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Abstract 

 

Maurocalcine (MCa) is a 33 amino acid residue peptide toxin initially isolated from the 

scorpion Scorpio maurus palmatus. Its structural and functional features make it resembling 

many Cell Penetrating Peptides. In particular, MCa exhibits a characteristic positively 

charged face that may interact with membrane lipids. External application of MCa is known 

to produce Ca2+-release from intracellular stores within seconds. MCa binds directly to the 

skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the 

endoplasmic reticulum, and induces long-lasting channel openings in a mode of smaller 

conductance. The binding sites for MCa have been mapped within the cytoplasmic domain of 

the ryanodine receptor. In this manuscript, we further investigated how MCa proceeds to 

cross biological membranes in order to reach its target. A biotinylated derivative of MCa 

(MCab) was chemically synthesized, coupled to a fluorescent streptavidine indicator (Cy3 or 

Cy5) and the cell penetration of the entire complex followed by confocal microscopy and 

FACS analysis. The data provide evidence that MCa allows the penetration of the macro 

proteic complex and therefore may be used as a vector for the delivery of proteins in the 

cytoplasm as well as in the nucleus. Using both FACS and confocal analysis, we show that 

the cell penetration of the fluorescent complex is observed at concentrations as low as 10 nM, 

is sensitive to membrane potential and is partly inhibited by heparin. We also show that MCa 

interacts with the disialoganglioside GD3, the most abundant charged lipid in natural 

membranes. Despites its action on ryanodine receptor, MCa showed no sign of cell toxicity on 

HEK293 cells suggesting that it may have a wider application range. These data indicate that 

MCa may cross the plasma membrane directly by cell translocation and has a promising 

future as a carrier of various drugs and agents of therapeutic, diagnostic and technological 

value. 

 

Keywords: Cell-penetrating peptides; Cellular uptake; Maurocalcine; Cargo delivery. 

 

Abbreviations: MCa, maurocalcine; MCab, biotinylated maurocalcine; Strep, streptavidine; 

Cy3, cyanine 3; Cy5, cyanine5; GD3, disialoganglioside NeuAcα2-8NeuAcα2-3Galβ1-

4Glcβ1–Cer; DPPC, dipalmitoylphosphatidylcholine; DHPR, dihydropyridine receptor; RyR, 

ryanodine receptor; SR, sarcoplasmic reticulum; PBS, phosphate buffered-saline; CPP, cell 

penetrating peptide. 
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1. Introduction 
 

Maurocalcine (MCa) is a 33 amino acid residue peptide that was initially isolated from 

the venom of the chactid scorpion Scorpio maurus palmatus [1] (Fig. 1A). Since then, it has 

been chemically synthesized without any loss in pharmacological activity or structural 

alteration [2]. The peptide is cross-linked by three disulfide bridges according to the pattern: 

Cys3-Cys17, Cys10-Cys21 and Cys16-Cys32 [2]. The 3-D structure of MCa, determined in 

solution by 1H-NMR [3], shows an inhibitor cystine knot motif [4] and three β-strands 

running from amino acid residues 9-11 (strand 1), 20-23 (strand 2) and 30-33 (strand 3), 

respectively. The β-strands 2 and 3 form an antiparallel sheet. MCa is a highly basic peptide 

since 12 out of 33 residues are positively charged, including the amino terminal Gly residue, 

seven Lys residues and four Arg residues (Fig. 1B). In contrast, MCa contains only four 

negatively charged residues, meaning that the global net charge is positive. A representation 

of the electrostatic surface potential of MCa demonstrates that MCa presents a basic face in 

which the first Gly residue and all Lys residues are involved (Fig. 1C, left panel). 

Interestingly, none of the four Arg residues are involved in this basic face. The rest of the 

molecule is mainly hydrophobic (Fig. 1C, right panel), meaning that MCa is a strongly 

polarized molecule and possesses an important dipole moment. Three relative peptides have 

been isolated or cloned from the venoms of different scorpions: imperatoxin A [5], from the 

scorpion Pandinus imperator, that shares 82% sequence identity with MCa, and both 

opicalcine 1 and 2 [6], from the scorpion Opistophthalmus carinatus, that show higher 91% 

and 88% sequence identities, respectively (Fig. 1B). In these three analogues, amino acid 

substitutions did not alter the net global charge of the peptides. 

MCa and imperatoxin A have initially triggered interest for two reasons. First, they are 

potent activators of the ryanodine receptor (RyR), a calcium channel responsible for the 

release of calcium from intracellular stores [5,7]. Indeed, both toxins bind with nanomolar 

affinity onto the skeletal muscle isoform of the RyR inducing an increase in opening 

probability and the appearance of long-lasting openings of the channel at a sub-maximal 

conductance state. These effects are responsible for the property of MCa to induce calcium 

release from the sarcoplasmic reticulum (SR) [2,8,9]. Moderate effects of imperatoxin A have 

been reported on the cardiac (type 2) and brain (type 3) RyR isoforms as well [10,11]. 

Interestingly, application of MCa in the extracellular medium of cultured myocytes triggers, 

within seconds, a transient calcium release from the SR intracellular store [7]. Second, both 

toxins present some sequence homology with a cytoplasmic sequence (termed domain A) of 
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the pore-forming subunit of the dihydropyridine (DHP)-sensitive voltage-gated calcium 

channel of skeletal muscle (DHP receptor, DHPR) [7,12]. This homology is located in a 

DHPR region known to be important for the mechanical coupling between the DHPR and 

RyR, a physiologically process required for SR calcium release and therefore muscle 

contraction. Besides this sequence homology, it has been proposed that the β-sheet structure 

of the MCa and imperatoxin could mimic the helical structure of domain A [13]. In addition, a 

peptide of domain A, MCa and imperatoxin A were all shown to induce similar modifications 

in RyR channel properties [2,8,9]. Peptide A was found to block at least some effects of MCa 

[8] or imperatoxin A [14]. Finally, we recently demonstrated that MCa and peptide A share 

common binding sites on RyR [15]. As such, MCa and its related analogues are interesting 

peptide tools for dissecting the molecular events that lead to muscle contraction [16]. Fig. 2 

summarizes the major aspects of these findings.  

Given the location of the site of pharmacological action of MCa and its analogues, 

combined with the rapid effect of MCa on cultured myocytes Ca2+ homeostasis upon external 

application, these peptides ought to efficiently cross the plasma membrane through a process 

faster than endocytosis. Therefore, these peptides now become interesting for a third reason: 

they may be derived for technological purposes in order to favor the membrane translocation 

of non-permeable molecules or nano-compounds. Proof that MCa translocates across the 

plasma membrane was recently provided by using a biotinylated derivative of MCa (MCab) 

that was coupled to a fluorescent derivative of streptavidine (Strep) [17]. Indeed, we showed 

that the MCab-Strep complex efficiently penetrates into various cell types without requiring 

metabolic energy or endocytosis. This penetration was rapid and reached saturation within 20 

min for an external MCa concentration of 100 nM. MCa appears to share several traits with 

other cell penetrating peptides (CPPs) such as the HIV-encoded transactivator of transcription 

(Tat) [18], the insect transcription factor Antennapedia (Antp, also termed penetratin) [19], 

the herpes virus protein VP22 that regulates transcription, the chimeric peptide transportan 

[20] made in part by the neuropeptide galanin and by the wasp venom peptide mastoparan, 

and polyarginine peptides [21]. MCa has in common with these peptides the following 

characteristics: 1) it is a small peptide, 2) it is heavily charged, 3) it penetrates efficiently in 

all cell types and in 100% of the treated cells, 4) its penetration is fast and doesn’t require cell 

energy suggesting that it can penetrate without an endocytosis-type mechanism, 5) its 

penetration doesn’t apparently require the presence of cell surface receptors, and 6) MCa can 

carry high molecular weight cargoes during the penetration process. The CPPs have proven 

invaluable for the efficient cell penetration of oligonucleotides [22], plasmids [23], antisense 
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 5 

peptide nucleic acids [24], peptides [25], proteins [26,27], liposomes [28] and nanoparticles 

[29]. CPPs open the door to important new applications: antisense strategies for pain 

treatment [24], novel probes for intracellular magnetic labeling both in vitro and in vivo [30], 

brain delivery of antineoplastic agents [31] or other therapeutic biomolecules [32], delivery of 

cyclosporine A for inhibition of cutaneous inflammation [33], etc. Because MCa appears to 

represent the first known natural disulfide-bridged cell penetrating peptide that possesses a 

well identified intracellular target, we further characterized its properties of cell penetration. 

We investigated the concentration dependence of MCa penetration, its cell toxicity and its 

mechanism of penetration. For the latter, we studied i) the effect of transmembrane potential 

variation onto the penetration and ii) the affinity of MCa for various membrane lipids. The 

data obtained further strengthen the hypothesis that MCa reaches its pharmacological target 

by entering cells through a translocation mechanism. The lack of cell toxicity of this peptide 

vector, combined with the availability of pharmacologically inactive analogues, suggest that 

MCa derivatives will permit future promising technological and medical applications. 

 

2. Materials and methods 

 

2.1. Materials 

The disialoganglioside NeuAcα2-8NeuAcα2-3Galβ1-4Glcβ1–Cer (GD3) and 

dipalmitoylphosphatidylcholine (DPPC) were purchased from Matreya Inc and Sigma, 

respectively. 

 

2.2. MCa and MCab peptide synthesis 

The chemical syntheses of MCa and its biotinylated derivative MCab were performed as 

previously described [2,17]. 

 

2.3. Cell culture 

HEK293 (human embryonic kidney cells, ATCC) were maintained at 37°C in 5% CO2 in 

DMEM (Dulbecco’s modified Eagle’s medium, InVitrogen) supplemented with 10% (v/v) 

heat-inactivated foetal bovine serum (InVitrogen) and 10.000 units/ml streptomycine and 

penicillin (InVitrogen). 

 

2.4. Formation of the MCab-Streptavidin-Cyanine3/5 complex  
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 6 

Soluble streptavidin-cyanine 5 or streptavidin-cyanine 3 (Strep-Cy5 or Strep-Cy3, Amersham 

Biosciences) was mixed with four molar equivalents of MCab for 2 hours at 37°C in the dark, 

in phosphate-buffered saline (PBS, in mM: NaCl 136, Na2HPO4 4.3, KH2PO4 1.47, KCl 2.6, 

CaCl2 1, MgCl2 0.5, pH 7.2). 

 

2.5. Flow cytometry 

After 1 hr incubation with MCab-Strep-Cy5 complexes, the cells were washed twice with PBS 

to remove extracellular complexes, and, where indicated, treated with 1 mg/ml trypsin 

(InVitrogen) for 10 min at 37°C to remove cell surface-bound complexes. After trypsin 

incubation, the cell suspension was centrifuged at 500 g and cells were resuspended in PBS 

containing 1 µg/ml of propidium iodide (Sigma). For experiments that did not include a step 

with propidium iodide (dose-response data), the MCab-Strep-Cy3 complex was used instead 

of MCab-Strep-Cy5. 

For experiments with heparin-treatment, complexes were prepared in PBS containing 10 

µg/ml of heparin (heparin sodium from bovine intestinal, Sigma). The complexes were then 

incubated with cells. Cells were rinsed twice with the PBS solution that contains heparin 

before and after incubation with the MCa complexes. 

For experiments in which the KCl concentration gradient was altered to induce cell 

depolarization, the MCa complexes were prepared in solutions with variable NaCl / KCl 

ratios (composition in mM: NaCl 145 to 5, KCl 5 to 145, CaCl2 2.5, MgCl2 1.2, Glucose 10, 

HEPES 10, pH 7.4). Before and after incubation with MCa complexes, cells were rinsed twice 

with these different solutions.  

Flow cytometry analyses, under all these different experimental conditions, were performed 

with live cells using a Becton Dickinson FACSCalibur flow cytometer (BD Biosciences). 

Data were obtained and analysed using CellQuest software (BD Biosciences). Live cells were 

gated by forward/side scattering from a total of 10.000 events. 

 

2.6. MTT assay 

HEK293 cells were seeded into 96 well micro plates at a density of approximately 5,000 

cells/well. Then the cells were incubated in suspension with different concentrations of MCa 

up to a maximum of 10 µM at 37°C for a period of 4 or 24 hrs. In addition to MCa, control 

wells with or without cells in cell culture medium were included for each experiment. All 

assays were run in triplicates. 
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The cell viability was measured using the Cell Quanti-MTT assay Kit (Bioassay, USA). Here, 

the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) into 

purple colored MTT formazan by the living cells indicates the extent of cell viability. The 

optical density was measured at 570 nm using the FLUOstar OPTIMA microplate reader 

(BMG Labtech) followed by analyses.  

 

2.7. Immunocytochemistry 

For analysis of the subcellular localization of the MCab-Strep-Cy3 complexes, following 

complexes application, cells were fixed 10 min in 4% paraformaldehyde, rinsed in PBS and 

incubated for 1 hr with FITC-conjugated Concanavalin A (Molecular Probes, 5 µg/ml) to 

stain the membrane and with TO-PRO-3 iodide (Molecular Probes, 1 µM) to stain the 

nucleus. For staining of cytoskeleton, cells were fixed and permeabilized with cold methanol 

for 10 min, rinsed twice in PBS and incubated for 2 hrs with a mouse anti-α-tubulin antibody 

(1:1000, Sigma). After two washes in PBS, cells were incubated for 1 hour with Alexa 488-

conjugated-anti-mouse IgG antibody (1:1000, Molecular Probes). Cells were then mounted in 

Vectashield mounting medium (Vector laboratories). Preparations were analyzed by confocal 

laser scanning microscopy using a Leica TCS-SP2 operating system. Alexa-488 and Cy3 or 

propidium iodide fluorescences were sequentially excited and collected. Images were merged 

in Adobe Photoshop 7.0 

 

2.8. Surface pressure measurements 

The surface pressure was measured with a fully automated microtensiometer (µTROUGH SX, 

Kibron Inc.). The apparatus allowed the recording of the kinetics of interaction of a ligand 

with a monomolecular film using a set of specially designed Teflon troughs. All experiments 

were carried out in a controlled atmosphere at 20 ± 1°C. Monomolecular films of the 

indicated lipids were spread on ultra-pure water subphases (volume of 800 µl) from 

hexane:chloroform:ethanol (11:5:4, v/v/v) as described previously [34]. After spreading of the 

film, a minimal lapse time of 5 min was awaited to allow solvent evaporation. To measure the 

interaction of MCa with lipid monolayers, various concentrations of the peptide were injected 

in the subphase with a 10 µl Hamilton syringe, and the resulting pressure increases produced 

by peptide incorporation were recorded until reaching the equilibrium (maximal surface 

pressure increase usually obtained after 100–150 min of interaction). For the dose-dependent 

interaction between MCa and GD3, the monomolecular films of GD3 were prepared at an 

initial surface pressure (pi) of 10 mN.m-1. The data were analyzed with the Filmware 2.5 
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 8 

program (Kibron Inc.). The accuracy of the system for surface pressure measurements was 

0.25 mN.m-1 under our experimental conditions. 

 

3. Results 

 

3.1. Cell distribution of MCab-Strep-Cy5 and time-dependent re-distribution towards the 

nucleus 

In a former study, we have demonstrated that MCab-Strep-Cy3 complexes enter efficiently in 

the cytoplasm of various living cell types [17]. Cell entry was not prevented by inhibitors of 

endocytosis or pinocytosis or by incubation at 4°C. Cell fixation also did not appear to alter 

the cellular distribution of the complex even though it appears more questionable for other 

CPPs [35]. Here, we further investigated by confocal microscopy the cell distribution of 

MCab-Strep-Cy5 in HEK293 cells after 1 hr incubation of the cells with 333 nM of the 

complex (Fig. 3). Surface labeling of HEK293 cells was performed with concanavalin A 

whereas the nuclei of cells were labeled with propidium iodide (Fig. 3A). Comparison of 

these labeling with that of MCab-Strep-Cy5 clearly illustrate the presence of the latter at both 

the plasma membrane and inside the cytoplasm of cells. The staining of the complex appeared 

somewhat punctuate in a confocal plane. Preliminary data seem to suggest that this punctuate 

distribution appears related to the presence of streptavidine. This protein may possibly non 

specifically associate to endogenous cell proteins. This question will need to be addressed 

separately. We also performed a comparison of the distribution of MCab-Strep-Cy5 with that 

of α-tubulin, a marker of the cytoskeleton. A clear lack of colocalization is evidenced (Fig. 

3B) between this cytoskeleton marker and MCab-Strep-Cy5 complex. The diffuse staining of 

α-tubulin was linked to the use of HEK293 cells since a similar staining was observed in the 

absence of MCa and also with different commercial antibodies (data not shown). We next 

followed the evolution as a function of time of the cellular distribution of the MCab-Strep-Cy3 

complex (Fig. 3C). After 2 hrs of incubation, the complex was mostly present in the 

cytoplasm. Between 4 and 24 hrs of incubation, it was mostly perinuclear and colocalized 

with the nucleus. The regular target of MCa is RyR, and the site of binding of MCa on RyR is 

strictly localized in the cytoplasm. The localization of the MCab-Strep-Cy3 in the nucleus 

cannot result from its binding onto RyR. Using a specific pull-down assay with Strep-

polystyrene beads and MCab as a bait for interaction with cDNA, we evidenced that MCab 

does not interact with cDNA (data not shown). Thus, the presence of MCab-Strep-Cy3 

complex in the nucleus does not seem to arise from an interaction with DNA. 
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3.2. Study of the cell penetration and cell toxicity of MCab-Strep-Cy5 by FACS 

FACS is an interesting method to work out the quantitative aspects of MCab-Strep-Cy5 

penetration on live cells. However, FACS analysis does not allow distinguishing between cell 

surface bound fluorescence and intracellular fluorescence. Cell surface fluorescence is 

expected to arise from MCab-Strep-Cy5 complexes bound onto the outer face of the plasma 

membrane, through electrostatic interactions with either lipids, or specific protein receptors or 

proteoglycans. In order to destroy the MCab-Strep-Cy5 complex present on the external face 

of the membrane and to measure only the fluorescent signal corresponding to the penetrated 

complex, cells were treated with trypsin before FACS analysis. Interactions of different 

CCPs, such as Tat, with proteoglycans have been described previously [36]. We then 

investigated the effect of pre-incubating MCab-Strep-Cy5 with heparin on the cell penetration 

of the fluorescent complex. Heparin is one of the major glycosaminoglycans that form the 

polysaccharide chain of the proteoglycans and therefore should competitively displace the 

interactions of the MCab-Strep-Cy5 with proteoglycans. However, binding of heparin on MCa 

may also non-specifically hinder the translocation of the MCab-Strep-Cy5 complex by 

neutralizing the positive charges provided by the basic residues of MCa. Fig. 4A (left panel) 

shows that the incubation of MCab-Strep-Cy5 with 10 µg/ml heparin before and during cell 

incubation significantly decreased the cell fluorescence. The mean fluorescence value was 

decreased from a value of 307 (arbitrary units) in the absence of heparin to a value of 78. 

Further treatment of the cells with 1 mg/ml trypsin to remove the surface bound MCab-Strep-

Cy5 associated fluorescence had only a minor effect by further decreasing the mean 

fluorescence value to 64 (Fig. 4A, right panel). These data indicate that heparin can 

significantly decrease MCa uptake by cells either by hindering its interaction with 

proteoglycans or by altering its properties of interaction with negatively charged lipids by 

binding to its basic face. However a significant part of the MCab-Strep-Cy5 is still 

internalized in the presence of heparin. The data also show that surface associated MCab-

Strep-Cy5 complexes are of limited quantities compared to intracellular complexes. 

Nevertheless, since it is clear that FACS analysis can be validly used for studying cellular 

uptake of CPPs only when a protease digestion step is included, (see also [35]), we thus 

performed all the subsequent analyses by including a trypsin digestion before FACS 

measurements. 

We next determined whether 1 hr incubation with MCab alone or MCab-Strep-Cy5 

could be toxic for HEK293 cells by measuring the incorporation of propidium iodide on the 
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total cell population (Fig. 4B). The incorporation of propidiun iodide that witnesses cell death 

was compared to the one obtained in the absence of MCab. Statistically, no differences were 

found between Strep-Cy5 and MCab-Strep-Cy5 for concentrations up to 1 µM. The example 

shown in Fig. 4B is the most unfavorable case that we observed with most other cases ranging 

between 3 and 7% propidium iodide positive cells. For MCab-Strep-Cy5 concentrations 

higher than 1 µM, cell toxicity was observed but it was related to the presence of Strep-Cy5, 

since this effect was not observed when high concentrations of MCab alone (higher than 1 

µM) were used (data not shown). The absence of MCa toxicity on HEK293 cells validates the 

use of this cell model for the study of internalization of MCa. However, this lack of toxicity 

may be related to the low expression of RyR1 in this cell line and needs to be controlled in 

different cell type. 

Since for periods of incubation longer than 1 hr, MCa could be detected also in the 

nucleus, there is a possibility that cell toxicity may be a late phenomenon. We therefore also 

examined whether cells were sensitive to a prolonged exposure to MCa (4 hrs and 24 hrs 

incubation periods). MCa was tested alone since potential toxic effects of streptavidine were 

without cellular interest. HEK293 cell viability was measured using the Cell Quanti-MTT 

assay Kit from Bioassay corporation. As shown in Fig. 4C, there was absolutely no sign of 

significant cell toxicity for MCa concentrations up to 5 µM whether the incubation time lasted 

4 hrs or 24 hrs. Only 8.0 ± 1.4 % cell toxicity was detected for an MCa concentration of 10 

µM and a 24 hrs incubation time. 

 

3.3. Dose-dependent penetration of MCab-Strep-Cy3 in HEK293 cells 

Since MCab appears to act as an efficient CPP, we next determined the dose-dependence of 

cell penetration of the MCab-Strep-Cy3 complex. A mechanism of penetration that would rely 

on endocytosis would be expected to saturate, whereas a mechanism based on membrane 

translocation should be less prone to saturation. Fig. 5A illustrates that a detectable cell 

penetration is visible at a concentration as low as 10 nM, and that this penetration increases 

without any sign of saturation with increasing complex concentrations (Fig. 5B). The rather 

uniform increase in fluorescence values argues against the notion of two parallel mechanisms 

of penetration with widely different dose-dependencies. Confocal images confirm that cell 

penetration of the complex can occur of a wide range of concentration without any alteration 

in the cell distribution of the penetrated complex (Fig. 5C).  

 

3.4. Voltage-dependence of MCab-Strep-Cy3 penetration in HEK293 cells 
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Penetration of the MCab-Strep-Cy3 complex through a membrane translocation process can 

be driven by two processes. First, the concentration gradient of the complex will drive the 

complex into the cell and act to equilibrate the external and internal concentrations. Second, 

MCa has a net global charge that is greatly positive and thus a negative membrane potential 

should favor MCa penetration. This second possibility was tested by altering the membrane 

potential of HEK293 cells by increasing external KCl concentrations. External NaCl 

concentrations were correspondingly reduced in order to preserve the solution osmolarity. 

Fig. 6A illustrates that increasing KCl concentrations produces a clear reduction in cell entry 

of the MCab-Strep-Cy3 complex. This reduction in cell entry was followed by plotting the 

mean cell fluorescence observed by FACS as a function of KCl concentration (Fig. 6B). The 

data indicate that there is a linear decrease in fluorescence intensity upon membrane 

depolarization demonstrating that membrane potential is involved in attracting MCa into the 

cells. However, at 145 mM KCl, a concentration where presumably all cells would be 

depolarized to 0 mV, we still observe a small penetration of the MCab-Strep-Cy3 complex 

that likely result of the concentration gradient. 

 

3.5. MCa interaction with membrane lipids 

To assess whether MCa could interact with specific membrane lipids, monomolecular films of 

DPPC and ganglioside GD3 were spread at the air-water interface. MCa was then added in the 

aqueous subphase at a concentration of 1 µM. The variations in the surface pressure of the 

film were then continuously recorded as a function of time (Fig. 7A). The data show that MCa 

is able to penetrate into the monolayer of GD3, as objectified by the large increase in surface 

pressure of the GD3 film. In contrast, MCa does not induce significant change in the surface 

pressure of the DPPC film, indicating that MCa does not recognize this glycerophospholipid. 

A dose-dependent interaction of MCa with lipid monolayers formed with ganglioside GD3 is 

shown in Fig. 7B. The interaction is clearly detectable at a concentration of 100 nM of MCa 

and reaches a maximum at 750 nM. The half-maximal effect was obtained at a concentration 

of 490 nM. 

 

4. Discussion 

 

4.1. The value of MCa for cell penetration of proteins 

MCa appears as an interesting new candidate to serve as vector to mediate cell penetration of 

compounds that are otherwise unable to cross the plasma membrane. Because of the 
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localization of its natural pharmacological site, it leaves little doubt that it reaches the 

cytoplasm of cells. A pharmacological profiling of MCa has begun [7], and several point 

mutated analogues devoid of activity on RyR and Ca2+ homeostasis are already available. 

Along with the present observation that MCa is not toxic to HEK293 cells likely due to the 

poor expression of RyR in these cells, we expect that MCa analogues selected for their 

inability to bind RyR will be extremely useful as peptide vector for the cell penetration of 

compounds of interest. Consistent with a mechanism of cell penetration that does not require 

the presence of extracellular receptors, RyR-defective mutants of MCa proved to efficiently 

penetrate into cells (data not shown). Along with the observation that CPPs possess no clear 

sequence homology between each other, these data predict a great level of flexibility for the 

design of numerous MCa cell penetrating analogues. Nevertheless, the molecule in its actual 

configuration is not devoid of interesting features since: 1) a wide range of concentration can 

be exploited (as low as 10 nM for 1 hr incubation), 2) it induces entry of Strep, a protein as 

large as 60 kDa, 3) the cargo attains the cytoplasm as well as the nucleus which further 

widens the possible range of applications, and 4) it can enter many different cell types [17]. 

MCa not only favors the penetration of proteins, it also allows the penetration of 10-15 nm 

quantum dots coated with 5-7 Strep molecules each (unpublished data). This finding suggests 

that MCa will have many applications for in vivo cell tracking or other cell imaging 

techniques. 

 

4.2. Interaction of MCa with lipids 

Surface pressure measurements of MCa with monomolecular films of specific membrane 

lipids indicate that MCa can interact with gangliosides such as GD3, whereas it totally ignores 

DPPC. Therefore, these data suggest that the site of interaction of MCa with the external 

leaflet of plasma membranes may correspond to discrete areas enriched in negatively charged 

lipids such as gangliosides. Correspondingly, the lack of interaction of MCa with DPPC is 

consistent with the presence of a positive charge in the polar head group of this lipid, a 

property that should not be favourable for the numerous basic amino acids of MCa. In 

contrast, the positively charged peptide is expected to interact with negatively charged lipids. 

In the external leaflet of the plasma membrane, gangliosides are the most abundant lipids 

belonging to this category. Altogether, these data suggest that the initial interaction of MCa 

with plasma membranes occurs in gangliosides enriched domains. These domains may 

correspond to specific lipid rafts as previously suggested [37]. The only other candidate lipid 

that may possibly interact with MCa, phosphatidylserine, that is also negatively charged, is 
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mainly located at the cytoplasmic side of the membrane. An interaction of MCa with lipids 

does not provide a mechanism for the translocation of MCa across the plasma membrane. 

However, we may tentatively speculate that MCa / GD3 interactions neutralize the basic 

surface of MCa and favour the interaction of the hydrophobic face with the inner part of the 

membrane. Eventually, GD3 may translocate transiently from the outer part of the membrane 

towards the inner part in order to deliver MCa that may then prefer to establish new 

electrostatic interactions with novel, locally based, negatively charged lipids or proteins 

because of a richer environment in negative charges. 

 

4.3. Endocytosis versus cell translocation 

The question of the mechanism of cell penetration of CPPs appears to be hotly debated. 

Arguments have been put forward in favor of endocytosis, as well as for a pure energy 

independent membrane translocation mechanism. It is worth emphasizing that there is no 

contradiction for the coexistence of an endocytic pathway and a nonendocytic one. We 

discuss both issues. 

Cell penetration of Tat has been demonstrated in experimental conditions in which cellular 

energy was depleted, temperature lowered, clathrin-dependent endocytosis inhibited, and 

cholesterol removed [38]. Arguments in favor of cell translocation of MCa are the 

observations that penetration also occurs at 4°C and upon treatment of cells with amiloride 

and nystatin [17]. The fact that the penetration of MCa does not saturate with increasing 

concentrations cannot be presented as an argument for a translocation mechanism since a non 

saturable step such as lipid interaction may be followed by endocytosis. Nevertheless, we 

provide two additional evidences in this manuscript for the non-endocytotic pathway. First, 

MCa cell entry is sensitive to membrane potential variation in manner coherent with the 

global net positive charge of MCa. To our knowledge, endocytosis is not known to be 

inhibited by voltage reduction. Second, MCa interacts with negatively charged membrane 

lipids, a condition that is required for any type of mechanism of translocation. Specificity of 

this interaction is demonstrated by the lack of association to a non-charged lipid. Interaction 

with negatively charged lipids was also observed for Antp [39]. The observation that cell 

fixation may influence the cell distribution of CPP renders the nonendocytic pathway difficult 

to defend [35]. However, this artifact of procedure may presumably be valid only for CPPs 

that are not conjugated to cargoes. In the present work, MCab was coupled to Strep, a quite 

large cargo of about 60 kDa, before cell entry. This is an important difference with several 

other studies in which the fluorescent complex is only formed after cell entry, fixation and 
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permeabilization. The present data also show that cell penetration can still be evidenced by 

FACS despite a treatment with trypsin. In fact, only a tiny fraction of MCab-Strep-Cy3 

remains associated to the extracellular face of the membrane when heparin is added since 

trypsin treatment produces only a minimal reduction on cell penetration. In addition, the 

observation that there is a clear time-dependent evolution of the cell distribution of the MCab-

Strep-Cy3 complex warrants against an artifact of cell fixation. The presence of the complex 

in the nucleus after a period of 24 hrs is a strong indication that the peptide must be present in 

a free-form in the cytoplasm after a specific period. Finally, we have not noticed any evident 

difference between experiments with live [17] and fixed cells. It should be emphasized that 

the most compelling argument in favor of cell translocation is the fact that MCa’s 

pharmacological target has a strict cytoplasmic localization [15]. Also, the fast kinetics of 

MCa effects on calcium homeostasis is indicative that it reaches its binding site extremely 

rapidly, through a process that is largely incompatible with endocytosis [7]. In that respect, 

the coupling to a fluorescent Strep largely slows down the kinetic of cell entry. Electron 

microscopy studies with CPPs coupled to nanoparticles that are too large to undergo 

endocytosis will likely bring further evidence in favor of membrane translocation. 

The observation that heparin treatment significantly inhibits MCa penetration into 

HEK293 cells may be in favor of an endocytic pathway. This may suggest that part of MCa 

cell penetration involves binding onto proteoglycans. We presume that it is the basic character 

of MCa that promotes its binding to negatively charged complex sulfated glycosaminoglycans 

of the cell surface. Although heparin may indeed competitively hinder MCa binding onto 

HPSG, and hence endocytosis, it may also non-competitively neutralize the basic face of MCa 

and partially block the interaction with negatively charged lipids and cell translocation. This 

issue will be resolved by examining cell penetration of MCa in proteoglycan-deficient cell 

lines. Nevertheless, we cannot rule out that a significant fraction of MCa entry also occurs via 

lipid raft-dependent macropinocytosis, a specialized form of fluid phase endocytosis, that is 

independent of caveloe, chlathrin and dynamin [40]. 

 

4.4. Role of membrane potential 

What drives the penetration of MCa into cells? There are two potential driving forces that can 

be evoked. Similarly to the cell penetration of ions through channels, MCa may rely on its 

concentration gradient that may be progressively neutralized during passive diffusion into the 

cell. In addition, since it possesses a net global charge of +8, it may also penetrate because of 

the negative potential of cells. This is indeed what we observed since the net amount of 
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MCab-Strep-Cy3 entry was lessened by membrane depolarization. As such, negative 

membrane potentials will act as “concentrators” of MCa into the cell, which may well explain 

why the associated cell fluorescence for MCab-Strep-Cy3 complexes was higher inside the 

cell than outside upon equilibrium [17]. Similarly, voltage-dependence of cell penetration has 

also been observed for the Antennapedia-derived penetratin [41]. In the case of penetratin, a 

significant increase in the rate of entry had been observed which is also expected. It will thus 

be interesting to check whether MCa entry is also accelerated by voltage. 

 

4.5. Interesting parallels between MCa and peptide A and relevance to excitation-contraction 

coupling 

The limited sequence homology between MCa and peptide A, combined with the observation 

that both peptides bind onto the same site of RyR [15] allow three interesting questionings. 

First, the observation that MCa cell entry is sensitive to the voltage gradient is particularly 

intriguing. The complex of channels that links the DHPR with RyR is highly sensitive to 

voltage changes. A modification in membrane potential is sensed by the DHPR and 

transduced to RyR to induce SR Ca2+ release. However, little is known about the identity of 

the DHPR sequence that is responsible for this voltage-sensitive transduction step. The 

domain A is an important determinant for the coupling between DHPR and RyR. It will 

therefore be of interest to investigate whether domain A presents some kind of voltage-

dependence in its coupling to RyR. Second, the observation that MCa interacts with a 

negatively charged lipid, similarly raises the question on peptide A interaction with lipids and 

on the possible role of such an interaction on excitation-contraction coupling. Third, MCa 

appears to efficiently cross the plasma membrane. Peptide A is also positively charged and 

the question of a partial membrane penetration of this sequence that has a predicted 

cytoplasmic localization is thus also opened. 
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Figure legends 

 

Fig. 1. (A) Scorpio maurus palmatus, (B) amino acid sequence of MCa and (C) presentation 

of the basic face of MCa. (A) Image of the scorpion Scorpio maurus palmatus from which 

MCa has been isolated. (B) Sequence alignment of four analogous toxins, MCa, imperatoxin 

A, opicalcine 1 and opicalcine 2. The two first peptides are known to be active on the 

ryanodine receptor. Opicalcine and imperatoxin A are from different scorpion venoms. All 

four toxins have the same number of positively charged amino acid residues. (C) 3-D 

structure of MCa drawn by the WebLab ViewerPro software and surface coloured according 

to the electrostatic potential (blue and red represent positively and negatively charged amino 

acid residues, respectively). The basic face (right panel) depicts all positively charged 

residues of MCa (Gly1, Lys8, Lys11, Lys14, Lys19, Lys20, Lys22 and Lys30). The hydrophobic 

face illustrates the lack of positively charged amino acid residues on the opposite side of the 

molecule. The peptide backbone is depicted as a yellow ribbon, whereas only the lateral 

chains of positively charged amino acid residues are indicated with scaled balls and sticks.  

 

Fig. 2. Schematic drawing of the ryanodine receptor (RyR). RyR is a calcium channel 

localized in the membrane of the endoplasmic reticulum. Its function is to produce calcium 

release from this internal calcium stock. MCa has a well identified binding site on RyR that is 

localized on the cytoplasmic side of the channel. Binding of MCa to its site on RyR triggers 

calcium release from endoplasmic reticulum vesicles and that can be measured by the change 

in fluorescence intensity of a calcium indicator as shown here (for details see [7]). FKBP12: 

FK506 Binding Protein 12 kDa. 

 

Fig. 3. Subcellular localization of MCab-Strep-Cy5 complexes studied by confocal 

immunofluorescence microscopy and compared to the localization of concanavalin A (A), α-

tubulin (B), and as a function of time (C). (A) Subcellular localization of MCab-Strep-Cy5 

complex (blue) in HEK293 cells compared to a marker of the plasma membrane. Cells were 

incubated 1 hr with 333 nM of MCab-Strep-Cy5. The plasma membrane is stained with 

concanavalin A (green) and the nuclei with propidium iodide (red). Images are from a single 

confocal plane. (B) As in (A) but for a comparison with a cytosqueleton marker (anti α-

tubulin antibody, green). (C) Modifications in cell distribution of MCab-Strep-Cy3 complexes 

after cell translocation. Confocal Cy3 (red, MCab-Strep-Cy3 complexes) and To-PRO (blue, 

nuclei) fluorescence images of HEK293 cells incubated with 333 nM complexes for 2 hrs (left 
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panel), 4 hrs (middle panel) and 24 hrs (right panel). Note the progressive labelling of the 

nuclei by the MCab-Strep-Cy3 complexes. 

 

Fig. 4. Effects of heparin and/or trypsin treatment on MCab-Strep-Cy5 cell penetration (A) 

and cell toxicity of the complexes (B, C) as assessed by FACS. (A) Incubation of HEK293 

cells and of the MCab-Strep-Cy5 complex with 10 µg/ml heparin reduces cell penetration of 

the complex (left panel). Mean Cy5 fluorescence is 307 without treatment, whereas with 

heparin treatment, it drops down to 78. Treatment of cells and MCab-Strep-Cy5 with 10 µg/ml 

heparin combined with a cell treatment with 1 mg/ml trypsin further decreases the mean 

fluorescence value down to 64. Control fluorescence following treatment of cells with Strep-

Cy5 alone reaches a mean value of 3.1 and is not influenced by trypsin or heparin treatment 

(not shown). MCab-Strep-Cy5 cell penetration was tested at a concentration of 1 µM. (B) Cell 

toxicity of 1 µM of Strep-Cy5 and of the MCab-Strep-Cy5 complex as assessed by iodide 

propidium cell incorporation. Iodide propidium positive cells are indicated in percentages. (C) 

Cell toxicity of MCa as assessed by the MTT test. HEK293 cells were incubated for 4 or 24 

hrs in the presence of variable concentrations of MCa. 

 

Fig. 5. Dose-dependent cell penetration of MCab-Strep-Cy3 complex (A-C). (A) FACS 

analysis of the cell penetration of the MCab-Strep-Cy3 complex at the indicated 

concentration. Cells underwent a trypsin treatment at 1 mg/ml before FACS analysis. (B) 

Mean cell fluorescence as a function of MCab-Strep-Cy3 concentration. Data were fitted with 

the following equation y = y0 + a × (1-exp(-b × x)) where y0 = -3.8, a = 199 and b = 1.5 × 10-3. 

(C) Confocal immunofluorescence images of HEK293 cells incubated for 1 hr with different 

concentrations of MCab-Strep-Cy3 complexes (red). Nuclei are stained with To-PRO-3 (blue). 

 

Fig. 6. Effect of increasing extracellular K+ concentrations on MCab-Strep-Cy3 cell 

penetration (A, B). (A) FACS analyses of the effects of increasing KCl concentrations on 

MCab-Strep-Cy3 cell penetration. Right panels illustrate control experiments (cell 

fluorescence without any complex, top, and cell fluorescence with Strep-Cy3) at 145 mM 

KCl. The KCl gradient had no effect on control values (not shown). Left panels illustrate the 

effects of 5 mM (top, mean cell fluorescence value of 145), 125 mM (middle, mean cell 

fluorescence value of 40) and 145 mM KCl (bottom, mean cell fluorescence value of 17), 

respectively. (B) Evolution of the mean cell fluorescence as a function of KCl concentration. 
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Linear regression of the data with y = y0 + a × x with the maximum fluorescence y0 = 139.5 

and the descending slope a = -0.72.  

 

Fig. 7. Interaction of MCa with membrane lipids (A, B). (A) Surface pressure measurement 

with monomolecular films of GD3 or DPPC. Kinetics of changes in surface pressure induced 

by the application of 1 µM MCa. The data illustrate the interaction of MCa with GD3 but not 

DPPC. The initial surface pressure was approximately 10 mN.m-1. The data were fitted with 

an exponential rise to max equation y = y0 + a × (1-exp(-b × x)) where the initial surface 

pressure of the film is y0 = 11.6 mN.m-1, the maximal increase in surface pressure a = 22.9 

mN.m-1 and the time constant of surface pressure change b = 3 × 10-4 sec-1. (B) Evolution of 

surface pressure of GD3 lipid films as a function of MCa concentration. Data were fitted with 

a sigmoid function y = a / (1 + exp(-(x-x0)/b)) where the maximum surface pressure increase a 

= 22.1 mN.m-1, the slope b = 0.006 and the half-maximal effect occurs at a concentration of x0 

= 0.49 µM. 
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