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Loops connect regular secondary structures. In many instances, they are known to play crucial biological roles. To bypass the limitation of secondary structure description, we previously defined a structural alphabet composed of 16 structural prototypes, called Protein Blocks (PBs). It leads to an accurate description of every region of 3D protein backbones and have been used in local structure prediction.

In the present study, we used our structural alphabet to predict the loops connecting two repetitive structures. Thus, we showed the interest to take into account the flanking regions, leading to prediction rate improvement up to 19.8%, but we also underline the sensitivity of such an approach. This research can be used to propose different structures for the loops and to probe and sample their flexibility. It is a useful tool for ab initio loop prediction and leads to insights to flexible docking approach.

Introduction

The knowledge of the three-dimensional (3D) structures of proteins contributes to understand their biological functions. Protein 3D structures are often described as a succession of repetitive secondary structures (mainly α-helices and β-sheets (Pauling and Corey, 1951;Pauling et al., 1951)). This mono-dimensional description helps to simplify coarsely this 3D information.

Nevertheless, the secondary structures description focuses only on two kinds of regular local structures that compose only a part of protein backbone. The remaining residues are only assigned if they can be associated with some particular structures such as the β-turns [START_REF] Bornot | Protein beta-turn assignments[END_REF][START_REF] Wang | Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information[END_REF]. It has led some scientific teams to develop local protein structure libraries that (i) are able to approximate all (or almost all) the local protein structures and (ii) do not make use of the classical secondary structures assignments. These libraries lead to the categorization of 3D structures without any a priori into small prototypes that are specific to local folds found in proteins. The complete set of local structure prototypes defines a structural alphabet [START_REF] Karchin | Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry[END_REF][START_REF] Offmann | Local Protein Structures[END_REF]. The number of libraries or structural alphabet is important, e.g. [START_REF] Martin | In silico local structure approach: a case study on outer membrane proteins[END_REF][START_REF] Sander | Local protein structure prediction using discriminative models[END_REF][START_REF] Tung | Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database[END_REF].

Our structural alphabet is composed of 16 mean protein fragments of 5 residues in length, called Protein Blocks (PBs, see Figure 1) [START_REF] De Brevern | Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks[END_REF]. They have been used both to describe the 3D protein backbones [START_REF] De Brevern | New assessment of a structural alphabet[END_REF] and to perform a local structure prediction [START_REF] De Brevern | Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks[END_REF][START_REF] De Brevern | Local backbone structure prediction of proteins[END_REF][START_REF] Dong | Prediction of protein local structures and folding fragments based on building-block library[END_REF][START_REF] Etchebest | A structural alphabet for local protein structures: improved prediction methods[END_REF][START_REF] Zimmermann | LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach[END_REF]. PBs have proven their efficiency in the description and the prediction of long fragments [START_REF] Benros | Analyzing the sequence-structure relationship of a library of local structural prototypes[END_REF][START_REF] Benros | Assessing a novel approach for predicting local 3D protein structures from sequence[END_REF][START_REF] Bornot | A new prediction strategy for long local protein structures using an original description[END_REF][START_REF] De Brevern | Hybrid protein model' for optimally defining 3D protein structure fragments[END_REF][START_REF] De Brevern | Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship[END_REF][START_REF] De Brevern | Pinning strategy": a novel approach for predicting the backbone structure in terms of protein blocks from sequence[END_REF], to compare protein structures [START_REF] Tyagi | Protein structure mining using a structural alphabet[END_REF]Tyagi et al., 2006a;Tyagi et al., 2006b), to build globular [START_REF] Dong | Methods for optimizing the structure alphabet sequences of proteins[END_REF] and transmembrane protein structures [START_REF] De Brevern | New opportunities to fight against infectious diseases and to identify pertinent drug targets with novel methodologies[END_REF]de Brevern et al., 2009;de Brevern et al., 2005), to define a reduced amino acid alphabet dedicated to mutation design [START_REF] Etchebest | A reduced amino acid alphabet for understanding and designing protein adaptation to mutation[END_REF], to design peptides [START_REF] Thomas | Prediction of peptide structure: how far are we?[END_REF], to define binding site signatures [START_REF] Dudev | Discovering structural motifs using a structural alphabet: application to magnesiumbinding sites[END_REF] or to analyze protein contacts [START_REF] Faure | Analysis of protein contacts into Protein Units[END_REF]. The features of this alphabet have been compared with those of 8 other structural alphabets showing clearly that our PB alphabet is highly informative, with the best predictive ability of those tested [START_REF] Karchin | Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry[END_REF].

In this paper, we focus on the prediction of short loops from sequence. Loop prediction is one of the major drawbacks of homology modeling methods even if loops play crucial biological role. Loop prediction is frequently performed after the positioning of repetitive secondary structures. Current protocols are based on the sampling of the conformational space of the loop fragment and the scoring of the corresponding sampled conformations, but do not perform well for loops more than 10 residues [START_REF] Zhu | Long loop prediction using the protein local optimization program[END_REF].

Prediction using a structural alphabet is an efficient way to predict loop structures. Indeed, as the PBs are overlapping and more precise than secondary structure, a small modification of PB series has a fewer consequence in comparison to a change observed in secondary structure assignment. Moreover, PBs are successful to align structural homologues even in difficult case with very divergent loops [START_REF] Tyagi | Protein structure mining using a structural alphabet[END_REF]Tyagi et al., 2006a).

Following a previous research [START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF], we described short loops that connect two repetitive structures using our structural alphabet, and performed local loop structure predictions from the amino acid sequence. In this study we assessed the importance of a priori knowledge of the flanking regions and of sequence identity of the protein databank on the loop prediction.

Methods

Data sets. 10 non-redundant protein databanks have been used in this study. They are based on the PISCES database [START_REF] Wang | PISCES: recent improvements to a PDB sequence culling server[END_REF] and represents between 162,830 (namely DB0) and 1,572,412 residues (namely DB8, see supplementary data I). They are available at http://www.dsimb.inserm.fr/~debrevern/DOWN/DB/new. The sets are defined as containing no more than x% pairwise sequence identity with x ranging from 20 to 90%. The selected chains have X-ray crystallographic resolutions less than 1.6 Å with an R-factor less than 0.25 or less than 2.5 Å with an R-factor less than 1.0. Each chain was carefully examined with geometric criteria to avoid bias from zones with missing density [START_REF] Tyagi | Analysis of loop boundaries using different local structure assignment methods[END_REF].

Protein Blocks & short loop description. Protein Blocks (PBs) correspond to a set of 16 local prototypes, labeled from a to p (cf. Figure 1), of 5 residues length based on Φ, Ψ dihedral angles description. They were obtained by an unsupervised classifier similar to Kohonen Maps [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF] and Hidden Markov Models [START_REF] Rabiner | A tutorial on hidden Markov models and selected application in speech recognition[END_REF]. The PBs m and d can be roughly described as prototypes for central α-helix and central β-strand, respectively. PBs a through c primarily represent β-strand N-caps and PBs e and f, C-caps; PBs g through j are specific to coils, PBs k and l to α-helix N-caps, and PBs n through p to Ccaps. This structural alphabet allows a reasonable approximation of local protein 3D structures [START_REF] De Brevern | Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks[END_REF] with a root mean square deviation (rmsd) now evaluated at 0.42 Å (de Brevern, 2005). PBs (de Brevern, 2005) have been assigned using in-house software (available at http://www.dsimb.inserm.fr/DOWN/LECT/), it follows similar rules to assignment done by PBE web server (http://bioinformatics.univ-reunion.fr/PBE/) (Tyagi et al., 2006b). We have defined the short loops as PB series of length 2 to 6. They represent the most frequent loop lengths. These series must be composed of non-repetitive PBs, i.e. all the PBs except PBs d and m. They must have flanking regions composed of series of PBs mm and / or dd [START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF].

Prediction. In a strategy of structure prediction from sequence [START_REF] De Brevern | Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks[END_REF][START_REF] De Brevern | Local backbone structure prediction of proteins[END_REF][START_REF] Etchebest | A structural alphabet for local protein structures: improved prediction methods[END_REF], we must compute for a given sequence window S aa = {aa -w , …, aa 0 , …, aa +w }, the probability of observing a given protein block PB x , i.e. P(PB x | S aa ). For this purpose, each PB is associated with an occurrence matrix of dimension l x 20 centered upon the PB, with l = 2 w +1 (in the study, w =7). Using the Bayes theorem to compute this a posteriori probability P(PB x | S aa ) from the a priori probability P(S aa | PB x ) deduced from the occurrence matrix allows us to define the odds score R x :
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The highest score R x corresponds to the most probable PB [START_REF] De Brevern | Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks[END_REF][START_REF] De Brevern | Extension of a local backbone description using a structural alphabet: a new approach to the sequence-structure relationship[END_REF][START_REF] De Brevern | Pinning strategy": a novel approach for predicting the backbone structure in terms of protein blocks from sequence[END_REF][START_REF] De Brevern | Local backbone structure prediction of proteins[END_REF][START_REF] Etchebest | A structural alphabet for local protein structures: improved prediction methods[END_REF][START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF]. The Q 16 value computed is the total number of true predicted PBs over the total number of predicted PBs. We also computed a Q 14 value, specific for loops, i.e. the PB m and d are not taken into account in the accuracy rate computation [START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF].

Thus different predictions have been done: (i) one general prediction done for comparison purpose, it gives the Q 16 and Q 14 values, (ii) a specific prediction of only short loops, it gives a Q 14 short values and (iii) specific prediction of only short loops α-α, α-β, βα and β-β, it gives a Q 14 short values for each kinds of short loops.

Results & Discussion

Prediction of structural alphabets could be strongly dependant of the selection of the training and validation set [START_REF] Etchebest | A structural alphabet for local protein structures: improved prediction methods[END_REF]. This feature is amplified in the case when the letters of the structural alphabets have low frequency, e.g. π-helix [START_REF] Wang | Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information[END_REF], type VI β-turns [START_REF] Fuchs | High accuracy prediction of beta-turns and their types using propensities and multiple alignments[END_REF] or PB b [START_REF] De Brevern | New assessment of a structural alphabet[END_REF]. Specific learning and validation were performed (i) for all the PBs (for comparison purpose), (ii) a specific research focusing on all the protein loops, and finally (iii) for each kinds of loops, i.e. α-α, α-β, β-α and β-β. Protein databanks have been split randomly into 2/3 of the proteins used for the training step and 1/3 for the validation step. We have done large number of independent simulations for optimizing the prediction rates, i.e. for each simulation the proteins used for the training and the validation sets are different.

Global prediction rates. Figure 1 shows 1000 independent simulations performed with the databank DB0 (887 protein chains, see supplementary material I). This Figure shows the importance of sampling. The difference between average and best prediction values is 1% for the prediction rate Q 16 and increases with the diminution of the databank, e.g. this difference equals 8% for the prediction of short loops connecting α-helix to β-strand. The best prediction rates for each of the PBs have been summarized in Table 1. These results highlight the interest to perform specific prediction for each kind of short loops; a specific learning with the a priori knowledge of the flanking regions improves the prediction rate. Nonetheless, this improvement is not uniform for all the short loop kinds.

From a correct Q 16 value of 35.8%, a prediction specific to loops, i.e. Q 14 , reaches 37.5% (+1.7%), and to 43.2% (+5.7%), if only the short loops are used. An increase ranging from 0.7% to 19.0% was observed for the 4 types of short loops.

We thus confirm our previous results, but also underline the importance of shuffling the proteins between validation and learning set (as we have also shown in [START_REF] Etchebest | A structural alphabet for local protein structures: improved prediction methods[END_REF]). It allows to improve all the prediction rates in comparison to [START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF], the quality of prediction, with only limited effect on β to α short loops, but near 20% of gain for α to α short loops. The use of numerous non-redundant databanks show: (i) global prediction rates remain equivalent for all the protein databank used, with no influence of the sequence identity or quality of crystallographic resolution and (ii) the importance of overtraining, this last diminished greatly with the increase of the protein databank size.

Though sometimes the prediction rates of each PB could vary a little, most of the time it is less than 5%. We can notice that four PBs are associated with more variation of their prediction rates, interestingly their frequencies in the most redundant databanks are decreased in regards to the lower redundant databanks. Thus, a slight statistical bias is observed.

In this field, prediction of loops using a structural alphabet is an interesting tool. Instead of describing entire loops; our approach predicts each position in the loops locally. To take into account the flanking regions of the loops greatly improve the prediction rates. As nearly all protein fragments can be can be observed in the Protein DataBank [START_REF] Balamurugan | SSEP-2.0: Secondary Structural Elements of Proteins[END_REF][START_REF] Balamurugan | SMS: sequence, motif and structure--a database on the structural rigidity of peptide fragments in non-redundant proteins[END_REF][START_REF] Du | Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update[END_REF], this approach can be used to propose many different structures for the loops and to probe and sample their flexibility, and, is a useful tool in ab initio loop prediction. ), to the short loops connecting α-helix to α-helix (αα), α-helix to β-strand (αβ), β-strand to α-helix (βα) and β-strand to α-helix (ββ). The grey dots correspond to the 1000 independent simulation prediction rates, the blue dots to the average prediction value of the prediction rates and the red ones to the best prediction rates. with the corresponding frequencies (freq) for a classical prediction (complete db), only for the loops (Loops), for the short loops (Short Loops) and dedicated for every kind of short loops (α-helix to α-helix, α-helix to β-strand, β-strand to α-helix and β-strand to β-strand). The last line corresponds to the global prediction rate Q 16 for prediction of all residues and Q 14 only for short loops. Results are based on DB0.
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thus Q 16 goes from 35.2 to 35.8% and the corresponding Q 14 from 36.0 to 37.4% highlighting the quality of prediction, i.e. this improvement is not due only to PBs m and d, the repetitive PBs. In the same way, Q 14 for the short loops also increases from Q 14 = 42.3 to 43.2%. For the 4 types of short loops, the difference between average and best prediction rates bypasses 5% in all the cases. This global improvement is also associated with an increase of the over -training, i.e. a prediction largely better with the learning set than with the validation set. For the prediction of all residues, the over -training rate is less than 1% on average; it increases to 4% for the short loops and increases again for the short loop types, this value can reach 20% and more.

Nevertheless, a strong linear correlation exists (r > 0.95) between the prediction rate and the over-training. The better is the prediction rate, the lower is the over -training. Thus interestingly, the selected predictions are associated with the lower over -training rates.

These values represent only a compatibility between (2D') representation, i.e. true PBs and predicted PBs. So, we also assessed the quality of local structure approximation using C α root mean square deviation (rmsd) measure. We superimposed all the true PBs to the local protein structure, even the good PB, in order to compute the expected rmsd random values and we found they are always between 1.95 and 2.00 Å. The percentage of predicted PBs better than random value corresponds to 64% and 66% for the loops and short loops prediction respectively. These values increase with the specialisation of short loops with prediction rates equal to 68% for β-α, 74% for β-β, 76% for α-α and 82% for α-β.

PBs prediction rates. Improvements of prediction rates for the short loops are due to different PBs. For the all short loops, only two PBs clearly lost prediction rate, i.e. PBs j and l. The most frequent PBs have often very good prediction rate. For the α-α short loops, only two PBs present a decreased prediction rate (PBs a and h), for α-β, 5 (PBs f, h, i, k and l), for Protein short loops prediction β-α 5 (PBs a, c, h, i and j) and 3 for β-β (PBs h, n and o). As most of these PBs have very low frequencies (mainly less than 5% of the PBs in their kind of loops), these losses of their prediction rate is not significant. We can note that PBs h never obtains a prediction gain with this approach, at the opposite, the prediction of PBs b and p, which are related to some βstrand N capping regions is improved in each case.

Influence of protein databanks. All the prediction rates presented bellow belongs to the smallest databank (DB0). Interestingly these prediction rates do not increase with the growth of the protein databank, i.e. databanks with more redundancy. The best prediction rates remain always near identical, thus the similarity sequence rate does not improve this prediction approach based on a single sequence. Nonetheless, the over-training rate decreases greatly with the size of the databank, i.e. for (80% of sequence identity, resolution better than 2.5 Å and R-factor less than 1.00), the biggest one, the over-training rate is less than 2% thanks to the redundancy of the protein databank.

In the same way, it must be noticed that it does not change the kind of amino occurrence matrices, i.e. no new amino acid specificities are observed or disappeared (data not shown).

This fact underlines that Bayesian prediction is an interesting tool to predict and analyze the local protein structures, we expect to use in future more sophisticated methods less dependant on the size of databank. One advantage of such an approach is that it enables us to compute the most significant series of PBs and from this information propose alternative 3D candidate structures as we have shown previously [START_REF] Fourrier | Use of a structural alphabet for analysis of short loops connecting repetitive structures[END_REF].

Conclusion.

Prediction of short loops taking into account of the flanking regions clearly improves