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Abstract 

High-frequency stimulation of the subthalamic nucleus (STN-HFS) is a powerful approach for treating 

the motor symptoms of Parkinson’s disease. It results in clinical improvement in PD patients, further 

reducing L-3, 4-dihydroxyphenylalanine (L-DOPA) requirement and thus L-DOPA-induced dyskinesia. 

However, it remains unclear how STN-HFS modifies the response to L-DOPA. We investigated the 

effect of STN-HFS on striatal extracellular concentrations of dopamine and its metabolites following 

acute L-DOPA administration in intact or partially dopaminergic denervated (DA PL) rats. L-DOPA 

treatment significantly increased striatal dopamine levels in intact and DA PL animals, with the 

maximal effect observed 1 h after L-DOPA injection. This increase was more pronounced in DA PL rats 

(ipsilateral to the lesion) than in intact animals. It remained fairly stable 1 h after the maximal effect of 

L-DOPA and then decreased towards basal values. STN-HFS in intact rats had no effect on the maximal 

L-DOPA-induced increase in striatal extracellular dopamine concentration or the return to basal values, 

the profiles observed being similar to those for non-stimulated intact animals. Conversely, STN-HFS 

amplified the L-DOPA-induced increase in striatal dopamine levels during the stimulation period (1 h) 

in DA PL rats, and this increase was sustained throughout the post-stimulation period (2.5 h), without 

the return to basal levels observed in stimulated intact and non-stimulated rats. These new 

neurochemical data suggest that STN-HFS interferes with L-DOPA effects, probably synergically, by 

stabilising dopamine levels in the striatum, and shed light on the mechanisms of STN-HFS in PD. 
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Introduction 

L-3, 4-dihydroxyphenylalanine (L-DOPA) remains the most effective treatment for Parkinson’s disease 

(PD). However long-term L-DOPA therapy induces many motor fluctuations (Fahn, 1974; Marsden and 

Parkes, 1976). L-DOPA induces a short-duration response (SDR) and a long-duration response (LDR) 

in patients with PD (Muenter and Tyce, 1971; Nutt et al., 1992; 1995). The SDR is a clinical 

improvement that lasts several hours after a single dose of L-DOPA whereas the LDR is a sustained 

improvement in parkinsonian following chronic L-DOPA therapy, persisting for several days after the 

end of treatment. Many PD patients experience changes in the therapeutic response to L-DOPA and 

dopamine agonists, such as apomorphine (Marsden and Parkes, 1976; Marsden, 1982; Nutt et al., 1992; 

1995). The duration of the SDR and LDR is proportional to disease severity in patients with mild, 

moderate and severe disease (Muenter and Tyce, 1971; Contin et al., 1990; Nutt et al., 1992; Quattrone 

and Zappia, 1993; Zappia et al., 1997; 1999; Parkinson Study Group, 2004). Fluctuations in motor 

responses, such as “wearing-off” and “on-off” fluctuations, as well as L-DOPA-induced dyskinesia, are 

commonly observed in patients in advanced stages of PD. As the LDR is thought to be due to the slow 

release of L-DOPA from residual presynaptic neurones (Quattrone and Zappia, 1993; Nutt and Holford, 

1996), this response becomes less important with respect to SDR in advanced PD. It has therefore been 

suggested that the pulsatile administration of L-DOPA is the principal cause of motor fluctuations 

(Juncos et al., 1989), because of the induction of abnormal plasticity in the basal ganglia, leading to the 

induction of dyskinesia and a decrease in the “on” duration (Mouradian et al., 1990). For this reason, 

continuous dopaminergic stimulation occupies a particularly important position in therapeutic strategies 

(Obeso et al., 2000; Olanow and Obeso, 2000; Olanow et al., 2000; 2001).   

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) has been reported to improve all 

motor symptoms in PD patients, particularly in those who experience motor fluctuations, such as the 

wearing-off phenomenon (Limousin et al., 1998; Moro et al., 1999; Fraix et al., 2000; Krack et al., 

2003), but the mechanisms underlying the improvement in symptoms remain unclear (Benabid et al., 
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2002; Dostrovsky and Lozano, 2002; McIntyre et al., 2004). It also remains unclear whether STN-HFS 

interferes with L-DOPA-induced changes in striatal dopamine content, by attenuating fluctuations in 

particular. De la Fuente-Fernandez et al. (2001) have shown that fluctuations in synaptic dopamine 

concentrations in the striatum precede the clinically apparent wearing-off phenomenon. They suggested 

that an increase in dopamine turnover might be involved in L-DOPA-related motor complications. 

In this study, we compared the effects of acute L-DOPA treatment with and without STN-HFS 

(according to the procedures used for treating PD in humans) on the striatal extracellular content of 

dopamine (DA) and its metabolites, in normal and partially dopaminergic-lesioned rats, by means of in 

vivo intracerebral microdialysis. Our data provide insight into the interactions between the effects of L-

DOPA treatment and STN-HFS on dopaminergic neurotransmission.  
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Materials and Methods 

Animals  

We used 55 adult male Sprague-Dawley rats (Janvier, Le Genest-St-Isle, France) weighing 200 to 380g, 

housed under standard laboratory conditions (12 h dark/light cycle), with food and water provided ad 

libitum. Protocols conformed to the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals (publication 865-23) and French Ministry of Agriculture regulations (authorisation 

number 38-R 1001).  

 

Lesion procedure  

For partial SNc lesioning, all animals were anaesthetised with chloral hydrate (400 mg/kg i.p.) and 

secured in a Kopf stereotaxic apparatus (Phymep, Paris, France). We treated 25 animals with 

desipramine (25 mg/kg, s.c.), to protect noradrenergic neurons, and then injected 3 g of 6-

hydroxydopamine (6-OHDA)(Sigma, St Quentin-Fallavier, France) dissolved in 1 l of sterile 0.9 % 

NaCl and 0.2% ascorbic acid into the left SNc of these animals, at a flow rate of 0.5 l/min. The 

stereotaxic co-ordinates of the injection site were anteroposterior (AP), + 3 mm, lateral (L), + 2.4 mm, 

and dorsoventral (DV), -7.1 mm, with the incisor bar at +3.3 mm below the interaural plane. All 

stereotaxic co-ordinates cited here are according to the stereotaxic atlas of Paxinos and Watson (1982). 

Animals were kept warm after the injections and were allowed to recover from anaesthesia. They were 

returned to the animal facility for three weeks, to allow the degeneration of dopaminergic neurons 

induced by the neurotoxin to stabilise, and were then processed for microdialysis experiments.  

 

Implantation of microdialysis probes and stimulating electrode  

Normal (n=30) and partially 6-OHDA SNc lesioned (PL) (n=25) rats were anaesthetised by inhalation 

(1 l/min) of a 5% halothane/air (22% O2, 78% N2) mixture and mounted in a stereotaxic frame (David 

Kopf Instruments, Tajunga, CA). Anaesthesia was maintained with an inhaled 1% halothane/air mixture 
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(1 l/min). The dorsal skull was exposed, and holes were drilled to facilitate the bilateral implantation of 

the dialysis probes into the striatum, and the unilateral (left side, i.e. ipsilateral to the 6-OHDA 

injection) implantation of the stimulation electrode in the STN. The stereotaxic co-ordinates used were 

(relative to bregma): (1) microdialysis probe (into striatum): AP, + 1 mm; L, +/- 3 mm; V, - 7 mm; (2) 

stimulation electrode (into STN): AP, -3.7 mm; L, 2.4 mm; V, -7.8 mm. During implantation and 

microdialysis experiments, body temperature was maintained at 37°C with a feedback-controlled 

heating pad (Harvard Apparatus, Edenbridge, UK). 

 

Electrical stimulation of the STN 

Concentric stimulating bipolar electrodes (outer diameter 250 µm, SNEX 100, Rhodes Medical 

Instruments, Woodland Hills, CA) were used. Stimuli were delivered over a one-hour period, with a 

World Precision Instrument (Stevenage, UK) acupulser and a stimulus isolation unit. Stimulation 

parameters corresponded to those used in clinical practice (frequency 130 Hz, 60 µs rectangular pulse 

width and 200 µA intensity). At the end of each experiment, an electrical lesion was created in the STN 

so that the position of the electrode could be checked post-mortem. 

 

Microdialysis  

Home-made microdialysis probes were prepared and used as previously described (Windels et al., 2000; 

Bruet et al., 2003). They consisted of a concentric arrangement of a stainless steel tube (outer diameter, 

0.4 mm, (Phymep, Paris, France), and polyethylene tubing (outer diameter, 1.09 mm; inner diameter, 

0.38 mm) (Phymep) into which we inserted a piece of silica tubing (outer diameter, 150 m; inner 

diameter, 75 m) (Phymep). The silica tubing extended beyond the distal end of the steel tube and was 

covered with a cuprophan tubular dialysis membrane (Hospal, Lyons, France), sealed at the bottom with 

epoxy glue. The length of the dialysis membrane was adapted for the rat brain nucleus studied (3 mm 

for the striatum). 
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The perfusion liquid flowed out of the distal end of the steel tube, passing proximally between the tube 

and the membrane (Tossman and Ungerstedt, 1986). The probes were perfused with artificial CSF (149 

mM NaCl, 2.8 mM KCl, 1.2 mM MgCl2, 1.2 mM CaCl2 and 5.4 mM glucose, pH=7.3) at a flow rate of 

1 L/min. Before implantation, each probe was tested in vitro in a standard catecholamine solution, to 

determine DA, DOPAC and HVA recovery (Tossman and Ungerstedt, 1986).  

For microdialysis experiments, two experimental animal groups were used: non-stimulated (intact, n= 

15; DA PL, n= 13) and stimulated (intact+STN-HFS, n= 15; DA PL+STN-HFS, n= 12). The dialysis 

probes were implanted in each animal and dialysates were collected at 15-minute intervals, for seven 

hours. The first eight fractions (2 h) were discarded to prevent effects due to parenchymal disturbance 

and to ensure that a steady-state was reached. The next four fractions (1 h) were collected for basal 

value determination. All animals then received an intraperitoneal injection of benserazide (12.5 mg/kg, 

Sigma, St Quentin-Fallavier, France) + L-DOPA (50 mg/kg, Sigma).  

The non-stimulated rats were first used to evaluate the duration of the L-DOPA effect on extracellular 

DA content, in intact control and DA PL rats. The first eight fractions were discarded to prevent effects 

due to parenchymal disturbance and to ensure that a steady-state values were obtained. The next four 

fractions (1 h) were collected for basal value determination, and sixteen consecutive fractions (4 h) were 

then collected after L-DOPA injection: 6 fractions were used to determine the maximal effect of L-

DOPA, and the remaining 10 fractions were collected to estimate the effect of L-DOPA over a period of 

2.5 h. 

We then carried out a similar experiment in stimulated rats. As for the non-stimulated animals, the first 

eight fractions were discarded to prevent effects due to parenchymal disturbance and to ensure that the 

values obtained corresponded to an approximate steady state. Four fractions (1 h) were then collected 

for basal value determination, followed by six fractions (1.5 hours) collected after L-DOPA injection to 

assess the maximal effect of this drug on striatal DA content. The next four fractions were collected 
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during  STN-HFS for 1 h. A further six fractions were then collected to estimate post-stimulation effects 

over a period of 1.5 hours. All dialysates were collected automatically with a refrigerated autosampler 

(Univentor, Zejton, Malta) and stored at -80°C until analysis. 

 

DA, DOPAC and HVA assays  

DA, DOPAC and HVA concentrations in the dialysates were determined by high-performance liquid 

chromatography (HPLC), with electrochemical detection. The system consisted of a pump (Shimadzu 

model LC-10 AD, Shimadzu Europe, Munich, Germany), a refrigerated automatic injector (Famos 

model, Dionex, France), a reverse-phase Hypersil RP 18 analytical column (Aquasil 150x1 mm, particle 

size 3 µm; ThermoHypersil, les Ulis, France) and an electrochemical detector (Decade, Antec, The 

Netherlands) equipped with an analytical cell (type VT-03, Antec). Chromatograms were collected and 

treated with integration software (CLAS VP, Shimadzu, France). 

The mobile phase consisted of sodium dihydrogen phosphate buffer (NaH2PO4, 50 mM; Merck), octane 

sulfonic-1 acid sodium salt (1.7 mM; Merck), disodium ethylenediamine tetra-acetic acid (Na2-EDTA, 

200 µM; Merck). The pH was adjusted to 3 with concentrated phosphoric acid (H3PO4), and 5% 

acetonitrile (ACN, Sigma) was added to the final solution. All solvents were filtered through Millipore 

filters with 0.22 µm pores (Millipore, France) before use. 

The mobile phase was delivered by a pump with a flow rate of 60 µl/min. The working electrode 

potential was +750 mV, which represented the best compromise between the optimum oxidation 

potentials of DA, DOPAC and HVA. Detector sensitivity was 1 nA for DA, 50 nA for DOPAC and 10 

nA for HVA. The running time for each determination was 15 minutes. 

 

Histology  

At the end of the microdialysis experiments, unlesioned rats (n=30) were killed by decapitation under 

deep anaesthesia. Their brains were quickly removed from the skull and frozen in isopentane at -30°C. 
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Lesioned animals (n=25) were perfused transcardially, under halothane anaesthesia, with 200 mL of 0.9 

% NaCl, pH 7.2, followed by 300 mL of 4% paraformaldehyde in 0.1 M PBS, pH 7.4 (2.6 mM KCl, 1.4 

mM KH2PO4, 136 mM NaCl, and 83 mM NaH2PO4). Brains were quickly removed and immersed 

overnight in 20% sucrose in 0.1 M phosphate buffer, pH 7.4, frozen in cooled (-40°C) isopentane, and 

stored at -30°C. Serial frontal sections (20 m) were cut on a cryostat (Microm HM 500; Microm, 

Francheville, France). The correct locations of the microdialysis probes and stimulation electrode were 

checked by collecting several striatal and subthalamic tissue sections (Paxinos and Watson, 1982) and 

by counterstaining with cresyl violet. These histological controls were systematically carried out for all 

the animals in each experimental group. All animals presenting internal bleeding around the 

microdialysis probes or electrodes were excluded to prevent microdialysate contamination (n=4), as 

were animals with incorrectly positioned stimulation electrodes (n=8). We assessed the dopaminergic 

denervation induced by nigral 6-OHDA injection, by tyrosine hydroxylase (TH) immunostaining of 

striatal and nigral sections from the fixed brains of lesioned animals. Free-floating sections were 

thoroughly washed with TBS and incubated for 1 hour in 0.3% Triton X-100 in TBS (TBST) and 3 % 

normal goat serum (Sigma-Aldrich, St Quentin Fallavier, France). They were then incubated with 

primary antisera diluted in TBST containing 1 % normal goat serum for 24 h, with shaking, at 4°C. The 

antiserum was diluted 1:500 for TH staining (mouse monoclonal antibody; Chemicon, Temecula, CA). 

Antibody binding was detected by incubation with avidin-biotin-peroxidase conjugate (Vectastain ABC 

Elite, Vector Laboratories, Burlingame, CA), using 3,3’-diaminobenzidine as the chromagen. This 

substrate was applied to the sections for 2 to 5 min, as previously described (Guesdon et al., 1979). 

Sections were dehydrated through a graded series of ethanol solutions, cleared in xylene, mounted in 

DPX (DBH Laboratories Supplies, Poole, UK) and covered with a coverslip for microscopy. 

The area of the SNc displaying cell loss and the area of the striatum displaying dopaminergic terminal 

loss were estimated by comparison with the unlesioned side or control values. These areas were 

determined by anatomical densitometry of TH immunolabelling, using a camera, and the mean optical 
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density was calculated with Autoradio V4.03 software (SAMBA Technologies, Meylan, France). These 

data were then compared with data previously obtained in similar conditions (Blanchard et al., 1995; 

Chritin et al., 1996; Bruet et al., 2001). 

  

Data analysis  

The basal levels of the measured substances are expressed as concentrations in dialysates. Basal DA, 

DOPAC and HVA levels in the striatum were analysed, for the various experimental groups, with a 

Mann-Whitney U test. For data expressed as a percentage of the basal value, the mean concentration of 

the four samples preceding L-DOPA injection was set at 100%. The effects of L-DOPA treatment and 

of STN-HFS on extracellular DA, DOPAC and HVA levels were analysed by one-way repeated 

measures ANOVA over time (Windels et al., 2005; Boulet et al., 2006). Dunnett’s or Games-Howell 

tests were used for comparisons with prestimulation and/or baseline levels for L-DOPA effects. Values 

of p<0.05 were considered statistically significant.  
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Results 

Control of the extent of the DA lesion and of the location of the electrode and microdialysis probes  

One month after the unilateral injection of 6-OHDA, DA PL animals (n=25) showed weaker than 

normal TH immunolabelling in the lateral part of the ipsilateral SNc. In most DA PL rats, the total 

number of SNc TH+ neurons was about 50% lower than that on the unlesioned side (Fig. 1A). In the 

striatum of the same rats, DA nerve terminals, detected by TH immunolabelling, were preferentially lost 

from the dorsolateral (denervated) part of the striatum (Fig. 1B). In this area, TH immunolabelling 

(detected by optical density measurements) was a mean of 70% (p<0.001) lower than normal, whereas it 

was only 10 to 25% (p<0.01) lower in the medial region of the striatum (non denervated part). About 

40% of the total striatal surface showed a loss of TH immunostaining.  

However, some DA PL animals displayed severe (>80%, n=2) or moderate (<30%, n=3) lesions of the 

SNc and were discarded to ensure that the lesioned rat group was homogeneous.  

Dense TH immunolabelling was detected throughout the SNc, the ventral tegmental area, the striatum, 

the nucleus accumbens, and the olfactory tubercles, on the intact side, in 6-OHDA-injected rats (Fig. 1A, 

B). Figures 1D and F illustrate the correct implantation of the microdialysis probe in the parenchyma of 

the striatum (Fig. 1D) and of the stimulation electrode in the STN (Fig. 1F). In DA PL animals, the 

microdialysis probe was located between the denervated and non-denervated parts of the striatum. 

Figure 1F shows the small electrical lesion (asterisk) created at the end of the experiment, indicating the 

point stimulated. 

 

Basal extracellular DA, DOPAC and HVA levels in the striatum are increased by acute L-DOPA 

injection in intact and DA PL rats 

The concentrations of DA, DOPAC and HVA were determined in the striatum of intact control (n=25) 

and DA PL (n=13) rats from the two experimental groups. Mean concentrations were 0.011  0.0001 

M for DA, 1.7  0.08 M for DOPAC and 1.697  0.085 µM for HVA in intact animals, and 0.0124  
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0.0018 µM for DA, 1.137  0.097 µM for DOPAC and 1.145  0.085 µM for HVA in DA PL rats 

(Table 1). In DA PL rats, the concentration of striatal DA ipsilateral to the lesion tended to increase, as 

shown by comparisons with the unlesioned side and control values (0.0124  0.0018 versus 0.011  

0.0019 µM). Partial DA denervation significantly decreased the levels of DOPAC (-33%, p<0.001) and 

of HVA (-32.5%, p<0.001), as shown by comparison with control values.  

L-DOPA treatment significantly increased DA, DOPAC and HVA levels in the striatum of intact control 

and DA PL rats. These increases were more pronounced in DA PL animals (ipsilateral to the lesion) 

than in intact control rats and the mean variation for the two experimental groups was: +279% (p<0.001) 

versus +92% (p<0.05) for DA; +236% (p<0.001) versus +114% (p<0.001) for DOPAC, and +129% 

(p<0.001) versus +70% (p<0.001) for HVA (Table 1). 

The DA turnover index was calculated as the concentration of DA metabolites (DOPAC+HVA) divided 

by the concentration of extracellular DA. It reflects the relationship between DA metabolism and DA 

release. This DA turnover index was not significantly affected by L-DOPA injection in either intact or 

DA PL rats, but it did increase over the 1 h and 2.5 h post-injection periods studied (Table 2). 

Figure 2A illustrates the variations of striatal DA, DOPAC and HVA levels in intact (n=12) and DA PL 

(n=5) rats after acute L-DOPA injection only. In these non-stimulated animals, L-DOPA injection 

triggered a gradual increase in extracellular striatal DA levels during the period of 1.5 hours following 

the injection (data not shown). This increase was maximal in the last two of the six fractions collected 

during this period and the mean variation observed in these two fractions was used as a reference for L-

DOPA effect. In intact rats, striatal DA levels remained high during the first hour of the post-L-DOPA 

effect period, decreasing towards basal values 2.5 h after the maximal effect of L-DOPA (Fig. 2A). The 

increase in striatal DA levels induced by L-DOPA injection was more pronounced in DA PL rats than in 

intact rats (+279% versus +92%, p<0.001) and remained fairly stable during the first hour of the post-L-

DOPA effect period. As in intact animals, DA levels returned towards basal values 2.5 h after the 
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maximal effect of L-DOPA (Fig. 2A), but values remained significantly above these basal levels (Fig. 

2A). 

The L-DOPA-induced increase in striatal DOPAC and HVA levels followed a pattern similar to that for 

DA content, in both intact and DA PL rats, except that no pronounced return to basal levels was 

observed (Fig. 2A). In contrast, HVA levels remained high or increased still further during the 

microdialysis experiment. 

 

Effect of STN-HFS on L-DOPA-induced increases of extracellular DA, DOPAC and HVA levels in 

the striatum in intact control and DA PL rats  

The mean L-DOPA-induced increases in striatal DA, DOPAC and HVA levels under STN-HFS were 

0.0191  0.0017 µM, 4.182  0.19 µM and 3.292 0.165 µM, respectively, for intact animals, and 

0.0587  0.0086 µM, 5.732  0.488 µM and 3.928  0.237 µM, respectively, for DA PL rats (Table 1). 

In intact stimulated animals (n=13), STN-HFS did not significantly affect the L-DOPA-induced increase 

in striatal extracellular concentrations of DA and DOPAC, whereas it increased those of HVA (+24%, 

p<0.001), during the one-hour stimulation period (Table 1, Fig. 2B). During the post-stimulation period, 

DA levels significantly decreased (-52%, p<0.05 with respect to L-DOPA-induced levels) whereas 

HVA levels increased (+52%, p<0.05 with respect to L-DOPA-induced levels). DOPAC levels were not 

significantly affected. However, DA, DOPAC and HVA levels remained above basal levels 2.5 h after 

the maximal effect of L-DOPA in stimulated intact animals. The profile of change in levels of DA and 

its metabolites was similar to that in intact animals treated with L-DOPA, without STN-HFS. However, 

DA turnover index increased in intact animals during the stimulation (+63%, p<0.05 vs basal values) 

and post-stimulation (+117% , p<0.001 vs basal levels or +85%, p<0.001 vs L-DOPA effect) periods 

(Table 2). 

In stimulated DA PL animals (n=8), STN-HFS significantly amplified the L-DOPA-induced increases in 

striatal extracellular DA, DOPAC and HVA levels. These levels increased by +94% (non-significant), + 
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168% (p<0.05) and + 114% (p<0.05) for DA, DOPAC and HVA, respectively, during the one-hour 

stimulation period (Table 1, Fig. 2B). In contrast to what was observed in non-stimulated DA PL (Fig 

2A) and stimulated intact animals (Fig 2B), striatal extracellular DA, DOPAC and HVA levels remained 

high throughout the post-stimulation period in stimulated DA PL rats, strongly suggesting an effect of 

STN-HFS (Fig. 2B). Indeed, a comparison of DA levels in stimulated DA PL rats during the post-

stimulation period with those obtained in similar non-stimulated animals at the same time points after L-

DOPA treatment shown that DA levels tended to return to basal values in the absence of STN-HFS (Fig. 

2A). In contrast to what was observed in intact rats, DA turnover index during the stimulation and post-

stimulation periods was not significantly affected in DA PL animals (Table 2).  
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Discussion 

The mechanisms by which STN-HFS improves motor symptoms in PD patients, particularly in those 

with motor fluctuations such as the wearing-off phenomenon, remain unclear. One interesting question 

concerns possible modification of the response to L-DOPA by STN-HFS. We report here the first 

evidence that STN-HFS interacts in a synergic manner with L-DOPA-induced changes in striatal 

extracellular dopamine concentration. In DA PL rats, STN-HFS stabilised the L-DOPA-induced 

increase in striatal dopamine levels during the stimulation period (1 h). These levels remained roughly 

constant throughout the post-stimulation period (2.5 h), rather than falling back to basal levels, as 

observed in stimulated intact and non-stimulated rats. Our data, and particularly those for DA PL 

animals, shed light on the mechanisms underlying the beneficial clinical effects observed in PD patients 

treated by STN-HFS, including the decrease in L-DOPA requirements and, therefore, in L-DOPA-

induced dyskinesia.  

 

Effects of acute L-DOPA injection on striatal extracellular DA, DOPAC and HVA contents  

A single acute administration of L-DOPA significantly increased extracellular DA, DOPAC and HVA 

levels in the striatum of intact and DA PL rats.  

Baseline extracellular DA levels in DA PL rats were similar to those in intact animals (Table 1, Fig. 2), 

suggesting that partial destruction of the SNc probably induces changes in striatal DA content through 

modifications to DA turnover and reuptake rates. This observation is consistent with published data for 

rats with similar DA lesions, showing a massive decrease in presynaptic dopaminergic vesicles and an 

increase in DA turnover (Hefti et al., 1980; Robinson and Wishaw, 1988; Zigmond et al., 1984; 1989). 

Moreover, the massive dopaminergic terminal loss in the dorsolateral part of the ipsilateral striatum may 

also be responsible for a major decrease in presynaptic DA uptake and/or an increase in the ability of 

dopaminergic neurons to release DA in response to impulse flow (Chritin et al., 1996; Zigmond et al., 

1984; 1989, Dentresangle et al., 2001). The mechanisms involved in this compensation of DA levels in 
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DA PL rats are unlikely to involve a tonic increase in the electrical activity of the dopaminergic neurons. 

Indeed, more than 80% denervation is required to modify the firing activity of dopaminergic neurons 

after nigrostriatal lesion (Hollerman and Grace, 1990), suggesting that DA level compensation in DA 

PL rats is correlated with changes in DA synthesis. Several authors have already shown that DA release 

is more strongly affected by the inhibition of DA synthesis in 6-OHDA-lesioned rats than in controls 

(Heffner et al., 1977; Marshall and Teitelbaum, 1973; Snyder et al., 1990). This is consistent with lower 

levels of amine storage in the dopaminergic terminals and an increase in TH activity (Hefti et al., 1985; 

Stachowiak et al., 1987; Snyder et al., 1990). Partial lesions of nigrostriatal dopaminergic neurons result 

in a condition mimicking the early or preclinical phase of PD (Carman et al., 1991; Zigmond et al., 

1984; 1990). The lack of symptoms in patients with this disease before the dopaminergic terminal 

deficit becomes severe may be a consequence of the passive compensation we observed in DA PL rats. 

Both dopamine uptake sites (Laihinen et al., 1995) and the messenger RNA for the DA transporter (Uhl 

et al., 1994) have been shown to decrease in abundance in clinically diagnosed PD patients. Thus, the 

consequences of the simultaneous loss of DA release and uptake observed in this animal model may 

provide direct clues to how normal DA tone is maintained in preclinical subjects. 

The L-DOPA-induced increase in striatal extracellular DA levels was more pronounced in DA PL 

animals (ipsilateral to the lesion) than in intact control rats (Fig 2A; Table 1). In intact striatum, 

increases in extracellular DA in response to exogenous L-DOPA are more limited because of the lower 

diffusion coefficient for DA in the extracellular space of the striatum due to the effects of high-affinity 

DA uptake (Kuhr et al., 1986; Kelly et al., 1987; Nicholson and Rice, 1991; Garris and Wightman, 

1994). It is also possible that DA effectively clears DA synthesised from exogenous L-DOPA from the 

extracellular fluid of the intact striatum via the DA transporter,{NdT: OK}thereby restricting the 

diffusion of DA to the microdialysis probes or to the appropriate postsynaptic receptors. This suggests 

that compensatory mechanisms handle extracellular DA very efficiently in normal conditions, thereby 
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preventing excessive increases in DA concentration in non-denervated areas, even when L-DOPA 

concentration is high. 

The unrestricted diffusion of DA in the extracellular fluid of the striatum in DA PL animals allows both 

the detection of extracellular DA at the microdialysis probe and, probably, the activation of 

dopaminergic receptors (Miller and Abercrombie, 1999). This might account for the marked increase in 

DA availability after the creation of a partial dopaminergic lesion in the striatum, indicating a disruption 

of the normal regulation of extrasynaptic DA. These observations confirm previous studies reporting 

greater selectivity of L-DOPA in DA-lesioned brain areas (therapeutic response) than in normally 

innervated regions (Abercrombie et al., 1990; Maeda et al., 1999; Miller and Abercrombie, 1999). 

Extracellular DOPAC and HVA levels showed a similar marked, longer-lasting response to L-DOPA 

than to DA (Table 1). However, it is possible that when the rate of DA synthesis exceeds that of DA 

usage, DA is immediately converted to DOPAC (Arbuthnott et al., 1990; Butcher et al., 1988; 

Fairbrother et al., 1990a; 1990b; Westerink and Van Putten, 1987). In this case, a portion of the 

administered L-DOPA is directly metabolised and therefore has no effect on dopaminergic 

neurotransmission. 

 

Effect of STN-HFS on L-DOPA-induced increases in striatal extracellular DA, DOPAC and HVA levels 

Several clinical studies have reported an excellent clinical outcome of STN stimulation in L-DOPA-

responsive forms of PD — patients with selective brain dopaminergic lesions — and a moderate clinical 

outcome in patients with axial motor symptoms and cognitive impairment known to be less responsive 

or unresponsive to L-DOPA treatment — development of brain non-dopaminergic lesions in addition to 

degeneration of the nigrostriatal dopaminergic system (Welter et al., 2002; Kleiner-Fisman et al., 2003; 

Pahwa et al., 2005). Chronic bilateral STN stimulation has also been shown to allow the discontinuation 

of L-DOPA or equivalent treatment or large reductions in daily dose (Moro et al., 1999; Fraix et al., 

2000; Molinuevo et al., 2000; Lopiano et al., 2001), resulting in a decrease in L-DOPA-induced 
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dyskinesia (Krack et al., 1997; 1999 ; 2003; Bejjani et al., 2000). These clinical observations suggest 

that the beneficial effects of STN-HFS on PD symptoms are "L-DOPA-like", but it remains unclear 

whether the mechanisms of action of STN-HFS and L-DOPA are similar, or even synergic. However, 

interactions with the dopaminergic system seem to be one key factor in the efficacy of both treatments.  

It has been suggested that STN-HFS acts directly on dopaminergic neurons in rodents by increasing 

their firing rate (Benazzouz et al., 2000), TH gene expression in the remaining dopaminergic neurons of 

the SNc, or by eliciting striatal DA release and the activation of striatal DA, together with striatal TH 

activity metabolites of PD (Paul et al., 2000; Bruet et al., 2001; Meissner et al., 2001; 2002; 2003; 

Henning et al., 2007). However, PET studies in humans have given conflicting results, suggesting that 

an increase in DA transmission cannot be the mechanism underlying the beneficial effects of STN-HFS 

in advanced PD (Hilker et al., 2003; Abosch et al., 2003; Strafella et al., 2003b). However, all these 

studies in humans were carried out in parkinsonian patients on long-term L-DOPA treatment. The 

cellular and molecular consequences of such treatment in PD patients, in terms of plasticty within the 

functional basal ganglia circuitry, remain unknown and it remains unclear how this plasticity interferes 

with STN-HFS mechanisms or facilitates the alleviation of PD motor symptoms by this treatment. We 

cannot totally exclude the possibility that STN-HFS mechanisms shunt the dopaminergic system and 

related circuitries, but this appears unlikely, as the outcome of STN stimulation seems to be correlated 

with L-DOPA-responsive forms of PD. 

We applied STN-HFS to a dopaminergic system activated by L-DOPA in both intact and DA PL rats. 

The lack of enhancement of the L-DOPA-elicited increase in extracellular DA levels by STN-HFS 

during the stimulation period suggests that the capacity of the intact or remaining dopaminergic neurons 

to synthesise and/or release DA has reached its maximum (Table 1 and Fig 2). However, only in DA PL 

animals did STN-HFS stabilise high striatal DA levels, resulting in an increase in DOPAC and HVA 

levels during the stimulation and post-stimulation periods. This is consistent with previous push-pull 

studies showing an increase in DOPAC levels during STN-HFS (100 Hz) with no change in 
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extracellular DA content (Mintz et al., 1986). The equilibrium between the maintenance of high levels 

of DA and DA degradation resulted in the relative stabilisation/normalisation of DA turnover index 

(Table 2). This STN-HFS-induced stabilisation of DA turnover index is probably related to the 

dopaminergic lesion and the capacity of the remaining L-DOPA-activated dopaminergic neurons to 

respond to STN stimulation directly or indirectly, as this stabilisation is not observed in stimulated intact 

or non-stimulated DA PL animals, probably as the increase in DA levels is not maintained in these 

animals (Table 2). These data indicate that STN-HFS interferes with DA turnover, probably by 

modulating DA uptake and synthesis in DA PL rats, suggesting that adaptive mechanisms are involved 

in the stabilisation of striatal DA concentrations potentially involved in alleviating L-DOPA-related 

motor fluctuations, such as the wearing-off phenomenon (Nimura et al., 2005). However, the 

mechanism underlying the stabilisation of striatal DA concentration remains unclear. It may involve the 

restoration of autoregulation for presynaptic DA release in the striatum. Torstenson et al. (1997) 

demonstrated that the effect of L-DOPA infusion on striatal presynaptic DA activity differs significantly 

between patients in early and advanced stages of PD. Moreover, Ekesbo et al. reported that in mild and 

stable PD, upregulation of the presynaptic inhibitory feedback system maintains congruity with the 

dopaminergic system after the administration of antiparkinsonian medication (Ekesbo et al., 1999). The 

functional tone of the nigrostriatal DA system seems to be regulated at two sites of action: inhibitory 

autoreceptors located on presynaptic dopaminergic terminals and controlling the synthesis or release of 

DA, and receptors on the soma or dendrites of these neurons, involved in regulating impulse flow 

(Bunney et al., 1973; Roth, 1979; 1984). This inhibitory feedback regulation decreases with the 

progression of nigrostriatal degeneration. It seems plausible that STN-HFS alters inputs from the STN to 

the somatodendritic receptors at the SNc. Autoreceptor function can therefore be restored in the 

striatum. Alternatively, a relaxation of outputs from the STN may activate the premotor and motor 

cortices, leading to the attenuation of DA release in the striatum. Repetitive transcranial magnetic 

stimulation of the human motor cortex has been reported to lead to focal DA release in the ipsilateral 
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striatum, consistent with a corticostriatal mode of DA release (Strafella et al., 2003a). STN-HFS 

attenuates SNr outputs, overcoming the inhibition of premotor and primary cortices. The decrease in the 

binding of dopaminergic D2 receptors observed in the known projection area of the disinhibited cortical 

site indicates that DA release is mediated by a direct effect of the corticostriatal neurons on striatal 

dopaminergic nerve terminals. Pallidotomy or pallidal stimulation alters the binding of postsynaptic 

dopaminergic D2 receptors in the striatum, demonstrating an effect of the cortex on the dopaminergic 

system (Nakajima et al., 2003). STN-HFS also increases striatal glutamate levels in both normal and 

hemiparkinsonian rats, suggesting an increase in the activity of striatal excitatory glutamatergic afferents 

(Bruet et al., 2003). Indeed, the inhibition of basal ganglial output activity by STN-HFS (Benazzouz et 

al., 1995; Windels et al., 2000; 2003; 2005; Salin et al., 2002; Boulet et al., 2006) may overcome 

inhibition of the thalamo-cortical pathway (Anderson et al., 2003), activating bilateral corticostriatal 

projections via cortical collaterals and, probably, also the thalamostriatal pathway. This disinhibitory 

effect is also supported by our recent data showing that STN-HFS increases extracellular GABA levels 

in the SNr, strongly suggesting that it is involved in inhibiting the BG output structures projecting onto 

the thalamus (Windels et al., 2000; 2003; 2005; Boulet et al., 2006). A direct corticostriatal influence on 

striatal dopaminergic terminals could probably account for the spatial selectivity of STN-HFS effects in 

our study, but we cannot exclude the involvement of other anatomical pathways. Frontal cortical 

neurons also project onto the SNc (Naito and Kita, 1994), where they can modulate the firing of 

dopaminergic neurons projecting onto the striatum. Consistent with a previous report, STN-HFS 

modulated DA concentration in the caudate nucleus after L-DOPA administration, although the degree 

of change was smaller than that in the putamen (Torstenson et al., 1997; Ekesbo et al., 1999). The 

difference between the caudate nucleus and the putamen may reflect the smaller L-DOPA response in 

the putamen. This may be due to the more severe effects on the dopaminergic terminals of the putamen 

than on those of the caudate nucleus in PD (Pearson et al., 1979; Graybiel et al., 1987; Miller et al., 

1997; 1999).  
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In conclusion, these new neurochemical data suggest that STN-HFS interferes with L-DOPA effects, 

probably via synergic action, stabilising dopamine levels in the striatum. However, the mechanism 

underlying this stabilisation remains unclear. Our data show that STN-HFS interferes with DA turnover, 

probably by modulating DA uptake and synthesis in DA PL rats, suggesting a prolonged smooth DA 

action and adaptive mechanisms for alleviating L-DOPA-related motor fluctuations, such as the 

wearing-off phenomenon, shedding light on the mechanisms of STN-HFS in PD. 
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Legends 

Figure 1:  

Photographs of TH-immunostained coronal rat brain sections at the nigral (A) and striatal (B) levels and 

of cresyl violet-stained coronal rat brain sections at the striatal (D) and subthalamic (F) levels in 6-

OHDA-lesioned rats. C and E: Schematic diagrams adapted from the stereotaxic atlas of Paxinos and 

Watson (1982). Note, on the lesioned side (left), the loss of dopaminergic cells in the lateral part of the 

SNc (A) and the loss of dopaminergic terminals in the dorsolateral part of the striatum (B). The location 

of microdialysis probes in the striatum is schematically represented in B and visualized in D on the 

lesioned side. Note also the correct implantation of the stimulation electrode within the STN (F). F, The 

asterisk indicates the point stimulated. Scale bar, 1 mm. 

Ac: Nucleus accumbens; CPu: Caudate putamen; Hi: Hippocampus; LV: Lateral ventricle; SNc: 

Substantia nigra pars compacta; SNL: Substantia nigra pars lateralis; SNR: Substantia nigra pars 

reticulata; STN: Subthalamic nucleus; VTA: Ventral tegmental area. 

 

Figure 2:  

Extracellular DA, DOPAC and HVA levels in the striatum measured in intact and DA PL rats 

(ipsilateral to the lesion and/or to STN stimulation) following an acute injection of L-DOPA 

without (A) or with (B) STN-HFS. 

The mean concentration ± SEM of the four samples preceding L-DOPA injection was used to determine 

baseline levels and was set at 100%. The L-DOPA effect represents the mean concentration ± SEM of 

the last two of the six samples collected following L-DOPA and corresponding to its maximal effect.  

In A, the post-L-DOPA values presented correspond to the mean concentration ± SEM of the four (1 h) 

or six (2.5 h) fractions collected after L-DOPA injection.   
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In B, post-L-DOPA+STN-HFS values correspond to the mean concentration ± SEM of the four samples 

collected during 1 h of STN-HFS and after the L-DOPA effect had reached its maximum. Post L-

DOPA+Post STN-HFS values correspond to the mean concentration ± SEM of the subsequent 6 

samples (2.5 h), collected after the end of STN-HFS. 

Note that, in DA PL animals only, STN-HFS stabilised the increase in striatal DA levels induced by L-

DOPA and increased levels of DOPAC and HVA during the stimulation and post-stimulation periods. 

Results are expressed as a percentage of variation of the baseline value. Each bar corresponds to the 

mean variation ± SEM calculated from all collected fractions from each animal of each group. White 

bars = intact rats (A, n=12 ; B, n=13) and grey bars = DA PL rats (A, n=5 ; B, n=8). 

*p<0.05, **p<0.001: versus basal values; §: versus L-DOPA effect; †: versus no STN-HFS DA PL rats.  

 

Table 1: 

Extracellular levels of DA, DOPAC and HVA (µM) measured in the striatum on the left side of intact 

and partially SNc-lesioned rats (DA PL) in basal conditions and after acute L-DOPA administration, 

before (L-DOPA effect), during (post L-DOPA + 1 h STN-HFS) and after (post L-DOPA + post STN-

HFS) STN-HFS. The values presented for basal levels and L-DOPA effect periods are averages of the 

corresponding measures in intact rats, and in DA PL rats. Values corresponding to the  "post L-DOPA+ 

1 h STN HFS" and the "post L-DOPA+ post STN HFS (t=2.5 h)"  periods correspond to values for 

intact rats subjected to STN-HFS in the part of the table headed "intact", and DA PL rats subjected to 

STN-HFS in part of the table headed "DA PL". The results are expressed as means ± SEM. ns: not 

significant. 

 

Table 2:  

(DOPAC+HVA) / dopamine ratios for each experimental group. 

 The results are expressed as means ± SEM. ns: not significant. 
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