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Abstract 

 

The aim of this work was to investigate the mechanisms that shape evoked 

electroencephalographic (EEG) and magneto-encephalographic (MEG) responses.  We used 

a neuronally plausible model to characterise the dependency of response components on the 

models parameters.  This generative model was a neural mass model of hierarchically 

arranged areas using three kinds of inter-area connections (forward, backward and lateral).  

We investigated how responses, at each level of a cortical hierarchy, depended on the 

strength of connections or coupling.  Our strategy was to systematically add connections and 

examine the responses of each successive architecture.  We did this in the context of 

deterministic responses and then with stochastic spontaneous activity.  Our aim was to show, 

in a simple way, how event-related dynamics depend on extrinsic connectivity.  To 

emphasise the importance of nonlinear interactions we tried to disambiguate the components 

of event-related potentials (ERPs) or event-related fields (ERFs) that can be explained by a 

linear superposition of trial-specific responses and those engendered nonlinearly (e.g. by 

phase-resetting). 

   Our key conclusions were; (i) when forward connections, mediating bottom-up or extrinsic 

inputs, are sufficiently strong, nonlinear mechanisms cause a saturation of excitatory 

interneuron responses.  This endows the system with an inherent stability that precludes non-

dissipative population dynamics.  (ii) The duration of evoked transients increases with the 

hierarchical depth or level of processing.  (iii) When backward connections are added, 

evoked transients become more protracted, exhibiting damped oscillations.  These are 

formally identical to late or endogenous components seen empirically.  This suggests late 

components are mediated by reentrant dynamics within cortical hierarchies.  (iv) Bilateral 

connections produce similar effects to backward connections but can also mediate zero-lag 

phase-locking among areas.  (v) Finally, with spontaneous activity, ERPs/ERFs can arise 

from two distinct mechanisms: For low levels of (stimulus related and ongoing) activity the 

systems response conforms to a quasi-linear superposition of separable responses to the fixed 

and stochastic inputs.  This is consistent with classical assumptions that motivate trial 

averaging to suppress spontaneous activity and disclose the ERP/ERF.  However, when 

activity is sufficiently high, there are nonlinear interactions between the fixed and stochastic 

inputs.  This interaction is expressed as a phase-resetting and represents a qualitatively 

different explanation for the ERP/ERF. 
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1 Introduction 

 

Classical event-related potentials (ERPs) and event-related fields (ERFs) have been used for 

decades as putative electrophysiological correlates of perceptual and cognitive operations.  

However, the exact neurobiological mechanisms underlying their generation are largely 

unknown.  Recently there has been a special interest in the distinction between evoked and 

induced responses.  Evoked responses are disclosed by conventional averaging procedures, 

whereas the latter usually call for single trial analyses of induced oscillations.  In this paper 

we used neuronal simulations to examine the mechanisms that underpin ERPs/ERFs.  In a 

companion paper we will examine induced responses using time-frequency analyses and 

other transforms of single trial data. 

 

Neural-mass models 

The complexity of neural networks generating MEG/EEG signals (DeFelipe et al., 

2002;Thomson and Deuchars, 1997) is considerable.  This means that MEG/EEG 

observation models rely upon simplifying assumptions and empirical priors (David and 

Friston, 2003;Freeman, 1978;Valdes et al., 1999;Lopes da Silva et al., 1974;Robinson et al., 

2001;Stam et al., 1999;Van Rotterdam et al., 1982;Wendling et al., 2000).  The primary aim 

of this paper is to describe a candidate forward model and establish its face validity.  This 

model was designed to reproduce responses seen empirically and enable mechanistic 

enquiries into the generation of evoked and induced responses.  This is the focus of the 

current paper.  However, we will also use this model in a forthcoming paper as an 

observation model, allowing its parameters to be inferred from real data (David et al., 

2004b).   In this context, face validity is especially important. 

   Neural-mass models of MEG/EEG usually comprise cortical macro-columns, which can be 

treated as surrogates for cortical areas and, sometimes, thalamic nuclei.  These models use a 

small number of state variables to represent a neuronal population mean state. This approach, 

referred to loosely as a mean-field approximation, is efficient when determining the steady-

state behaviour of neuronal systems but its accuracy in a dynamic or non-stationary context is 

less established (Haskell et al., 2001). However, we will assume that the mean field 

approximation is sufficient for our purposes. The majority of neural mass models of 

MEG/EEG have been designed to generate alpha rhythms (Lopes da Silva et al., 1974;Jansen 

and Rit, 1995;Stam et al., 1999;Van Rotterdam et al., 1982). Recent studies have shown that 

it is possible to reproduce the whole spectrum of MEG/EEG oscillations, using appropriate 

values of model parameters (David and Friston, 2003;Robinson et al., 2001). In addition 
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these models have been used to test specific hypotheses about brain function, e.g. focal 

attention (Suffczynski et al., 2001).  Pathological activity such as epilepsy can also be 

emulated.  This means, in principle, generative models of the sort employed above could be 

used to characterise the pathophysiological mechanisms underlying seizure activity 

(Robinson et al., 2002;Wendling et al., 2002). 

    To date, modelling event-related activity using neural mass models has received much less 

attention. An early attempt, in the context of visual ERPs, showed that it was possible to 

emulate ERP-like damped oscillations (Jansen and Rit, 1995). A more sophisticated thalamo-

cortical model has been used to simulate event-related synchronisation (ERS) and event-

related desynchronisation (ERD), commonly found in the alpha band (Suffczynski et al., 

2001). Finally, it has been shown that model parameters can be adjusted to fit real ERPs 

(Rennie et al., 2002). These studies (Rennie et al., 2002;Suffczynski et al., 2001), emphasise 

the role of the thalamo-cortical interactions by modelling the cortex as a single compartment. 

 

Hierarchical models 

It is well-known that the cortex has a hierarchical organisation (Crick and Koch, 

1998;Felleman and Van Essen, 1991), comprising bottom-up, top-down and lateral processes 

that can be understood from an anatomical and cognitive perspective (Engel et al., 2001).  

We have previously discussed the importance of hierarchical processes, in relation to 

perceptual inference in the brain, using the intimate relationship between hierarchical models 

and empirical Bayes (Friston, 2002).  The current work was more physiologically motivated.  

Using a hierarchical neural mass model, we were primarily interested in the effects, on event-

related MEG/EEG activity, of connections strengths, and how these effects were expressed at 

different hierarchical levels.  In addition, we were interested in how nonlinearities in these 

connections might be expressed in observed responses. 

   The neuronal model described below embodies many neuroanatomic and physiological 

constraints which lend it a neuronal plausibility.  It has been designed to (i) explore emergent 

behaviours that may help understand empirical phenomena and, critically, (ii) as the basis of 

dynamic observation models.  Although the model comprises coupled systems, the coupling 

is highly asymmetric and heterogeneous.  This contrasts with homogenous and symmetrically 

coupled map lattices (CML) and globally coupled maps (GCM) encountered in more analytic 

treatments.  Using the concepts of chaotic dynamical systems, GCMs have motivated a view 

of neuronal dynamics that is cast in terms of high-dimensional transitory dynamics among 

‘exotic’ attractors (Tsuda, 2001).  Much of this work rests on uniform coupling, which 

induces a synchronisation manifold, around which the dynamics play.  The ensuing chaotic 
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itinerancy has many intriguing aspects that can be related to neuronal systems (Breakspear et 

al., 2003;Kaneko and Tsuda, 2003).  However, the focus of this work is not chaotic itinerancy 

but chaotic transience (the transient dynamics evoked by perturbations to the systems state), 

in systems with asymmetric coupling.  This focus precludes much of the analytic treatment 

available for GCMs (but see (Jirsa and Kelso, 2000) for an analytical description of coherent 

pattern formation in a spatially continuous neural system with a heterogeneous connection 

topology).  However, as we hope to show, simply integrating the model, to simulate 

responses, can be a revealing exercise. 

 

Mechanisms of ERP/ERF generation; linear or nonlinear? 

It is generally held that an ERP/ERF is the result of averaging a set of discrete stimulus-

evoked brain transients (Coles and Rugg, 1995). However, several groups (Jansen et al., 

2003;Klimesch et al., 2004;Kolev and Yordanova, 1997;Makeig et al., 2002) have suggested 

that some ERP/ERF components might be generated by stimulus-induced changes in ongoing 

brain dynamics. This is consistent with views emerging from several neuroscientific fields, 

suggesting that phase-synchronization, of ongoing rhythms, across different spatio-temporal 

scales mediates the functional integration necessary to perform higher cognitive tasks (Penny 

et al., 2002;Varela et al., 2001).  In brief, a key issue is the distinction between processes that 

do and do not rely on phase-resetting of ongoing spontaneous activity.  Both can lead to the 

expression of ERP/ERF components but their mechanisms are very different. 

   EEG and MEG signals are effectively ergodic and cancel when averaged over a sufficient 

number of randomly chosen epochs.  The fact that ERPs/ERFs exhibit systematic waveforms, 

when the epochs are stimulus locked, suggests either a reproducible stimulus-dependent 

modulation of amplitude or phase-locking of ongoing MEG/EEG activity (Tass, 2003).  The 

key distinction, between these two explanations, is whether the stimulus-related component 

interacts with ongoing or spontaneous activity.  If there is no interaction the spontaneous 

component will be averaged out, because it has no consistent phase-relationship with 

stimulus onset.  Conversely if there is an interaction, dominant frequencies of the 

spontaneous activity must experience a phase-change, so that they acquire a degree of phase-

locking to the stimulus.  Note that phase-resetting is a stronger-requirement than induced 

oscillations.  It requires any induced dynamics to be phase-locked in peristimulus time.  In 

short, phase-resetting is explicitly nonlinear and implies an interaction between stimulus-

related response and ongoing activity.  Put simply, this means that the event-related response 

depends on ongoing activity.  This dependency can be assessed with the difference between 

responses elicited with and without the stimulus (if we could reproduce exactly the same 
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ongoing activity).  In the absence of interactions there will be no difference.  Any difference 

implies nonlinear interactions.  Clearly this cannot be done empirically but it can be pursued 

using neuronal simulations. 

   The secondary aim of the current work was to use realistic neural-mass models of 

hierarchically organised cortical areas to see whether phase-resetting is an emergent 

phenomenon and a plausible candidate for causing ERPs/ERFs.  Phase-resetting is used in 

this paper as an interesting example of nonlinear responses that have been observed 

empirically.  We use it to show that nonlinear mechanisms can be usefully explored with 

neuronal models of the sort developed here.  In particular, static nonlinearities, in neuronal 

mass models, are sufficient to explain phase-resetting.  Phase-resetting represents nonlinear 

behaviour because, in the absence of amplitude changes, phase-changes can only be mediated 

in a nonlinear way.  This is why phase-synchronization plays a central role in detecting 

nonlinear coupling among sources (Breakspear, 2002;Tass, 2003). 

 

Overview 

   This paper is structured as follows.  In the first section we introduce the hierarchical neural 

mass model used in the remaining sections.  It is based on previous neuroanatomic studies by 

Felleman and van Essen (Felleman and Van Essen, 1991) and work by Jansen and Rit on 

modelling MEG/EEG data (Jansen and Rit, 1995). In the second section we demonstrate the 

basic behaviour of the model, by successive elaboration of a cortical hierarchy.  We start 

with forward connections and then add backward and lateral connections.  The goal of this 

approach was to provide an intuitive understanding of MEG/EEG like dynamics generated by 

coupled nonlinear systems.  These simulations were performed in the absence of spontaneous 

activity.  In the third section we examine the interaction between evoked and spontaneous 

activity, using a representative hierarchical architecture established in the previous section.  

Finally, we discuss the potential benefits of this modelling approach, for the study of 

measured MEG/EEG activity. 

 

2 Hierarchical models of event-related MEG/EEG activity 

2.1 Cortico-cortical connections 

Although neural mass models originated in the early 1970’s (Freeman, 1978;Lopes da Silva 

et al., 1974;Wilson and Cowan, 1972), none have addressed explicitly the hierarchical nature 

of cortical organisation. The minimal model we propose, which accounts for directed 
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extrinsic connections, uses the rules in Felleman and Van Essen, (1991). Extrinsic 

connections are connections that traverse white matter and connect cortical regions (and 

subcortical structures).  These rules, based upon a tri-partitioning of the cortical sheet (into 

supra-, infra-granular layers and granular layer 4), have been derived from experimental 

studies of cat visual cortex.  We will assume that they can be generalised to the whole cortex.  

The ensuing model is general, and can be used to model various cognitive paradigms (David 

et al., 2004b).  However, variability among different cytoarchitectonic regions is restricted to 

differences in physiological parameters, under the same microcircuitry.  Under this 

simplifying assumption, the connections can be defined as in Figure 1: (i) Bottom-up or 

forward connections originate in agranular layers and terminate in layer 4.  (ii) Top-down or 

backward connections only connect agranular layers.  (iii) Lateral connections originate in 

agranular layers and target all layers.  All these long-range or extrinsic cortico-cortical 

connections are excitatory and are mediated through the axons of pyramidal cells. 

 

Figure 1 about here 

 

   Although the thalamocortical connections have been the focus of several modelling studies, 

they represent a minority of extrinsic connections: in contrast, it is thought that at least 99% 

of axons in white matter link cortical areas of the same hemisphere (Abeles, 1991).  For this 

reason, and for simplicity, we do not include the thalamic nuclei in our model.  However, 

they can be included for any application where the role of the thalamus (or other subcortical 

structure) is thought important. 

 

2.2 Jansen model of a cortical area 

The neocortex is commonly described as a 6-layered structure (DeFelipe et al., 2002). Spiny 

neurons (pyramidal cells and spiny stellate cells) and smooth neurons are the two major 

groups of cortical neurons. The majority of cortical neurons are pyramidal cells that are 

found in layers 2 to 6. Most spiny stellate cells are interneurons that are located in the middle 

cortical layers. Smooth neurons are essentially GABAergic interneurons distributed in all 

layers. In general, cortical neurons are thought to be organized into multiple, small repeating 

microcircuits. In spite of cortical heterogeneity, a common basic microcircuit has emerged. 

Its skeleton is formed by a pyramidal cell which receives excitatory inputs that originate from 

extrinsic afferent systems and spiny cells. Inhibitory inputs originate mostly from 

GABAergic interneurons. These micro-anatomical characteristics have been found in all 
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cortical areas and species examined so far and, therefore, they can be considered as 

fundamental aspects of cortical organization (DeFelipe et al., 2002). 

   The Jansen model (Jansen and Rit, 1995) follows the microcircuitry described above to 

emulate the MEG/EEG activity of a cortical area. Consequently, it is particularly well suited 

to embed in a hierarchical structure.  A cortical area is modelled by three subpopulations.  A 

population of excitatory pyramidal (output) cells receives inputs from inhibitory and 

excitatory populations of interneurons, via intrinsic connections (intrinsic connections are 

confined to the cortical sheet). Within this model, excitatory interneurons can be regarded as 

spiny stellate cells found predominantly in layer 4 and in receipt of forward connections 

(Miller, 2003). Excitatory pyramidal cells and inhibitory interneurons will be considered to 

occupy agranular layers and receive backward and lateral inputs. 

   We have described dynamics of these three subpopulations previously.  We will review the 

model briefly but refer interested reader to (David and Friston, 2003) for more details.  The 

main difference (c.f. David and Friston, 2003) is that ERPs/ERFs are modelled as small 

perturbations around the resting potential.  Therefore, all the variables below are zero-mean, 

centred on the resting state we assumed to be zero.  The evolution of population dynamics 

rests on two operators.  The first transforms p, the average density of pre-synaptic input 

arriving at the population, into v, the average postsynaptic membrane potential. This is 

modelled by the linear transformation phv  , where   denotes convolution and h is the 

impulse response or kernel 
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where e0 and r are parameters that determine its shape (e.g. voltage sensitivity).  It is this 

function that endows the simulation with nonlinear behaviours that are critical for 

phenomena like phase-resetting. 

   Interactions, among the different subpopulations, depend on the constants i , which 

control the strength of intrinsic connections and the total number of synapses expressed by 

each subpopulation. The relative values of these constants are fixed, using anatomical 

information from the literature, as described in (Jansen and Rit, 1995): 

14312 25.0,8.0   .  The Jansen model is summarised in Figure 2. 

 

Figure 2 about here 

 

   We assume MEG/EEG signals are a linear mixture of the average depolarisation of 

pyramidal cells.  This mixture depends upon source lead-fields that model the spatial 

distribution of the ensuing electromagnetic fields (Baillet et al., 2001).  We further assume 

the depolarisation of pyramidal cells is proportional to the cortical current source densities, 

which are estimated using inverse solutions (Baillet et al., 2001).  Therefore, we consider the 

indirectly observed ‘output’ of the Jansen model to be the depolarisation of pyramidal cells. 

For simplicity, we ignore the effects of instrumental amplifiers and assume that MEG/EEG 

cortical current densities can be estimated precisely and refer to them as “MEG/EEG 

signals”. Thus, unless otherwise specified, signals are simply the depolarisation of pyramidal 

cells. 

   For given synaptic kernels h and sigmoid functions S, the Jansen model can reproduce a 

large variety of MEG/EEG-like waveforms (David and Friston, 2003;Jansen and Rit, 

1995;Wendling et al., 2000).  Although we have presented the dynamics in terms of a 

convolution operator and static nonlinearly, the integration of the model actually proceeds 

using the equivalent differential equations.  These are provided in the Appendix.  Being able 

to formulate the model in terms of differential equations is important for extending the neural 

mass formulation used here to a true mean field approximation using the Fokker-Plank 

formalism (De Groff et al., 1993; Fourcaud and Brunel, 2002).  This will be the subject of a 

future communication (Harrison et al in preparation). 

 

2.3 Hierarchical extension of the Jansen model 

Using the connection rules above, it is straightforward to construct hierarchical cortico-

cortical networks using Jansen models of cortical areas.  The different types of connections 
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are shown in Figure 3, in terms of connections among the three subpopulations.  To model 

event-related responses, the network receives inputs via input connections.  These 

connections are exactly the same as forward connections delivering fixed or stochastic inputs 

u to the spiny stellate cells in layer 4.  In the present context they can be regarded as 

connections from thalamic or geniculate nuclei.  Inputs u can model incoming stimuli and 

stochastic background activity.  The influence of the ith input is controlled by the parameter 

ci. 

 

Figure 3 about here 

 

   Connections among areas are mediated by long-range excitatory (glutaminergic) pathways.  

As discussed in section 2.1, we consider three types of extrinsic connections (Figure 3): 

forward, backward, and lateral. The strength of each type of connection is controlled by a 

coupling parameter a: aF for forward, aB for backward and aL for lateral.  We model 

propagation delays for these connections (see Appendix). 

   Using these connections, hierarchical cortical models for MEG/EEG can be constructed to 

test various hypotheses, and represent examples of dynamic causal models (Friston et al., 

2003). The causal model here is a multiple-input multiple-output system that comprises m 

inputs and l outputs with one output per region.  The m inputs correspond to designed causes 

(e.g., stimulus functions encoding the occurrence of events) or stochastic processes 

modelling background activity.  In principle, each input could have direct access to every 

region. However, in practice the effects of inputs are usually restricted to a single input 

region, usually the lowest in the hierarchy.  Each of the l regions produces a measured output 

that corresponds to the MEG/EEG signal.  Each region has five ( 1,, ,,  ieieH ) intrinsic 

parameters such as the membrane time constants described above.  These play a crucial role 

in generating regional responses.  However, in the present study, we will consider them fixed 

and focus on the extrinsic coupling parameters or effective connectivity.  These are the 

matrices C, AF, AB and AL that contain the coupling parameters c, aF, aB and aL.  The values 

of these parameters, used in the following simulations, are provided in the Appendix and in 

Figure captions. 
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3 Input-output behaviour 

 

In this section we characterise the input-output behaviour of a series of canonical networks in 

terms of their impulse response functions.  This is effectively the response (mean 

depolarisation of pyramidal subpopulations) to a delta-function-input or impulse.  The 

simulations of this section can be regarded modelling event-related responses to events of 

short duration, in the absence of spontaneous activity or stochastic input.  In the next section 

we will use more realistic inputs that comprise both stimulus-related and stochastic 

components. 

3.1 The effects of inputs 

Inputs u act directly on the spiny stellate neurons of layer 4.  Their influence is mediated by 

the forward connections parameterised by the matrix C. When these connections are 

sufficiently strong, the output of the spiny stellate subpopulation saturates, due to the 

nonlinear sigmoid function in (2).  This nonlinearly has important consequences for event-

related responses and the ensuing dynamics.  In brief, the form of the impulse response 

function changes qualitatively with input strength.  To illustrate this point, we modelled a 

single area, which received an impulse at time zero and calculated the corresponding 

response for different values of c (Figure 4).  With weak inputs, the response is linear, 

leading to a linear relationship between c and peak MEG/EEG responses.  However, with 

large values of c neuronal activity leaves the linear domain of the sigmoid function in (2), the 

spiking saturates and the shape of the evoked response changes. 

 

Figure 4 about here 

 
   This behaviour is not surprising and simply reflects the nonlinear relationship between 

firing rates and postsynaptic depolarisation modelled by the nonlinearity. This nonlinearity 

causes saturation in the responses of units to intrinsic and extrinsic inputs.  For example, 

when the input is strong enough to saturate spiny stellate spiking, the pyramidal response 

exhibits a short plateau (right panel in Figure 4).  This saturation persists until the membrane 

potential of spiny stellate cells returns to its resting state. The sigmoid function models 

phenomenon; (i) at the single unit level, like refractoriness and spike rate adaptation and (ii) 

aspects of neuronal ensembles at the population level, like the distribution of thresholds 

involved in the generation of action potentials. The ensuing behaviour confers an inherent 
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stability on dynamics because it is recapitulated in the response to all bottom-up influences, 

as shown next. 

 

3.2 Bottom-up effects 

The targets of the forward connections and extrinsic inputs are identical.  Therefore, the 

effects of c and aF on event-related responses, are exactly the same.  Figure 5 shows the 

simplest case of two areas (area 1 drives area 2). The difference, in relation to the previous 

configuration, is that area 1 has a gating effect.  This is basically a low-pass filter, which 

leads to greater variation of the response in area 2, relative to responses elicited by direct 

input to area 2  (c.f. Figure 4) . For instance, the small negative response component in area 

1, which follows the first positive deflection, is dramatically enhanced in area 2 for strong 

forward couplings. Again, this reflects the nonlinear behaviour of subpopulations responding 

to synaptic inputs. 

 

Figure 5 about here 

 

3.2.1 Level in hierarchy 

As mentioned above, activity is subject to low-pass filtering, by synaptic processes, each 

time encounters a cortical region.  A simple and intuitive consequence of this is that the form 

of event-related responses changes with each successive convolution in the hierarchy.  To 

illustrate this point, we consider a feedforward configuration composed of five regions 

(Figure 6).  We see in Figure 6 that, in addition to the propagation lag that delays the 

waveform at each level, the event-related response is more enduring and dispersed in higher-

level areas.  A useful heuristic here is that late components of evoked responses may reflect 

hierarchical processing at a deeper level.  This effect is independent of synaptic time 

constants and connectivity parameters.   

 

Figure 6 about here 

 

   This simple delay and dispersion is not necessarily seen with more realistic configurations 

that involve top-down effects.  In this context, late response components in higher cortical 

areas can reenter (Edelman, 1993) lower levels engendering complicated and realistic 
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impulse response functions.  In the reminder of this section we look at the effects of adding 

backward and then lateral connections to the forward architecture considered above. 

 

3.3 Top-down effects 

Top-down connections mediate influences from high to low-level regions.  Incoming sensory 

information is promulgated through the hierarchy via forward, and possibly lateral, 

connections to high-level areas.  To demonstrate the effect of backward connections on 

MEG/EEG, we will consider a minimal configuration composed of two areas (Figure 7).  The 

fact that the forward and backward connections are different renders this functionally 

asymmetric architecture hierarchical.  Although asymmetric, the presence of forward and 

backward connections creates loops.  This induces stability issues as shown in Figure 7: 

when backward connections are made stronger, damped oscillations (aB=1; aB=10) are 

transformed into oscillations which ultimately stabilise (aB=50) because of the saturation 

described in the previous subsection.  Therefore, with aB=50, the stable attractor is a limit 

cycle and the resting state point attractor looses it dynamic stability.  The dependence of 

oscillations on layers, loops and propagation delays has been the subject of much study in 

computational models (Lumer et al., 1997). 

 

Figure 7 about here 

 

   From a neurobiological perceptive, the most interesting behaviours are shown just prior to 

this phase-transition1 when damped oscillations are evident.  Note that the peaks of the 

evoked response, in this domain, occur every 100 milliseconds or so.  This emulates the 

expression of late components seen empirically, such as the N300 or P400.  The key point 

here is that late components, in the EEG/MEG, may reflect reentrant effects mediated by 

backward connections in hierarchical architectures.  This observation fits comfortably with 

the notion that late EEG/MEG components reflect endogenous processing and depend 

explicitly on top-down effects.  In short, late components may depend on backward 

connections and reflect a reentry of dynamics to hierarchically lower processing areas.  This 

                                                 
1 A phase-transition refers to the qualitative change in the systems attractor caused by changes in the systems 
parameters, here the coupling parameters.  In the present context, increasing the backward coupling causes the 
point attractor to loose its dynamic stability (stability under small perturbations) and the emergence of a limit-
cycle attractor.  The nature of the phase-transition is usually assessed in terms of Lyapunov exponents 

(eigenvalues of the systems Jacobian xf  ).  When the system has a point attractor the imaginary part of the 

principal or largest exponent is zero.  A limit cycle has non-zero imaginary parts and chaotic attractors have at 
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dependency can be seen clearly by comparing the two left-hand panels in Figure 7 that show 

the emergence of late components on increasing the backward connection from one to ten. 

   The phase transition from damped late components to oscillations is critical.  Before the 

transition the system is controllable.  This means that the response can be determined 

analytically given the input.  As discussed in (Friston, 2000a) long impulse responses endow 

the brain with a 'memory' of past inputs that enables perceptual processing of temporally 

extended events.  In (Friston, 2000b) this was demonstrated using a Volterra kernel 

formulation and the simulation of spatiotemporal receptive fields in the visual system.  

However, after the transition it is no longer possible to determine when the input occurred 

given the output.  This violates the principle of maximum information transfer (Linsker, 

1990) and precludes this sort of response in the brain.  In short, it is likely that reentrant 

dynamics prolong neuronal transients but will stop short of incurring a phase-transition to 

oscillations.  If this phase transition occurs it is likely to be short-lived or pathological (e.g. 

photosensitive seizure activity). 

   It should be noted that the oscillations in the right hand panels of Figure 7 do not represent 

a mechanism for induced oscillations.  The oscillations here are deterministic component of 

the systems impulse response function and are time-locked to the stimulus.  Induced 

oscillations, by definition, are not time-locked to the stimulus and probably arise from a 

stimulus-related change in the system's control parameters (i.e. short-term changes in 

connectivity).  We will return to this point later. 

 

3.4 Lateral connections 

Lateral connections link different regions at the same level in the hierarchy. They can be 

unidirectional or bidirectional as shown for the model in Figure 8 with two areas.  The main 

difference between forward and unidirectional lateral connections is that the latter target 

pyramidal cells.  This means that the MEG/EEG signal is not so constrained by nonlinear 

saturation in layer 4 units.  Therefore, as shown in Figure 8a, the event-related response does 

not saturate for strong lateral connectivity values aL.  On the other hand, bilateral connections 

and hierarchical connections are differentiated by the fact that bilateral connections are 

completely symmetric, which enables them to create a synchronisation manifold (Breakspear 

and Terry, 2002;Breakspear, 2002).  A comparison of Figure 8b and Figure 7 shows that a 

special aspect of bilateral connections is their ability to support dynamics that are in phase.  

                                                                                                                                                        
least one real positive exponent.  We do not present a stability analysis or the Lyapunov exponents in this work, 
because the phase-transitions are self-evident in the trajectories of the system. 
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This sort of zero-lag phase-synchronisation is commonplace in the brain.  Its mediation by 

lateral connections in this model concurs with previous modelling studies of zero-lag 

coupling in triplets of cortical areas that involve at least one set of bilateral or reciprocal 

connections (Chawla et al., 2001).  For very large values of aL, architectures with bilateral 

connections are highly nonlinear and eventually undergo a second phase transition (see 

Figure 8b). 

 

Figure 8 about here 

 

 

   In this section we have provided a deterministic characterisation of simple hierarchical 

models in terms of their impulse responses.  We have tried to show that the model exhibits a 

degree of face validity in relation to real evoked responses and have related certain 

mechanistic aspects to previous modelling work to provide some construct validity.  We now 

turn to the secondary biological focus of this paper; namely the plausibility of nonlinear 

mechanisms that might explain ERP/ERF components. 

 

 

4 Ongoing and event-related activity 

 
So far, we have considered noise-free systems. Event-related responses were modelled in 

terms of deterministic impulse responses that were unique to a given neuronal configuration.  

In this context it is not necessary to evoke the notion of averaging.  However, real MEG/EEG 

signals show a great variability from trial to trial (Arieli et al., 1996).  In this section we 

model this variability by adding a stochastic component (a zero-mean Gaussian process) to 

the input u. The output corresponding to a stochastic input is referred to ongoing activity, i.e. 

oscillations in the MEG/EEG signal that share no phase relationship with the stimulus.  This 

does not mean that ongoing activity should be considered as noise, just that there is no 

obvious stimulus-related structure. 

 

4.1 Ongoing activity 

Ongoing activity is shaped by the same nonlinear convolution experienced by deterministic 

inputs.  In the context of stationary inputs, the outputs can be characterised in terms of their 
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spectral properties, which are determined by the generalised transfer functions of the Volterra 

kernels associated with any controllable analytic system.  The impulse response function is 

the first-order kernel.  As soon as the connectivity parameters of a hierarchical network 

change, the principal modes of this network, defined by the principal frequencies of 

oscillations, are modulated (David and Friston, 2003). As an illustration, let us consider the 

simple hierarchical model of two cortical areas established in the previous section (Figure 9) 

with two configurations, which differ in the strength of backward connections (aB=1 and 

aB=10).  The corresponding frequency spectra, of pyramidal cell depolarisation of the two 

areas, show that the change in connectivity induces a profound modulation of their spectral 

profile.  As one might intuit, increasing backward connections induce a peak at the same 

frequency of the damped oscillations in the impulse response function.  This is an important 

aspect of ongoing activity in the sense that its spectral behaviour may be very close to that of 

evoked transients as shown in (Makeig et al., 2002). 

 

Figure 9 about here 

 

4.2 Induced vs. evoked dynamics 

This modulation of oscillatory dynamics, by the systems coupling parameters, provides a 

natural model for event-related changes in rhythmic activity.  This phenomenon is known as 

event-related synchronisation (ERS) in frequency bands showing an evoked increase in 

power, or conversely, event-related desynchronisation (ERD) for decreases (Basar, 

1980;Pfurtscheller and Lopes da Silva, 1999).  In light of the above connectivity-dependent 

changes in power, ERD and ERS may reflect the dynamics induced by evoked changes in 

short-term plasticity.  The key difference between evoked and induced transients relates to 

the presence or absence of changes in the systems control parameters, here connectivity or 

synaptic efficacy.  Evoked changes are not necessarily associated with parameter changes 

and any complicated response can be ascribed to transients that arise as the systems trajectory 

returns to its attractor.  Conversely, induced responses arise from perturbation of the attractor 

manifold itself, by changes in the parameters and ensuing changes in the dynamics.  This 

distinction was discussed in (Friston, 1997) in relation to MEG dynamics and modelled using 

asymmetric connections between two areas in (Friston, 2000a).  

   Empirically, the ERS/ERD approach is used to look for MEG/EEG power changes of 

rhythmic activity induced by external events.  This phenomenon has been modelled, in the 

case of alpha rhythms, by a computational model of thalamocortical networks (Suffczynski et 

al., 2001). It has been shown that a key mechanism is the modulation of functional 
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interaction between populations of thalamocortical cells and the reticular nucleus.  This and 

related issues will be addressed in a subsequent paper on induced responses.  Here we focus 

on evoked changes. 

   The present analysis concludes by examining the sensitivity of evoked transients to state 

changes caused by ongoing activity, when the parameters are held constant.  In particular we 

see if this sensitivity can be expressed as phase-resetting.  The key issue here is the presence 

of nonlinear interactions between the current state of the system and its perturbation by a 

stimulus. 

 

4.3 Phase-resetting and nonlinear interactions. 

In the following, we investigate the effect of ongoing activity, on stimulus-dependent 

responses, to reconcile apparently contradictory conclusions from studies of event-related 

potentials.  On one hand, classical studies have shown that event-related potentials are 

associated with amplitude changes in the MEG/EEG signal that represent a linear summation 

of an impulse response and ongoing activity (Arieli et al., 1996;Shah et al., 2004). In this 

scheme, the variability at the single-trial level is due to, and only to, ongoing activity, which 

is removed after averaging to estimate the impulse response.  On the other hand, it has been 

hypothesised that event-related waveforms, obtained after averaging, could be due to a 

phase-resetting of ongoing activity with no necessary change in the amplitude (i.e. power) of 

any stimulus locked transient (Jansen et al., 2003;Makeig et al., 2002).  Although 

mathematically well defined, the neural mechanisms that could instantiate phase-resetting of 

ongoing activity are unknown. 

    We will take phase-resetting to imply a nonlinear interaction between ongoing activity and 

stimulus-related input that results in phase-locking to stimulus onset.  Although phase-

locking can be produced by evoking oscillatory transients (i.e. amplitude modulation) this 

mechanism involves no change or resetting of the ongoing dynamics.  To assess the 

contribution of phase-resetting in our simulations we therefore need to look for interactions 

between ongoing and stimulus-related inputs that produced phase-locking in the outputs.  As 

mentioned in the introduction this was addressed, in a simple way, by subtracting the 

response to ongoing activity alone from the response to a mixture of ongoing activity and 

stimulus input.  In the absence of interactions this difference (the evoked response) should be 

the same.  On the other hand, if interactions are prevalent, the difference should change with 

each realisation of ongoing activity.  We performed these analyses with different levels of 

input and assessed the degree of phase-locking in the outputs with the phase-locking value 

(PLV) (Lachaux et al., 1999;Tallon-Baudry et al., 1996): 
trials

tjtPLV ))(exp()(   where 
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the instantaneous phase )(t  was obtained from the Hilbert transform (Le Van Quyen et al., 

2001). 

 

4.3.1 Testing for interactions 

To evaluate the effect of background activity on single-trial event-related responses, we used 

the two area hierarchical model above, with aB=1 (Figure 9).  The first area was driven by an 

impulse function (stimulus) and Gaussian random noise (background activity) of standard 

deviation =0.05.  The output of this region can be considered a mixture of evoked response 

and ongoing activity. We considered two conditions: one with low levels of mixed input 

(c=102) and another with high levels (c=2.104).  These values were chosen to emphasise the 

systems nonlinear properties; with the smaller value of c, neuronal responses remain largely 

to the linear regime of the nonlinear function.  The larger value of c was chosen so that 

excursions of the states encroached on the nonlinear regime, to produce neuronal saturation 

in some trials.  In both cases, the stimulus was a delta-function.  The simulated responses, for 

100 trials, are shown in Figure 10. 

    When input levels are low (left hand side of Figure 10), event-related activity at the single-

trial level shows a relatively reproducible waveform after stimulus onset (Figure 10B).  This 

transient is reflected in the ERP/ERF after averaging (Figure 10C).  To confirm the 

experimental results of (Arieli et al., 1996), we decomposed each event-related response into 

two components. First, the stochastic component (the response to ongoing activity alone - 

Figure 10D) and second, an extra component elicited by adding the stimulus (Figure 10E).  

This is the difference between the response elicited by stochastic component alone (Figure 

10D) and the response to the mixed input (Figure 10B).  If the system was linear, these 

differences should not exhibit any variability over trials, and thus define the “reproducible 

response” (Arieli et al., 1996).   Effectively, the stimulus-dependent component shows no 

variability and we can conclude that the response components due to stimulus and ongoing 

activity are linearly separable.  In other words, there are no interactions that could mediate 

phase-resetting.  Despite this, there is ample evidence for phase-locking.  This is shown in 

Figure 10F, using the PLV index. 

   However, the situation is very different when we repeat the simulations with high input 

levels (right hand side of Figure 10).  In this context, the event-related responses do not show 

any obvious increase in amplitude after the stimulus (Figure 10B).  However, the averaged 

event-related activity (Figure 10C) is very similar to that above (left hand side of Figure 

10C).  The fact that one obtains an ERP by averaging in this way suggests that the stimulus 
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input induced phase-resetting of the ongoing oscillations.  This is confirmed by the large 

variation in stimulus-dependent components from trial to trial.  This variation reflects 

nonlinear interactions between the stimulus and ongoing activity (Figure 10E).  These 

interactions are associated with phase-locking as shown in Figure 10F. 

 

Figure 10 about here 

 

   In summary, the fact that the difference in evoked responses with and without background 

noise (panel E, Figure 10) shows so much variability, suggests that background activity 

interacts with the stimulus:  When ongoing activity is high, stellate cells outputs saturate and 

the stimulus-related response is attenuated.  Conversely, when ongoing activity is low the 

evoked-response is expressed fully.  This dependency on ongoing activity is revealed by 

variation in the evoked responses with high input levels.  In conclusion, the apparently 

contradictory results presented in (Arieli et al., 1996;Jansen et al., 2003;Makeig et al., 

2002;Shah et al., 2004) can be reproduced in most part and reconciled within the same 

framework.  With high activity levels, the ongoing and stimulus-dependent components 

interact, through nonlinearities in the population dynamics, to produce phase-resetting and a 

classical ERP on averaging.  When activity is lower, the stimulus and endogenous dynamics 

do not interact and the ERP simply reflects the transient evoked by stimuli that is linearly 

separable from ongoing dynamics. 

 

 

5 Discussion 

 
We have shown that it is possible to construct hierarchical models for MEG/EEG signals.  To 

that end, we have assumed an architecture for cortical regions and their connections.  In 

particular, we have used the Jansen model (Jansen and Rit, 1995) for each source, and a 

simplified version of the connection rules of Felleman and Van Essen, (1991) to couple these 

sources.  Here, we have fixed the parameters intrinsic to each source (synaptic time 

constants, output function, and intrinsic connections) and have focused on manipulating 

extrinsic connections among areas.  We have used this model to address some issues in the 

genesis of evoked responses as observed with MEG/EEG. 

   Inferring neural mass models and their parameters, on the basis of the EEG and MEG 

alone, is a dynamical inverse problem that does not have a unique solution. The model we 

have described is one possible model among many others. We have used this model to afford 
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a balance between simple neuronal models that are unrealistic but sufficient to emulate 

dynamics seen empirically, and more complicated models that have an explicit relation to 

electrophysiology but are difficult to manipulate.  In future work we will compute the relative 

likelihood of, or evidence for, different models (with Bayesian model selection) using real 

MEG/EEG data (David et al., 2004b).  At this stage we focus on establishing the face validity 

of a representative model by showing it can reproduce a range of biological behaviours. 

 

Deterministic simulations 

In section 3, we ignored the stochastic component of MEG/EEG signals.  This allowed us to 

study various configurations in terms of their deterministic input-output behaviour.  Each 

type of extrinsic connection (forward, backward and lateral) had specific effects on event-

related dynamics.  The key conclusions from these analyses were; (i) When forward 

connections, mediating bottom-up or extrinsic inputs, are sufficiently strong, nonlinear 

mechanisms cause a saturation of neuronal responses.  This endows the system with an 

inherent stability that precludes non-dissipative dynamics.  (ii) The duration of evoked 

transients increases with the hierarchical depth or level of processing.  (iii) When backward 

or bilateral connections are added, evoked transients become more protracted, exhibiting 

damped oscillations.  These are formally identical to late or endogenous components. 

   These simulations suggest that late components are mediated by reentrant dynamics within 

cortical hierarchies.  Increasing the strength of extrinsic backward or bilateral connections 

causes the number of late components to increase until a phase transition into a quasi-

oscillatory regime, whose dynamic stability is assured by the nonlinear saturation above.  We 

discussed, briefly, the importance of this phase transition in relation to information theoretic 

constraints on neuronal computations.  In short, it is likely that selective pressure will extend 

the duration of transients so that the mutual information between current activity and past 

perceptual brain states is maximised (see Friston, 2000a for a fuller discussion).  However, 

phase-transitions to oscillation are not adaptive because the system is no longer controllable 

and the informational link with the past is lost.  A simple mechanism for increasing the 

memory of neuronal systems is to re-enter past states from hierarchical levels via backward 

connections.  This is precisely what we simulated.  In summary, late components may 

represent dynamic “echoes” that allow current sensory information to interact with perpetual 

constructs from higher areas, based on previous sensory input.  We have discussed one form 

of this hierarchical reentry, using an empirical Bayesian perspective on predictive coding 

(Friston, 2002). 
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Stochastic simulations 

In the second section, we introduced stochastic components to the inputs, to study event-

related responses in the context of background activity.  This work was motivated by 

apparently contradictory views of ERP/ERF generation.  Some authors (Arieli et al., 

1996;Shah et al., 2004) have argued that ERPs/ERFs can be considered as the impulse 

response function of a linear system, despite the huge variability at the single-trial level. In 

contrast, it has been proposed (Duzel et al., 2003;Jansen et al., 2003;Klimesch et al., 

2004;Makeig et al., 2002) that ERPs/ERFs could be due to a phase-resetting process that 

does not require the notion of a linear impulse response. This induces some hypothetical 

neural mechanism that can implement a phase-resetting of ongoing activity.  These two 

views are supported by analyses of real MEG/EEG data.  We showed that our model 

reproduces data that support both views.  In our framework, the key factor is the level of 

activity.  When activity is low, the model operates in a quasi-linear regime and reproduces 

the linear behaviours reported in (Arieli et al., 1996).  Conversely, when activity is high, 

single-trial responses do not show any amplitude modulation and yet still produce an ERP on 

averaging.  This is consistent with the observations of Jansen et al., (2003) and  Makeig et al., 

(2002). 

   Our analyses suggest that phase-resetting involves a nonlinear interaction between 

stimulus-related responses and ongoing activity.  This observation is very reminiscent of a 

similar finding, pertaining to fast-oscillatory dynamics induced in simulated populations.  

These simulations (Chawla et al., 2000) showed that functional connectivity or dynamic 

integration between two populations increases with mean background activity and with 

stimulus-related rate modulation.  Furthermore, as the background activity increases, the 

populations become increasingly sensitive to the intensity of the stimulus in terms of a 

predisposition to transient phase-locking.  This reflected an interaction between background 

activity and stimulus-intensity in producing dynamic correlations.  The mechanism of these 

interactions was modelled at the level of membrane time constants and temporal integration 

over milliseconds, using single-compartment units and the Hodgkin-Huxley formalism.  Our 

simulations were at a much less detailed level, employing mean field-like approximations.  

Furthermore, they addressed evoked transients as opposed to induced fast dynamics.  

However, they both speak to the central role of nonlinear interactions between ongoing 

activity and stimuli in causing phase-locking.  In our case, of evoked responses, this phase-

locking was to stimulus onset and the mechanism can be attributed directly to the only 

nonlinearity in our model: namely the sigmoid response function transforming depolarisation 

to firing rate.  This nonlinearly renders ongoing activity sensitive to stimulus perturbations 
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(this is the definition of an interaction).  This sensitivity is due to the saturating nature of the 

sigmoid function.  When ongoing activity is high the system states are close to the nonlinear 

regime of the sigmoid function and perturbations due to the stimulus cause neuronal 

saturation.  This saturation causes the ongoing activity to “forget” its history and experience 

a resetting of its phase. 

 

Phase resetting vs. Phase-locking 

In this paper we have made a clear distinction between phase-locking and phase-resetting.  

Phase-locking, as measured by the PLV implies a statistical dependency among phases, over 

ERPs (i.e. knowing the phase from one ERP allows one to predict the phase of another).  

Phase-locking can be mediated in a number of ways.  As shown in Figure 10F, there is no 

real difference between the phase-locking measures obtained from linear and nonlinear 

single-trial responses.  Conversely, phase-resetting refers to a change in the phase, within 

ERPs.  This can be mediated by linear or nonlinear mechanisms (i.e. a second or high-order 

interaction between ongoing dynamics and the stimulus).  The key debate here is not about 

phase-resetting itself, but whether it is caused by nonlinear mechanisms (i.e. without changes 

in amplitude).  We therefore focused on the distinction between linear or nonlinear, rather 

than phase-resetting per se.  In a future paper we will look at phase-resetting, explicitly, using 

background activity that is periodic and of known phase (see below). 

   In this paper, phase-resetting is taken to imply a nonlinear interaction between ongoing 

dynamics and a stimulus that induces a phase-locking over trials.  This generalizes the notion 

of alpha phase-resetting that is usually characterised empirically.  Our simulations and 

analysis were not limited to a single frequency.  The ongoing activity we used was broad-

spectrum and the phase-locking measure was not frequency-specific.  In empirical studies it 

is not possible to analyse the interaction between stimulus and ongoing activity, because no 

single trial can be replicated in the absence of the stimulus.  This means that empirical studies 

have to use epochs that show oscillations at a particular frequency to demonstrate phase-

resetting.  In a future communication we will apply this phase-resetting analysis (c.f. (Makeig 

et al., 2002)) to stimulations in which our stochastic ongoing activity is replaced with a 

deterministic sinusoidal forcing term, in the alpha range.   This will allow us to partition 

phase-locking into components that are mediated by linear superposition and phase-resetting 

respectively. 

 

Evoked vs. induced oscillations 
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We have also noted that event-related activity is not restricted to ERPs/ERFs.  It 

encompasses event-related changes in oscillations (power and synchronisation). We have 

suggested that this phenomenon can be explained by changes of connectivity due to short-

term neuronal plasticity (see (Friston, 2000a) for a related discussion on nonlinear 

connections).  We will be pursuing this in a subsequent paper on induced responses.  The 

same changes in connectivity are also responsible for the modulation of long-range 

synchrony (or any type of interdependence measure) between distant MEG/EEG oscillators 

(David and Friston, 2003;David et al., 2004a). 

 

Modelling and estimation 

Generally, it was striking how different connections engendered such diverse event-related 

waveforms.  This raises the issue of how models, of the sort described here, can be applied to 

real data.  The long-term agenda of our modelling programme is to establish the validity of 

neuronal network models so that they can be used as forward models to explain real data.  

The key advantage of this approach is that the parameters of the model, which are estimated, 

have a direct physiological interpretation.  Several studies have shown that it is possible to 

estimate the parameters of observation models using real MEG/EEG data, in the case of both 

rhythmic activity (Valdes et al., 1999) and ERPs (Rennie et al., 2002). An important issue, in 

this context, is the ability to constrain, or regularise, the inverse problem that dynamic 

forward models like this pose.  These issues can be addressed using Bayesian inference and 

dynamic causal modelling (Friston et al., 2003).  A great advantage of using neuronally 

plausible forward models is that constraints on the solution can be applied, in an informed 

way, using priors on the model parameters.  At present, our team has published Bayesian 

inference procedures for dynamic causal modelling of functional MRI (Friston et al., 

2003;Penny et al., 2004).  In forthcoming reports, we will extend this approach to a variety of 

models, including the neural mass model for MEG/EEG described here. A preliminary report 

has already been published in which we estimate the parameters of this neural mass model 

but without localising the sources (David et al., 2004b). In our next communication we will 

combine neural mass models and forward MEG/EEG modelling to study cognitive functions, 

and in particular to infer changes in connectivity among experimental conditions. 

 

6 Conclusion 

We have shown that neural mass models (David and Friston, 2003;Jansen and Rit, 

1995;Lopes da Silva et al., 1997;Nunez, 1974;Rennie et al., 2002;Robinson et al., 2001;Stam 



 24

et al., 1999;Suffczynski et al., 2001;Valdes et al., 1999;Wendling et al., 2002) can reproduce 

a large variety of MEG/EEG signal characteristics. The potential advantage they afford, in 

comparison to standard data analysis, is their ability to pinpoint specific neuronal 

mechanisms underlying normal or pathological activity. Effort is needed to incorporate them, 

more systematically, in MEG/EEG analyses to enable enquiry into mechanistic questions 

about macroscopic neuronal processes. In forthcoming studies, we will describe the 

estimation of such models in a Bayesian framework (Friston et al., 2002) and will apply the 

present model to the analysis of real ERPs. 

 

Appendix 

In this appendix, we provide differential equations for the ith of l cortical areas of the 

hierarchical Jansen model as described in section 2.3.  The activity of the ith cortical area is 

described by eight state variables x(i), the rate of change of which is described by an equation 

of the following form:  

 

         CAAAtyStutxftx LBFijjiii ,,,,,, )()()()()(   with ji.  (A.1) 

 

u(i) is the extrinsic input to region i not modeled by other areas. S(y(j)) is the firing rate of 

pyramidal cells of region j. AF, AB, AL are l x l  connectivity matrices for forward, backward 

and lateral connections, respectively. C is the connectivity vector for extrinsic inputs. (ij) is 

the propagation delay between region i and region j. Equations (1) and (2) in the main text 

describe neuronal input and output operators that correspond to the following state equation 

which is the specific version of A.1 for our model: 
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(A.2) 

 

where )(
3

)(
2

)( iii xxy   is the pyramidal cells membrane potential (depolarisation) of region 

i.   This is assumed to be proportional to the cortically reconstructed current source densities 

obtained from MEG/EEG scalp signals.  This equation was integrated using standard Runge-

Kutta techniques (Kloeden and Platen, 1999) with an integration time-step of 1 ms. Apart 

from the extrinsic connectivity parameters, we used the same parameters for every 

simulation: He=3.25, Hi=29.3, e=10ms, i=15ms, =(ij)=10ms, 1=50, 2=40, 3=4=12, 

e0=2.5, v0=0, r=0.56. 
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Figure Captions 

 

 

Figure 1: Connection rules adopted for the construction of hierarchical models for 

MEG/EEG signals.  These rules are a simplified version of those proposed by (Felleman and 

Van Essen, 1991). The cortical sheet is divided into two components: the granular layer 

(layer 4) and the agranular layers (supra- and infra-granular layers).  Bottom-up connections 

originate in agranular layers and terminate in layer 4.  Top-down connections only engage 

agranular layers.  Lateral connections originate in agranular layers and target all layers. 

 

Figure 2: Jansen’s model of a cortical area. Three neuronal subpopulations are considered to 

model a cortical area. Pyramidal cells interact with both excitatory and inhibitory 

interneurons with the connectivity constants 14312 25.0,8.0   .  The parameters He,i 

and ie,  control the expression of post-synaptic potentials as shown in equation (1).  We 

assume the average depolarisation of pyramidal cells y is proportional to reconstructed 

cortical current densities obtained with source reconstruction algorithms using MEG/EEG 

scalp data.  For simplicity, we use the same term “MEG/EEG signal” for estimated cortical 

and measured scalp MEG/EEG data. 

 

Figure 3: Hierarchical connections among Jansen units (Figure 2) based on simplified 

Felleman and van Essen rules (Figure 1).  Long range connectivity is mediated by pyramidal 

cells axons. Their targets depend upon the type of connections.  Coupling or connectivity 

parameters control the strength of each type of connection: aF for forward, aB for backward, 

and aL for lateral. 

 

Figure 4: The strength of input modulates the shape of MEG/EEG signal.  The output of one 

area (variable y, see Appendix) has been calculated for different values of c, the strength of 

forward connections mediating input u (delta function).  When c is small (c=1, c=1000), the 

output is not saturated and the MEG/EEG signal (y) amplitude is linearly related to c. For 

large values of c (c=106, c=109), spiny stellate cells saturate and the shape of event-related 

MEG/EEG response changes substantially. 

 

Figure 5: The MEG/EEG signal of area 1 (black) and area 2 (grey) is plotted as a function of 

the forward connectivity aF. Bottom-up connectivity has the same effect as input connectivity 
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c: high values cause a saturation of spiny stellate cells (input cells), with a dramatic effect on 

MEG/EEG event-related responses. Nonlinear effects are particularly strong for the largest 

value of aF (right panel) as the small negative component of area 1 (seen best in the left 

panel) induces a huge negative response in area 2. 

 

Figure 6: A feedforward system composed of five areas. The MEG/EEG signal (y) of each 

area elicited by a single pulse on area 1 is plotted in successive panels from left to right. 

Event-related activity lasts longer in high-level cortical areas of feedforward architectures.  

At each level in the hierarchy, the event-related response of pyramidal cells experiences 

successive low-pass filters, embodied by synaptic processes that transform the input signals 

to output. 

 

Figure 7: Backward connections have a key influence on the stability of MEG/EEG event-

related activity as demonstrated by this simple model composed of two areas (area coded in 

black and area 2 coded in grey).  The forward connectivity aF has been fixed to 40 and 

backward connectivity aB varies between 1 and 50 from left to right. When top-down effects 

are small, their reentry leads to longer lasting event-related responses characterised by 

damped oscillations (aB=1; aB=10).  However, over a critical threshold of aB (which depends 

upon aF), the system undergoes a phase transition, loses its point attractor and expresses 

oscillatory dynamics (aB=25; aB=50). 

 

Figure 8: The effects of lateral connections are shown with a simple model composed of two 

areas (black: area 1, grey: area 2).  The depolarisation of pyramidal cells (y) is plotted for 

several values of lateral connectivity aL. a)  Unilateral connections support transients that 

differ from those elicited by forward connections (Figure 4).  In particular, the saturation of 

layer 4 is not so important and the signal exhibits less saturation for large aL.  b) Increasing 

bi-directional lateral connections has a similar effect to increasing backward connections.  

The main difference is the relative phase of evoked oscillations, which are synchronised at 

zero-lag.  For very large values of aL, the model is highly nonlinear and eventually exits the 

oscillatory domain of parameter space. 

 

Figure 9: The modulation of backward connectivity (aB=1 or aB=10) has huge effect on the 

power spectrum of ongoing MEG/EEG dynamics (variable y is plotted in black for area 1 and 

in grey for area 2). When aB increases from 1 to 10, there is loss of power below 3 Hz, and an 

excess between 3 and 7 Hz. The amplitude spectra in the right panel were obtained by 
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averaging the modulus of the Fast Fourier Transform of pyramidal cell depolarisation, over 

100 epochs of 2.5 seconds (examples are shown in the two left-hand panels, black: first area, 

grey: second area). 

 

Figure 10: Event-related responses in the context of ongoing activity (100 trials).  Two 

hierarchically connected regions are considered. Input (ongoing and stimulus-related) enters 

into the system through region 1. Two levels of input are considered: weak on the left hand 

side (c=102), strong on the right hand side (c=2.104). The successive horizontal panels show 

different types of activity. The time scale is identical for each panel and shown at the bottom. 

A) Inputs, comprising a delta function and Gaussian noise of standard deviation 0.05 

(stimulus onset at time 0). B) Event-related activity (y) at the single-trial level. The time 

series over trials is shown (area 1 is above area 2). C) Averaged event-related response 

estimated by averaging over epochs shown in B (area 1 in black, area 2 in grey).   D) 

Responses (y) to the noisy input without the delta function, shown in the same format as in 

B.  E). Stimulus-dependent component obtained from subtracting D from B.  F). Phase-

locking value computed form time series in B, which exhibits a transient phase-

synchronisation to peristimulus time (Black: area 1, grey: area 2).  

 

 
 

 


