)

=
N

∑
k=1

f
(
~x j , tk

)
exp(±i2πν0(tk− tH)) , (1)

whereFν0 is the volume of complex Fourier components at the frequencyν0 of the

stimulus,~x j are the voxel positions,N is the number of volumes acquired during

one functional run,f is the raw functional data (three spatial and one temporal

dimensions),tk are the instances of acquisition of the functional volumes counted

from onset of the acquisition, andtH is an estimation of the mean hemodynamic

delay. Since the phase ofFν0 is to be a measure of the position of the stimulus in

the visual field, the sign in the exponent depends on the direction of motion of the

stimulus. We chose the positive sign for the expanding and anti-clockwise rotating

stimuli. Furthermore, we assume that the stimulus position at the beginning of the

scan is to be associated with a response phase of zero, otherwise an additional

phase offset is required in the exponential function.

For the ensuing analysis the absolute amplitude of the response is of little

interestper se. Rather, we are interested in the response amplitude because it

reflects the uncertainty of the phase measurement. The standard deviation of the

phase error (when expressed in radians) is the inverse of the SNR of the response

amplitude at the stimulation frequency (see appendix). The noise at the stimula-

tion frequency is not accessible directly. Instead, we base its measurement on the

assumptions that noise above the stimulation frequency is approximately white,

and that the response observed at frequencies other than the stimulation frequency

contain only noise. Consequently, the noise is estimated for each voxel indepen-

dently as the standard deviation of the real and imaginary spectra over a range
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of frequencies. Frequencies below the stimulation frequency (containing baseline

drifts) and all harmonics of the stimulation frequency are excluded from the noise

calculation.

The relation between the observed response phase and the position of stimu-

lation in the visual field depends on the hemodynamic delay. Since the hemody-

namic delay may vary as a function of the position on the cortex (Kastrup et al.,

1999), it needs to be measured and corrected for locally. This can be achieved by

comparing the responses to two stimuli moving in opposite directions and being

otherwise identical. Once response amplitude and phase are known for each of

the two scans mapping one visual field coordinate, the two phases are combined

on a voxel-per-voxel basis. For any given voxel, the local difference between es-

timated (tH) and actual hemodynamic delay offsets the phase observed in the two

scans by equal amounts. Thus, the receptive field positions estimated from the

delayed responses are biased by the same amount, but in opposite directions with

respect to the true value, due to the opposite directions of motion. The two phases

obtained at a voxel may exhibit a phase jump with respect to each other. Phase

unwrapping is straightforward, if the bias introduced by the mismatch between

actual and estimated hemodynamic response is small with respect to the temporal

period of the stimulus. Therefore, the estimation of the hemodynamic delaytH

should be close to the mean hemodynamic delay observed. We usedtH = 5s. The

arithmetic mean of the unwrapped phases yields an unbiased estimation of the

true corresponding spatial position. The uncertainty of the combined phase can

be calculated by error propagation from the known individual uncertainties.

The results of the analysis are stored as two pairs of parametric data volumes

containing phase and SNR information for each of the two visual field coordi-
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nates. These data are subsequently assigned to the model of the cortical surface

for further two-dimensional processing.

Assignment of functional data to the surface model

The task of assigning functional data to the model of the cortical surface is to

estimate the original cortical response to the stimuli from the available three di-

mensional data. This estimate will be represented as functional data for each node

of the surface model. We describe the general estimation of surface data at each

node as a linear combination of the three dimensional data at all the voxels.3 The

contributions of each voxel to each node need to be chosen based on the expected

match between the data observed at the voxels and the underlying cortical re-

sponse. We consider three mechanisms contributing to a mismatch between the

cortical response at a given point of the surface and the data acquired at a (more

or less distant) voxel:

1. noise at the acquisition: even if the signal present in a voxel exactly matches

the cortical response, the addition of noise introduces errors to the estima-

tion of the response characteristics.

2. distance perpendicular to the cortical surface: the signal in a voxel that is not

centered on the surface may contain contributions other than the response

at the nearest point of the surface.

3. distance along the cortical surface: the cortical response varies along the

surface, and the correlation between responses at two points of the surface
3Not that this formulation is general, as we allow the contributions of the individual voxels to

be a function of the data.
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depends on their distance and the spatial properties of the response.

In the following we will discuss each of these mechanisms and derive a scheme

for assigning functional data to the cortical surface, notably integrating an optimal

weighting with respect to local SNR.

Noise at acquisition introduces an error in the estimation of the response phase.

Partial volume effects, local physiologic noise and the limited amplitude of the

cortical response all contribute to this error.4 Importantly, the uncertainty of the

phase estimation is known for each voxel. For voxels with moderate to high SNR,

phase noise is close to Gaussian, and the standard deviation of the phase error is

equal to the inverse of the SNR of the response amplitude (see appendix). Only for

very low SNR, the response amplitude tends to be overestimated since Gaussian

noise is no longer an appropriate model (Gudbjartsson and Patz, 1995). Voxels

with an SNR< 2 were therefore excluded from the analysis. For the remaining

voxels, the phase uncertainty can be taken into account by weighting their respec-

tive contribution in the subsequent analysis. In the appendix, we show the optimal

relative weighting of phase measurements to be the square of the respective SNRs.

Note that this result relies on statistical independence of the data.

The second source of error is the distance of voxels perpendicular to the sur-

face. Due to the columnar organization of retinotopy in the cortex, a small offset

of the voxel from the surface does not introduce additional errors in the phase

estimation. The influence of noise due to partial volumes of WM or CSF in the

voxel has already been taken into account above. Given the cortical thickness of
4In this context, only those partial volume effects are considered whose only effect is to reduce

the SNR of the voxel. This concerns voxels containing local gray matter and neighboring tissues
not exhibiting a functional response (WM, CSF). Voxels including partial volumes of gray matter
from opposite banks of a sulcus or gyrus remain problematic.
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about 2 mm and voxel size of 3 mm in some directions, voxels more than 2.5 mm

away from their respective closest node of the surface model can not be expected

to contain useful information and are discarded. Concerning the relative weight-

ing of the remaining voxels, the need to avoid signal from large draining veins

at the pial surface (macrovascular artifact) might be an issue, depending on the

acquisition sequence used. The PRESTO sequence used here is intrinsically little

sensitive to these artifacts, due to fast repetition times and a corresponding sat-

uration of blood signal. We therefore do not take additional measures to avoid

macrovascular artifacts. A second — and more problematic — issue is the assign-

ment of data from voxels containing partial volumes of gray matter from either

bank of a sulcus or gyrus, notably the calcarine sulcus. These voxels potentially

contain two independent signals. While the phase estimated from the sum of the

two signals is mostly dominated by the stronger one (which presumably originates

from the closest bank), phase errors of up to±90◦ with respect to this stronger

signal may occur. Weighting data as a function of distance from the surface can

reduce the impact of these voxels. However, a lot of information from voxels that

are not problematic is also suppressed, increasing noise-induced errors in the final

maps. We obtained optimal results including all of the data within the distance

threshold mentioned above (data not shown). We therefore directly attribute data

to the node closest to the center of the respective voxel.5

Finally, the distance along the surface needs to be taken into account when

combining the projected phase data into a smooth representation of retinotopy.

Ideally, the way this is done depends on the spatial properties of the functional
5Accuracy could be increased by projecting to the closest point of the surface (not necessarily

a node). However, in our case of a dense surface mesh with typical inter-node distances of 0.9 mm
the expected gain is small.
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response. We do not model those properties explicitly. Instead, we assume that

the phase image contains essentially low spatial frequencies, and that smoothing

with a two dimensional Gaussian filter along the surface is appropriate. Gaus-

sian smoothing, a simple operation on a regular grid in Cartesian space, is less

straightforward to implement for data represented on the irregularly sampled,

folded model of the cortical surface.6 An approach based on the analogy between

Gaussian smoothing and heat diffusion has been proposed (Andrade et al., 2001).

However, its iterative nature makes it difficult to incorporate the optimal weight-

ing presented above, since data are no longer statistically independent after the

first iteration. We therefore use an approach that is simpler, both conceptually and

computationally, by calculating all mutual geodesic distances involved and con-

structing the filter explicitly. Note that this is computationally tractable, because

only a fraction of the surface nodes have been assigned functional information in

the preceding step. More specifically, the weightswi j of the Gaussian filter are

calculated individually for each nodei and each projected voxelj as a function of

the geodesic distancedi j from nodei to the node closest to voxelj:

wi j =


exp

(
−1

2
d2

i j

σ2

)
, di j ≤ rmax

0, di j > rmax

, (2)

whereσ is the standard deviation of the filter andrmax is a cutoff radius introduced

to limit distance calculations. There is a trade-off in the choice of the cutoff ra-

dius between the time needed to construct this filter and the artifacts introduced

due to truncation. We obtained good results with a cutoff radius of 2.5 times the
6Note that conventional isotropic smoothing in three dimensional Cartesian space is not an

option as averaging across sulci must be avoided.

30



standard deviation of the filter applied. Thus, on the rim the filter has dropped

to about 4% of its center height. Distances along the surface are calculated using

the Dijkstra algorithm (Dijkstra, 1959). This algorithm overestimates geodesic

distances, which means that the parameters of the smoothing filters reported here

overestimate the width of the filter actually applied. The choice of the standard

deviation of the filter depends on the purpose of the data assignment. For visual-

ization, both eccentricity and polar angle data are only slightly smoothed using a

filter of σ = 1.5mm.

In summary, the phaseφi assigned to nodei is given by

φi =
∑ j∈V′wi j SNR2

j φ j

∑ j∈V′wi j SNR2
j

, (3)

whereSNRj andφ j are respectively the SNR and phase observed at voxelj and

V′ is the set of voxels whose center is at most 2.5 mm from the closest node of the

surface and whose response exceeds an amplitude threshold ofSNR> 2.

So far we have disregarded the fact that the phases determined from the voxel

responses may present phase wrapping. The stimuli are designed such that min-

imal and maximal eccentricities, or the lower and upper vertical meridians, are

stimulated simultaneously, creating an ambiguity between the lowest and highest

response phase. Note that the ambiguity between right and left visual hemifield

is resolved by the fact that only the contralateral hemifield is represented in the

low order visual areas of each hemisphere. This reduces the (complex) task of un-

wrapping phase over large surface areas to the simpler one of unwrapping noise

induced jumps at relatively isolated points.7 Since retinotopy varies smoothly
7This would not be the case, if a higher number of wedges or rings had been used, complicating

the data analysis in those cases.
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along the cortical surface, phase discontinuities can be attributed to phase jumps.

Specifically, we compare the phase of each voxelk with the phase assigned from

all other voxelsj 6= k to its closest surface nodei:

∆φk = φk−
∑ j∈V′, j 6=k wi j SNR2

j φ j

∑ j∈V′, j 6=k wi j SNR2
j

. (4)

This assignment is performed using a width ofσ = 4.5mm for the Gaussian filter.

A mismatch∆φk of over 170◦ is considered indicative of phase wrapping. This

method proved to be robust and efficiently corrects most isolated phase wraps.

Only after unwrapping of the voxel phases, their data are assigned to the surface

using equation 3.

Processing of the retinotopic maps — Delineation of the retino-

topic visual areas

The delineation of the retinotopic visual areas is based on the fact that the orien-

tation of the visual field representation on the cortical surface changes between

adjacent areas. The term orientation here refers to a mirror image versus non mir-

ror image representation. The polar visual field coordinates(r,α), expressed as the

observed response phases(φr ,φα), establish at each point of the cortical surface

a two dimensional coordinate system. The orientation of this coordinate system

with respect to a local parametrization(u,v) of the surface is most conveniently

determined from the Jacobian of the mappingφr = φr (u,v) , φα = φα (u,v). The

Jacobian can be interpreted as the ratio of an oriented area measured in coordi-

nates(φr ,φα) with respect to the same area measured in coordinates(u,v). We
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refer to this ratio as the visual field ratio (VFR):

VFR =
∂(φr ,φα)
∂(u,v)

(5)

= ∇uφr ·∇vφα−∇vφr ·∇uφα, (6)

where∇uφr = ∂φr
∂u , . . . are the phase gradients with respect to the local parametriza-

tion.

The central step in the calculation of the VFR is the detection of the phase

gradients. Gradient detection tends to be very sensitive to high frequency noise

in the data. We therefore assigned data to the surface using large Gaussian filters

with a standard deviation of 3.5 mm and 7 mm to the polar angle and eccentricity

phases, respectively. To effectively reduce noise, the largest filter compatible with

the spatial frequency spectrum of the signal should be applied. Retinotopy with

respect to eccentricity is much smoother than its polar angle counterpart, meaning

that the signal in the eccentricity phase maps contains essentially very low spatial

frequency components. Therefore, stronger smoothing can be applied without

significantly deteriorating the retinotopic eccentricity map.

The calculation of the phase gradients requires a local two-dimensional co-

ordinate system (a parametrization of the surface) with respect to which the

gradients can be calculated. The parametrization used for the gradient calcula-

tions should correctly reflect local distances and angles in the surface. A global

parametrization of the surface can be provided by the two dimensional Carte-

sian coordinates of the nodes in a flattened representation of the cortical surface.

However, depending on the size of the flattened surface and the accuracy desired,

the distortions induced in the flattening process may make this parametrization

33



unsuitable for gradient calculation. Rather, we chose to locally map each node

together with its first order neighbors to a plane. The central node is placed at

the origin. Neighbors are placed preserving their distance to the central node as

well as the proportions of the angles at the central node (Welch and Witkin, 1994;

Andrade et al., 2001). If the Jacobian of the mapping is constrained to be positive

definite, this mapping is unique except for rotations in the plane. Due to this rota-

tional degree of freedom, gradients calculated with respect to this mapping are not

comparable across nodes. In the case of calculation of the visual field sign, this

is not a limitation, since theVFR is calculated based on local gradients only and

is invariant under rotation. Therefore, we did not constrain the angular position

of nodes in the plane. Given this local mapping, the response phase can be fitted

locally with a first order function of the node coordinates. The coefficients of the

first order terms in the fit are the phase gradients.

Given these gradients, the calculation of the VFR according to equation 6 is

straightforward.

From the VFR map, candidates for the visual areas are detected as con-

tiguous regions exceeding a certain threshold on the absolute VFR (|VFR| >

8 (deg/mm)2), and on the SNR of the smoothed eccentricity and polar angle

phase maps (SNR>15). These candidates are ordered by size, based on the cu-

mulative response power observed during all functional scans within each of the

delineated regions. The low order visual areas are then detected among the candi-

dates, starting with V1. V1 is selected as the largest candidate with negative VFR.

The two largest candidates with positive VFR adjacent to V1 are then labeled V2d

and V2v. Proceeding in this manner, areas up to V3A and V4 are labeled auto-

matically. In a last step, the limits between those areas are drawn automatically as
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contour lines of zero VFR that border two adjacent visual areas. The delineation

of the visual areas from the VFR map is entirely performed in the two dimen-

sional Cartesian space of the flattened surface representation. Distortions induced

by the unfolding process have little or no bearing on these processing steps. The

procedure is automatic and for most data sets it produces correct results with the

standard set of parameters given here.

Results

In order to assess the reproducibility of the methods described, we independently

acquired two complete data sets, each comprising the high resolution structural

and the functional retinotopic mapping data, for each of three healthy adult human

volunteers (MD, JW, CDM). Subjects gave prior informed consent to participate

in the study. Data analysis was performed according to the procedures detailed

above. In the development of those methods, automation has been an important

goal. Some manual interaction still remains, essentially concerning the correction

of the segmentation and the adjustment of some processing parameters. To include

the effect of operator dependence in the assessment of the reproducibility, data

were analyzed independently by two researchers (JW and MD). To distinguish

between the two datasets for each subject, we call the three exams processed by

JW “reference” exams and the remaining three processed by MD “control” exams.

Segmentation of structural data The segmentation and post-processing of the

high resolution structural images took about 6 min on a SPARC Ultra10 work-

station and produced accurate results for most of the volume. However, some
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errors requiring manual correction remained. Editing systematically concerned

the WM medially to the posterior horns of the lateral ventricles. Remaining errors

were mostly localized near the calcarine sulcus, where the contrast to noise ratio

between GM and WM is low. Topological defects were rapidly detected by tenta-

tively constructing and unfolding a model of the GM/WM interface. Anatomical

errors were localized by comparing original and segmented images side by side.

The entire process of localizing and correcting all errors required about three hours

per hemisphere. Typically, from 1% to 3% of the voxels labeled as GM or WM in

the region to be unfolded were edited.

The portions of the twelve hemispheres that were selected for unfolding had

sizes ranging from 89 cm2 to 126 cm2, with a median size of 109 cm2 and an

average node density of 157 nodes/cm2. Construction and flattening of the surface

models took an average of 130 s per hemisphere on a SPARC Ultra10 workstation.

In order to test if flattening was homeomorphic, we calculated the Jacobian of the

projection to the plane. The fraction of the surface exhibiting a negative definite

Jacobian ranged from 0.4 ‰ to 5.4 ‰, with a median of 1.1 ‰.

The two cortical surface models reconstructed for each hemisphere were very

similar, albeit not identical. The two flat maps of visual area boundaries were

therefore not directly comparable. Instead, the results for both exams were repre-

sented on the flat maps obtained from the reference exams.8

Stimuli, acquisition and 3D analysis of functional data The results of the

three dimensional analysis for subject MD (reference data set) are depicted in
8The choice which one of the surfaces serves as reference has little effect on the results, since

the two surfaces were close to each other (the distance was smaller than 1 mm for over 90% of the
total surface area).
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Figs. 1 (m) and (n) for polar angle and eccentricity data, respectively. The stimuli

evoked robust activation throughout the low order visual areas. The superposition

of functional and structural data was checked visually and found to be good. The

sensitivity of the acquisition sequence proved to be sufficient, the SNR of the

spectra obtained allowing for a phase estimation with a mean standard deviation

of about 12◦. The sensitivity was higher dorsally than ventrally, presumably due

to the sensitivity profile of the single loop surface coil used.

Assignment of functional data to the surface model

[Figure 6 about here.]

Figure 6 shows an example of the distribution of response power in one polar

angle scan (subject MD, reference data set) as function of the distance from the

left hemisphere surface model. Only voxels exceeding an SNR threshold of 2

were considered. At the distance threshold of 2.5 mm used here, the voxels that

were not projected represented about 25% of the total response power.

[Figure 7 about here.]

The spatial distribution of the surface nodes receiving information can be appre-

ciated from the flat SNR map immediately after projection of the functional data,

prior to smoothing. A representative example of this distribution is shown in

Fig. 7, depicting the SNR of the combined functional information from both polar

angle scans of subject MD (reference data set, left hemisphere) after projection

to the surface. For all of the surfaces processed, the information projected was

sufficiently dense to provide for a good sampling of retinotopy.
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[Figure 8 about here.]

We did not find evidence of erroneous assignment of data between the opposite

banks of the calcarine sulcus. The final results of the assignment of these data is

presented in Figure 8.

Delineation of the retinotopic visual areas The default set of parameters al-

lowed for a correct automatic identification of six retinotopic visual areas (V1,

V2d/v, V3, VP, V3A, V4v) from the VFR map in seven out of the twelve hemi-

spheres processed. “Correctness” was assessed visually, comparing the delineated

areas to the VFR map. In the remaining five hemispheres V4v or V3A were not

identified correctly with the standard set of parameters, requiring manual adapta-

tion of the VFR or SNR thresholds. In the two left hemispheres of subject JW,

V3A could not be delineated by our algorithm. The border between V3 and V3A

was therefore drawn manually, based on the VFR map. It was projected in the

same fashion as the other visual area borders.

Only the borders between the delineated visual areas are shown. SNR was

not sufficient to delineate the anterior limits of V3A and V4v reproducibly. The

decreased sensitivity of the single loop surface coil and the lower retinotopic spe-

cialization of neurons in these regions presumably account for the low SNR ob-

served.

Reproducibility

[Figure 9 about here.]

In order to assess the reproducibility of the entire processing chain, the visual

area borders obtained in the control exams were projected to the reference sur-
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faces. First, the data from the two exams were brought into a common reference

frame by co-registering the two anatomical volumes using SPM (Ashburner and

Friston, 1997). Next, the points defining the piecewise linear area borders on the

control surfaces were projected in three dimensions from their original position

to the closest point on the reference surface. Finally, local linear transformations

between the three dimensional and flattened representations of the reference sur-

faces were calculated for each triangle and applied to the projected points. The

projected visual area borders are displayed on the VFR map obtained from the

reference exam (Fig. 9). The limits delineated for the reference surfaces are not

shown for clarity of the display, but their position can be easily inferred from

the VFR map. The projected area borders closely follow the VFR pattern of the

reference surface.

At some places, “jumps” appear in the projected visual area limits, although

displayed on their original surface they are continuous (see for example the limits

between V1 and V2v and between V2v and VP for subject JW, right hemisphere).

These jumps are artifacts generated by the projection from the control surface to

the reference surface. A more sophisticated procedure that continuously maps the

two surfaces to each other would allow for an uninterrupted (and more accurate)

visualization of the projected visual area border.

Discussion and Conclusion

The methods described allow for a delineation of visual areas with an excellent

reproducibility. Note that systematic errors that might be inherent in the method

are not addressed here. To assess them, an independent “gold standard” method,
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to precisely identify the borders between visual areas, would be necessary. How-

ever, the delineation of visual areas is usually not a goal in itself, but serves to

interpret other cognitive or sensory functional mapping results. As long as the

positioning of those results relative to the retinotopic mapping data is accurate,

their interpretation will be accurate, too. We therefore hold that the variability of

the maps observed in this study is apt to represent the size of potential errors in

the interpretation of functional data, provided the latter is acquired using a MRI

sequence with little distortion with respect to the retinotopic mapping.

The manual correction of segmentation errors is by far the most operator-

dependent step in the analysis of retinotopic mapping data presented here. As

such, it potentially adds variability to the visual area maps beyond the mere vari-

ability of the raw data. However, given the good agreement between the mod-

els obtained independently by different operators, the influence on the results

should be small. We are currently working to improve our segmentation pro-

cedure (Richard et al., 2002), and hope to further increase the reproducibility of

the obtained surface models in the near future.

The PRESTO acquisition sequence reduces the distortions present in the func-

tional data with respect to an EPI sequence and provides for a good alignment

of the data with respect to the surface models and is expected not to be sensitive

to macrovascular artifacts. These advantages come at the cost of a slight loss of

SNR in the acquired images, with respect to a single shot EPI acquisition. The

acquisition time of 1.28 s for each volume is small with respect to the period of

stimulation and the resulting variation of the image contrast during this time does

not introduce significant artifacts or phase uncertainties.

The stimuli presented provided robust retinotopic activation and led to high
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quality retinotopic maps. There might still be room for improvements, however.

As reasoned in the methods section, the uncertainty of the retinotopic maps de-

creases linearly with increasing number of rings or wedges in the stimulus. This

is true until the spatial low-pass characteristics of the finite size receptive fields

degrade the observed response. Polar angle stimuli with more than two wedges

might therefore be desirable. In that case,a priori information about retinotopy

will likely not suffice to resolve the ambiguity between the wedges. Rather, stim-

uli without a simple periodicity, and consequently, analysis at multiple frequen-

cies, might prove to be a solution.

The assignment of functional data to the surface model recovered most of the

information from the three dimensional analysis while remaining robust with re-

spect to small voluntarily induced misalignments of structural and functional data

(data not shown). Using a more realistic model of the cortex, taking its thickness

into account, might allow to identify voxels that are prone to partial volume ef-

fects involving signal from opposite banks of sulci or gyri, notably the calcarine

sulcus. These voxels could then be weighted appropriately, which might further

improve the assignment. Note however, that discarding data does not address the

issue fundamentally. Rather, the functional response of those voxels would need

to be described as a mix of two reference functions in a framework modeling the

signal on both sides of the sulcus or gyrus.

In summary, we have given a step-by-step description and discussion of the

methods involved in fMRI retinotopic mapping, leading to a map of the borders

between retinotopic visual areas of the examined subject. Several issues that are

specific to the processing of functional retinotopic mapping data have been dis-

cussed in detail. The advantage of using multiple elements in stimuli for retino-
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topic mapping has been presented. The polar angle stimuli described reduce the

noise-induced uncertainty of the retinotopic maps by a factor of two with respect

to the stimuli generally used. We proposed a method of data assignment that op-

timally takes into account the influence of limited SNR on the response phase

measured. The methods described lead to a highly reproducible delineation of the

retinotopic visual areas as assessed by a reproducibility study performed on three

subjects.

Appendix

Uncertainty of the phase measurement

At each voxel j, a real discrete-time signalf
(
~x j , tk

)
is observed atN instances

tk. We model the observed signal as the sum of zero-mean white Gaussian noise

and a harmonic response at the known stimulation frequencyν0. The phase and

amplitude of the response is calculated from the real timecourses’ complex Fourier

componentFν0:

Fν0

(
~x j
)

=
N

∑
k=1

f
(
~x j , tk

)
exp(i2πν0(tk− tH)) , (7)

wheretH is the expected hemodynamic delay. Due to the linearity of the Fourier

transform,Fν0

(
~x j
)

is the sum of a complex signal with amplitudẽA j and phase

φ̃ j , and a zero-mean Gaussian noise, whose real and imaginary parts are inde-

pendent random variables entirely characterized by their standard deviations of

σimag, j = σreal, j , noted hereafterσ j . Noise in the raw data is assumed to be white

at frequencies aboveν0. The noise can then be measured at those frequencies
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assumed to contain no signal. We define the local signal to noise ratioSNRj as:

SNRj =
Ã j

σ j
. (8)

The actually measured phaseφ and amplitudeA of the response at the stimulation

frequencyν0 are:

φ j = arg
(
Fν0

(
~x j
))

(9)

A j =
∣∣Fν0

(
~x j
)∣∣ . (10)

The noise of the measured phase and amplitude is Gaussian only in the limit of

high SNRs, because equations (9) and (10) are nonlinear. However, already at

moderate signal to noise ratios ofSNR> 2 the mean values and variances of mea-

sured amplitude and phase can be expressed in reasonably good approximation

as (Gudbjartsson and Patz, 1995):9

〈φ〉 = φ̃ (11)

σ2
φ ≈ σ2

Ã2
= SNR−2 (12)

〈A〉 ≈
√

Ã2 +σ2 (13)

σ2
A ≈ σ2, (14)

where 〈〉 denotes the first moment of the distribution of the measured values.

The measured amplitude is biased by the noise, and a corrected amplitudeA′ =√
|A2−σ2| could be calculated, which is essentially unbiased in terms of its mean
9The explicit dependence on~x j has been dropped in these and subsequent equations to increase

readability, although all variables vary over the imaged volume.
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value (Gudbjartsson and Patz, 1995). However for aSNR> 2, its mean square er-

ror e2
A′ =

〈(
A′− Ã

)2
〉

is higher than the one of the uncorrected amplitude. We

therefore chose to base ourSNRmeasurement on the uncorrected amplitude. The

measured phase is unbiased, assuming phase wrapping due to noise can be cor-

rected perfectly.

The response observed is in the following characterized by the measured phase

φ, and the measuredSNRof the response,SNR= A
σ = σ−1

φ , representing the in-

verse of the phase measurement error.

Averaging signals with non stationary noise

For N independent measurements
(
SNRj ,φ j

)
of the response phase at voxelsj

pertaining to the same point of the cortical surface, the average phase can be

determined as the weighted sum of the individual phases. The optimal weights

depend on the individual uncertainties of the phase measurements. Consider the

general weighted average phase, with weightsβ j :

φavg =
∑N

j=1β jφ j

∑N
j=1β j

. (15)

Since for moderate and highSNRs, the phase noise of the individualφ j is approxi-

mately Gaussian, and since the individual measures are assumed to be statistically

independent, the uncertaintyσavg of this average can be calculated according to

Gauss’s equation for propagation of random error from the individual uncertain-
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tiesσ j (Gauss, 1863):

σ2
avg =

N

∑
j=1

(
∂φavg

∂φ j
σ j

)2

(16)

=
∑N

j=1

(
β jσφ j

)2(
∑N

j=1β j

)2 . (17)

This uncertainty depends on the weights chosen. There is an optimal choice of

weights, which is found to be

β j = σ−2
j = SNR2

j , (18)

leading to an optimal combined phase

φavg =
∑N

j=1SNR2
j φ j

∑N
j=1SNR2

j

(19)

with minimal uncertainty of

σavg =

(
N

∑
j=1

SNR2
j

)− 1
2

. (20)

Note that adding any information with positiveSNRimproves the quality of the

phase estimation. IfSNRs are estimated accurately, and phase noise is Gaussian,

no data should be excluded from the analysis. Conversely, data not fulfilling these

hypotheses might degrade the overall phase estimation.

The average phaseφavg can be regarded as a new phase measurement with a
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signal to noise ratioSNRavg of:

SNR2
avg =

N

∑
j=1

SNR2
j . (21)

It is useful to represent the response phases andSNRs in terms of the noise nor-

malized signal powerP= SNR2 and weighted phaseΦ = Pφ. Averaging indepen-

dent phase measurements with optimal weights then reduces to summing up the

individual signal powers and weighted phases:

Φavg =
N

∑
j=1

Φ j (22)

Pavg =
N

∑
j=1

Pj . (23)

Two caveats are in place here:

1. Individual measurements with very lowSNR(SNR< 2) should be excluded

from the data processing. Due to noise, the amplitude, and thereforeSNR, is

systematically overestimated, especially at lowSNR. Noisy measurements

therefore contribute stronger to the weighted phase than they should, bear-

ing the risk of degrading theSNRof the averaged value, rather than adding

information.

2. In this calculation we assume the
(
Pj ,Φ j

)
to be measurements of the same

observable. In the context of retinotopic mapping this is true if they pertain

to points on the cortical surface whose mutual distance is small with respect

to the local smoothness of retinotopy.
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Smoothing phase data

The reasoning exposed above for averaging phase information can be extended to

the convolution of phase information along the surface with a smoothing kernel.

We determine a set of voxelsV′ to be included in the analysis depending on their

SNR and distance from the surface. A general smoothing kernel can then be

defined by a set of mutual weightswi j as a function of the geodesic distance from

each nodei to the node closest to the voxelsj ∈V ′. Smoothing the response phase

φ, taking into account the signal power at each point, can then be written as:

φi =
∑ j∈V′wi j Pjφ j

∑ j∈V′wi j Pj
. (24)

φi represents the smoothed phase of voxeli. Contrary to the previous deduction,

we do not claim here that this filter is optimal (we believe it is close to optimal

if the wi j match the spatial properties of the phase signal). But its choice can be

motivated by a number of observations:

• in the case of the constant filter (w ≡ 1) we find the previous result of the

optimal average of the phases

• in the case of constant response power (P ≡ p) we apply the classical

smoothing filter defined solely by the weightswi j

• it can be shown that the noise propagated by the filter (24) is never stronger

than the one propagated by the classical filter alone

• points containing no data (Pj = 0) do not influence the smoothed phase.

The result of the filtering procedure is undefined if no data is present at all
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(P≡ 0).

Again, the uncertainty of the smoothed phaseσ can be calculated using Gauss’s

equation for propagation of random error. Care must be taken, however, in the

interpretation of the errors assigned to the individual terms contributing to the

overall error. Smoothing combines data from mutually distant points of the sur-

face. The individual phase measures involved do not pertain to the same observ-

able. The error attributed to the phase measurementφ j must then be interpreted

as the errorσi j made when representing the phase at pointi by the measurement

at voxel j:

σ2
i = ∑

j∈V′

(
∂φi

∂φ j
σi j

)2

(25)

=
∑ j∈V′

(
wi j Pjσi j

)2(
∑ j∈V′wi j Pj

)2 . (26)

Rigorous analytic calculation of this error would require an explicit model of the

data in a Bayesian framework, since theσi j it depends on the (classically un-

known) spatial properties of the actual signal present. Instead we assume that the

wi j reflect the spatial properties of the signal such that the error we make repre-

senting the phase at pointi by the measurement at voxelj is σi j =
(
wi j Pj

)− 1
2 .10

10Note that this implies a normalization of the smoothing weights such thatwii = 1.
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In that case we can write this filter in analogy to (22) and (23) as:

Φi = ∑
j∈V ′

wi j Φ j (27)

Pi = ∑
j∈V ′

wi j Pj (28)

φi =
Φi

Pi
. (29)

The kernel used in our implementation is normalized to unity at its center. The

value of the filtered phase (29) is independent of this scaling, but the filtered power

of the response (28) is not. The normalization of the smoothing kernel dictates

the interpretation of the obtained power maps. The power map smoothed with

the present kernel is the inverse of the actual local phase variance after smooth-

ing (provided the kernel is adapted to the spatial properties of the phase signal).

Smoothing with a kernel whose integral is normalized to unity would produce a

map interpolating the phase errors present locally in the raw data.
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8 Final results of the assignment of phase data to the surface (subject
MD, reference data set, both hemispheres, polar angle and eccen-
tricity scans). The color legends represent a circular area of the vi-
sual field with an eccentricity of 8.5◦. The processing details were
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