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ABSTRACT 

Dynamical causal modeling (DCM) of evoked responses is a new approach to making inferences about connectivity 

changes in hierarchical networks measured with electro- and magnetoencephalography (EEG and MEG). In a previous 

paper, we illustrated this concept using a lead-field that was specified with infinite prior precision. With this prior, the 

spatial expression of each source area, in the sensors, is fixed. In this paper, we show that using lead-field parameters 

with finite precision enables the data to inform the network’s spatial configuration and its expression at the sensors. 

This means that lead-field and coupling parameters can be estimated simultaneously. Alternatively, one can also view 

DCM for evoked responses as a source reconstruction approach with temporal, physiologically-informed constraints. 

We will illustrate this idea using, for each area, a 4-shell equivalent current dipole (ECD) model with three location and 

three orientation parameters. Using synthetic and real data we show that this approach furnishes accurate and robust 

conditional estimates of coupling among source and their orientation.  
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I INTRODUCTION 

In (David et al., 2005a) we described dynamic causal modeling (DCM) for event-related fields (ERFs) and potentials 

(ERPs). This new approach is grounded on a neuronally plausible, generative model that can be used to estimate and 

make inferences about category- or context-specific coupling among cortical regions. The coupling parameters embody 

bottom-up, top-down and lateral connections among remote cortical regions.  Parameters are estimated with a Bayesian 

procedure using empirical data (ERPs/ERFs). With Bayesian model selection, one can use model evidences to compare 

competing models and identify the model that best explains the data. 

 

In (David et al., 2005a) we constructed the spatial forward model using distributed dipole modeling on the grey matter 

surface. This procedure has the advantage of using the precise anatomical structure of the head. The subject’s anatomy 

was derived from the high-resolution structural magnetic resonance imaging (sMRI). Critically, each area’s lead-field 

was pre-determined so that each area had a fixed spatial expression in the sensors. Although this approach provides 

spatially precise expressions in the sensors, the true spatial configuration of an area may be different from our model 

and lead to biased conditional estimates of other [e.g., coupling] parameters. For example, the spatial model can be 

wrong, because its parameters like location, orientation or extent are specified inaccurately. 

 

Alternatively, each lead-field or its underlying spatial parameters can be regarded as a parameter of the model. In a 

Bayesian context, the above procedure is equivalent to using zero prior variance (i.e., infinite precision which expresses 

our belief that the specified lead-field mediated the sensor data). If this belief is not supported by the data, the 

optimization algorithm will, at worst, fail to provide a good solution and compensate for the mis-specified spatial 

model by biasing conditional estimates of other parameters like coupling. A way to avoid this is to decrease our strong 

belief in a specific lead-field and use finite-precision priors on the lead-field parameters. There are several ways to 

parameterize the lead field. Although we could employ a surface-based forward model, we use equivalent current 

dipoles (ECDs). This has distinct advantages over other models. First, ECDs’ spatial expression is analytic, i.e., the 

forward model computation is fast (Mosher et al., 1999). Secondly, the model is based on electrode positions only and 

does not need information from a structural MRI. Thirdly, many authors reported ECD location and orientation for 

specific ERP/ERF experiments in the peer-reviewed literature, e.g. (Valeriani et al., 2001):  Within our approach, these 

locations and orientations could be employed as prior expectations on ECD parameters. Finally, ECDs are a natural 

way to specify nodes in the probabilistic graphs that DCMs represent. 
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One can also view DCM for evoked responses as a source reconstruction approach with temporal, physiologically 

informed constraints imposed by our assumption that a hierarchical network of discrete areas generated the data. The 

reconstructed source activities over time fall out naturally as the system’s states. Typically, most current source 

reconstruction approaches for EEG/MEG data are based exclusively on constraints given by the spatial forward model 

(Darvas et al., 2004). However, recently models have been proposed which use (spatio-) temporal constraints to invert 

the model (Darvas et al., 2001;Galka et al., 2004). These spatiotemporal approaches are closer to DCM, but use generic 

constraints derived from temporal smoothness considerations and autoregressive modeling. 

 

This paper is structured as follows. In the theory section, we will describe briefly the temporal generative model for 

ERP/ERFs (for a detailed description see (David et al., 2005b). This is followed by a description of the spatial forward 

model, its parameterization and typical prior distributions we adopt for ERP data. In the results section, we illustrate 

the operational details of the procedures on two ERP data sets. In the first ERP experiment we repeat the analysis of an 

auditory oddball data-set (David et al., 2005a) to show that the mismatch negativity can be explained by changes in 

connectivity to and from the primary auditory cortex.  This analysis shows that biologically meaningful results can be 

obtained in terms of the parameters governing the neuronal architectures generating ERPs.  In the second experiment, 

we establish face-validity in terms of the spatial parameters; we analyze sensory evoked potentials (SEPs) elicited by 

unilateral median nerve stimulation and measured with EEG. With this model we can explain the observed SEP to 

200ms. We find strong connectivity among areas during the course of the SEP. The estimated orientations of these 

sources conform almost exactly to classical estimates in the literature.   Furthermore, we observe short transmission 

delays among sources within the contralateral hemisphere (~6ms), but long delays (~50ms) between homologous 

sources in both hemispheres. Finally, using synthetic data, we show that finite-precision priors on lead-field parameters 

result in models with greater evidence and more accurate and robust conditional estimates, in relation to models with 

infinitely precise priors. 

 

II THEORY 

Intuitively, the DCM scheme regards an experiment as a designed perturbation of neuronal dynamics that are 

promulgated and distributed throughout a system of coupled anatomical sources to produce region-specific responses.  

This system is modeled using a dynamic input–state–output system with multiple inputs and outputs.  Responses are 

evoked by deterministic inputs that correspond to experimental manipulations (i.e. presentation of stimuli).  
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Experimental factors (i.e. stimulus attributes or context) can also change the parameters or causal architecture of the 

system producing these responses.  The state variables cover both the neuronal activities and other neurophysiological 

or biophysical variables needed to form the outputs.  Outputs are those components of neuronal responses that can be 

detected by MEG/EEG sensors. In our model, these components are depolarisations of a ‘neural mass’ of pyramidal 

cells.  

DCM starts with a reasonably realistic neuronal model of interacting cortical regions.  This model is then 

supplemented with a spatial forward model of how neuronal activity is transformed into measured responses; here 

MEG/EEG scalp-averaged responses.  This enables the parameters of the neuronal model (i.e., effective connectivity) 

to be estimated from observed data.  For MEG/EEG data, this spatial model is a forward model of electromagnetic 

measurements that accounts for volume conduction effects (Mosher et al., 1999). 

 

II.1 Hierarchical MEG/EEG neural mass model 

We have developed a hierarchical cortical model to study the influence of forward, backward and lateral 

connections on ERFs/ERPs (David et al., 2004). This model is used here as a DCM and embodies directed extrinsic 

connections among a number of sources, each based on the Jansen model (Jansen and Rit, 1995), using the connectivity 

rules described in (Felleman and Van Essen, 1991). These rules, which rest on a tri-partitioning of the cortical sheet 

into supra-, infra-granular layers and granular layer 4, have been derived from experimental studies of monkey visual 

cortex.  Under these simplifying assumptions, directed connections can be classified as: (i) Bottom-up or forward 

connections that originate in agranular layers and terminate in layer 4.  (ii) Top-down or backward connections that 

connect agranular layers.  (iii) Lateral connections that originate in agranular layers and target all layers.  These long-

range or extrinsic cortico-cortical connections are excitatory and comprise the axonal processes of pyramidal cells.  For 

simplicity, we do not consider thalamic connections, but model thalamic output as a function operating on the input 

(see below). 

   The Jansen model (Jansen and Rit, 1995) emulates the MEG/EEG activity of a cortical source using three 

neuronal subpopulations. A population of excitatory pyramidal (output) cells receives inputs from inhibitory and 

excitatory populations of interneurons, via intrinsic connections (intrinsic connections are confined to the cortical 

sheet).  Within this model, excitatory interneurons can be regarded as spiny stellate cells found predominantly in layer 

4 and in receipt of forward connections.  Excitatory pyramidal cells and inhibitory interneurons occupy agranular 

layers and receive backward and lateral inputs.  Using these connection rules, it is straightforward to construct any 

hierarchical cortico-cortical network model of cortical sources. 
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The ensuing DCM is specified in terms of its state equations and an observer or output equation 
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where x are the neuronal states of cortical areas, u are exogenous inputs and h is the output of the system.  θ  are 

quantities that parameterize the state and observer equations (see also below under ‘Prior assumptions’).  The state 

equations are ordinary second-order differential equations and are derived from the behavior of the three neuronal 

subpopulations which operate as linear damped oscillators.  Each subpopulation’s kernel transforms the average 

density of its pre-synaptic inputs into an average postsynaptic membrane potential.  This transformation is equivalent to 

a convolution with the kernel 
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where subscript “e” stands for “excitatory”. Similarly subscript “i” is used for inhibitory synapses.  H  controls the 

maximum post-synaptic potential and τ  represents a lumped rate constant.  A second operator S transforms the 

potential of each subpopulation into firing rate, which is the input to other subpopulations.  This operator is assumed to 

be an instantaneous sigmoid nonlinearity 
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where 56.=r  determines its form.  Interactions, among the subpopulations, depend on internal coupling constants 

4,3,2,1γ , which control the strength of intrinsic connections and reflect the total number of synapses expressed by each 

subpopulation.  The integration of this model to form predicted response rests on formulating these two operators in 

terms of a set of differential equations as described in (David et al., 2004).  A DCM, at the neuronal level, obtains by 

coupling areas with extrinsic forward, backward and lateral connections as described above. 
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These equations, for all areas, can be integrated using the matrix exponential of the systems Jacobian as described 

in the appendices of (David et al., 2005b)  Critically, the integration scheme allows for conduction delays on the 

connections, which are free parameters of the model . The output of area i is the depolarization of pyramidal cells, over 

all time bins, 
)(
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II.2 Event-related input and event-related response-specific effects 

To model event-related responses, the network receives inputs via input connections.  These connections are exactly 

the same as forward connections and deliver inputs u to the spiny stellate cells in layer 4.  In the present context, inputs 

u model afferent activity relayed by subcortical structures and is modeled with two components:  The first is a gamma 

density function.  This models an event-related burst of input that is delayed with respect to stimulus onset and 

dispersed by subcortical synapses and axonal conduction.  Being a density function, this component integrates to unity 

over peristimulus time.  The second component is a discrete cosine set modeling systematic fluctuations in input, as a 

function of peristimulus time.  In our implementation peristimulus time is treated as a state variable, allowing the input 

to be computed explicitly during integration. Critically, the event-related input is exactly the same for all ERPs.  

   The effects of experimental factors are mediated through event-related response (ERR)-specific changes in 

connection strengths.  This models experimental effects in terms of differences in forward, backward or lateral 

connections that confer a selectivity on each source, in terms of its response to others.  The experimental or ERR-

specific effects are modeled by coupling gains. By convention, we set the gain of the first ERP to unity, so that 

subsequent ERR-specific effects are relative to the first. 

II.3 Spatial forward model 

The dendritic signal of the pyramidal subpopulation of the i-th source 
)(

0

i
x  is detected remotely on the scalp 

surface in MEG/EEG.  The relationship between scalp data h and pyramidal activity is linear and instantaneous 
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where L is a lead-field matrix (i.e., spatial forward model), which accounts for passive conduction of the 

electromagnetic field (Mosher et al., 1999).  The diagonal matrix )( K
diagK θ=  models the contribution of relative 

density of synapses proximate and distal to the cell body on current flow induced by pyramidal cell depolarisation. The 
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contribution matrix K has positive or negative weights to allow for the average dipole orientation to be parallel or anti-

parallel with the assumed orientation.  

The key contribution of this work is to make the lead-field a function of some parameters )( L
L θ . Here, we 

assume that the spatial expression of each area is caused by one equivalent current dipole (ECD). The head model for 

the dipoles is based on four concentric spheres, each with homogeneous and isotropic conductivity. The four spheres 

approximate the brain, skull, cerebrospinal fluid (CSF) and scalp. The parameters of the model are the radii and 

conductivities for each layer. Here we use as radii 71, 72, 79 and 85 mm, with conductivities 0.33, 1.0, 0.0042 and 0.33 

S/m respectively. The potential at the sensors requires an evaluation of an infinite series which can be approximated 

using fast algorithms (Mosher et al., 1999;Zhang, 1995). The lead-field of each ECD is a function of three location and 

three orientation or moment parameters },{ momposL θθθ = . For the ECD forward model, we used a Matlab 

(Mathworks) routine that is freely available as part of the FieldTrip package (http://www2.ru.nl/fcdonders/fieldtrip/, see 

also (Robert Oostenveld, 2003)) under the GNU general public license. 

The dipole parameters are naturally visualized in brain 3D-space. In the results section below we display dipole 

locations and their orientations as arrows on a structural MRI template.  

 

II.4 Dimension reduction 

For computational reasons, it is expedient to reduce the dimensionality of the sensor data, while retaining the maximum 

amount of information.  This is assured by projecting the data onto a subspace defined by its principal eigenvectors E 
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whereε is the observation error (see next subsection). The eigenvectors are computed using principal component 

analysis or singular value decomposition (SVD). Because this projection is orthonormal, the independence of the 

projected errors is preserved and the form of the error covariance components assumed by the observation model 

remains unchanged.  In this paper we reduce the sensor data to three or four modes, which usually contain the 

interesting ERR components. 
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II.5 Observation equations 

In summary, our DCM comprises a state equation that is based on neurobiological heuristics and an observer based 

on an electromagnetic forward model.  By integrating the state equation and passing the ensuing states through the 

observer we generate a predicted measurement.  This corresponds to a generalized convolution of the inputs to generate 

an output )(θh .  This generalized convolution furnishes an observation model for the vectorized data
1
 y and the 

associated likelihood 
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Measurement noise ε  is assumed to be zero mean and independent over channels, i.e. 

VdiagvecCov ⊗= )())(( λε , where λ  is an unknown vector of channel-specific variances.  V represents the 

error temporal autocorrelation matrix, which we assume is the identity matrix.  This is tenable because we down-

sample the data to about 8 ms. Low frequency noise or drift components are modeled by X, which is a block diagonal 

matrix with a low-order discrete cosine set for each ERP and channel.  The order of this set can be determined by 

Bayesian model selection (see below). 

This model is fitted to data by tuning the free parameters θ  to minimize the discrepancy between predicted and 

observed MEG/EEG time series under model-complexity constraints (more formally, the parameters minimize the 

Variational Free Energy – see below).  These parameters specify the constants in the state and observation equations 

above.  In addition to minimizing the prediction error, the parameters are constrained by a prior specification of the 

range they are likely to lie in (Friston et al., 2003). These constraints, which take the form of a prior density )(θp , are 

combined with the likelihood )|( θyp , to form a posterior density )()|()|( θθθ pypyp ∝  according to Bayes’ 

rule.  It is this posterior or conditional density we want to estimate.  Gaussian assumptions about the errors in Eq. 6 

enable us to compute the likelihood from the prediction error.  The only outstanding quantities we require are the 

priors, which are described next. 

 

                                                 
1
 Concatenated column vectors of data from each channel 
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II.6 Prior expectations 

The connectivity architecture is constant over peri-stimulus time and defines the dynamical behavior of the DCM. 

We have to specify prior assumptions about these constant parameters to estimate their posterior distributions.  Priors 

have a dramatic impact on the landscape of the objective function to be extremized: precise prior distributions ensure 

that the objective function has a global minimum that can be attained robustly.  Under Gaussian assumptions, the prior 

distribution )( ip θ of the ith parameter is defined by its mean and variance.  The mean corresponds to the prior 

expectation.  The variance reflects the amount of prior information about the parameter.  A tight distribution (small 

variance) corresponds to precise prior knowledge.  

   The parameters of the state equation can be divided into six subsets: (i) extrinsic connection parameters, which 

specify the coupling strengths among areas and (ii) intrinsic connection parameters, which reflect our knowledge about 

canonical micro-circuitry within an area.  (iii) Conduction delays.  (iv) Synaptic parameters controlling the kinetics 

within an area and (v) input parameters, which control the subcortical delay and dispersion of event-related responses.  

(vi) spatial parameters which determine the expression of the observable network state in the sensors. Critically, all the 

constants, apart from the spatial parameters, are positive.  To ensure positivity we estimate the log of these constants 

under Gaussian priors, using the same prior distributions as in (David et al., 2005a). For the spatial 

parameters
posθ ,

momθ  and 
Kθ we use  

   

Table 1: Prior densities for lead field parameters of the ith area. 
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The expectation of the location prior is usually given in mm in some standard brain space. In this paper, we use, if 

not otherwise specified, tight spherical priors of 8=== pos

z

pos

y

pos

x vvv  and 0 for the covariances. Although not 

employed in this paper, one can define location priors that have non-spherical distributions. This can be useful, if one 
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expresses the location prior in terms of a 3D-ellipsoid
2
, not necessarily aligned with the imaging axes. Similarly, for the 

prior on the moment, one can use priors that point in one principal direction, while the other two directions have only 

small variances. In this paper, we use only spherical prior distributions.  Note that the moment parameters are 

formulated as projections onto the three axes of stereotactic space.  This parameterizes not only the orientation but also 

the magnitude of the dipole and therefore induces some redundancy with respect to the contribution parameter for each 

source.  We have chosen to leave this redundancy in the parameterization because it allows for fixed dipole orientations 

without necessarily fixing the magnitude. 

 

II.7 Estimation, inference and model comparison 

For a given DCM, say model m; parameter estimation corresponds to approximating the moments of the posterior 

distribution given by Bayes rule 
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The estimation procedure employed in DCM is described in (Friston, 2002). The posterior moments (conditional 

mean η  and covariance Σ ) are updated iteratively using Variational Bayes under a fixed-form Laplace (i.e., 

Gaussian) approximation to the conditional density ),()( Σ= ηθ Nq .   This can be regarded as an Expectation-

Maximization (EM) algorithm that employs a local linear approximation of Eq.6 about the current conditional 

expectation.  The E-step conforms to a Fisher-scoring scheme (Press et al., 1992) that performs a descent on the 

variational free energy ),,( mqF λ  with respect to the conditional moments. In the M-Step, the error variances λ   

are updated in exactly the same way.  The estimation scheme can be summarized as follows: 

 

 

   Repeat until convergence 

                                                 
2
 Note that an ellipsoid can also have one or two axes lengths close to zero to define a one or two dimension manifold 

that contains the source. 
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Note that the free energy is simply a function of the log-likelihood and the log-prior for a particular DCM and 

)(θq . )(θq  is the approximation to the posterior density ),,|( myp λθ  we require.  The E-step updates the 

moments of )(θq  (these are the variational parameters η  and Σ ) by minimizing the variational free energy.  The free 

energy is the divergence between the real and approximate conditional density minus the log-likelihood.  This means 

that the conditional moments or variational parameters maximize the log-likelihood ),( mL λ  while minimizing the 

discrepancy between the true and approximate conditional density.  Because the divergence does not depend on the 

covariance parameters, minimizing the free energy in the M-step is equivalent to finding the maximum likelihood 

estimates of the covariance parameters.  This scheme is identical to that employed by DCM for fMRI, the details of 

which can be found in (Friston et al., 2002;Friston et al., 2003). 

Bayesian inference proceeds using the conditional or posterior density estimated by the EM algorithm.  Usually this 

involves specifying a parameter or compound of parameters as a contrast ηTc .  Inferences about this contrast are 

made using its conditional covariance cc
T Σ .  For example, one can compute the probability that any contrast is 

greater than zero or some meaningful threshold, given the data. This inference is conditioned on the particular model 

specified. In other words, given the data and model, inference is based on the probability that a particular contrast is 

bigger than a specified threshold.  In some situations one may want to compare different models.  This entails Bayesian 

model comparison. 

 

Different models are compared using their evidence (Penny et al., 2004). The model evidence is 

 

    θθθ dmpmypmyp ∫= )(),()(      9 
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Note that the model evidence is simply the normalization term in Eq. 7.  The evidence can be decomposed into two 

components: an accuracy term, which quantifies the data fit, and a complexity term, which penalizes models with a 

large number of parameters.  Therefore, the evidence embodies the two conflicting requirements of a good model, that 

it explains the data and is as simple as possible.  In the following, we approximate the model evidence for model m, 

under the Laplace approximation, by 

 

),(ln)(ln mypmyp λ≈  10 

This is simply the maximum value of the objective function attained by EM (see the M-Step in Eq. 8).  The most 

likely model is the one with the largest log-evidence.  This enables Bayesian model selection.  Model comparison rests 

on the likelihood ratio of the evidence for two models.  This ratio is the Bayes factor ijB .  For models i and j 

 

)(ln)(lnln jmypimypBij =−==  11 

Conventionally, strong evidence in favor of one model requires the difference in log-evidence to be three or more.   

 

II.8 Summary 

A DCM is specified through its priors.  These are used to specify (i) how regions are interconnected, (ii) which 

regions receive subcortical inputs, (iii) which cortico-cortical connections change with the levels of experimental 

factors and (iv) how the observable states express themselves spatially in the sensors. Usually, the most interesting 

questions pertain to changes in cortico-cortical coupling that explain differences in ERPs.  Posterior distributed are 

estimated using an Expectation-Maximization algorithm that operates on the conditional distributions. After model 

estimation, we use the model evidence to compare alternative models. Typically, alternative models would be chosen 

to have different connectivity, different combinations of sources or different dipole location priors. Inference about a 

specific model is made using the posterior distribution of contrasts. We will illustrate the operational details in the 

following section. 

 



 14 

III RESULTS 

In this section, we illustrate the use of DCM using two real ERP data sets. Furthermore, we use two synthetic ERP 

data-sets to show that DCM with a parameterized lead-field can furnish more accurate and robust coupling estimates 

and models with greater evidence.  We use the first real data-set to address the face validity of the neuronal (i.e. 

coupling) parameter estimates and the second to look at the spatial parameters. 

 

The first ERP was acquired using an oddball paradigm (David et al., 2005a).  The data show a mismatch negativity 

(MMN) and P300 component in response to rare stimuli, relative to frequent (Debener et al., 2002;Linden et al., 1999).  

In this example, we attribute changes in coupling to plasticity underlying the learning of frequent or standard stimuli. 

 

The second data are somatosensory evoked potentials (SEPs) following uni-lateral median nerve stimulation. For 

these data, we show that one can model the first 150 ms in peri-stimulus time with a 3-areas network including 

contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). We use this 

model to cross-validate the estimated ECD orientations with the existing literature on SEPs. 

 

An advantage of generative models is that it is easy to generate synthetic data.  This can be achieved by integrating 

the system using parameters estimated from real data (the SEP data).  Here we use the posterior means of the 

parameters and add noise generated using the estimated error covariance. This procedure provides realistic-looking 

synthetic data. Note that because we use subspace projection (sec. II.4), the synthetic data also exists in this low-

dimensional space
3
. 

 

In the first set of simulations, we illustrate that a DCM with (uninformative) zero-mean priors on dipole orientations 

can identify the true dipole moments with high precision. In the second simulation, we repeat the simulation, but 

specify priors whose mean deviate from the true parameters. We find that even with these ill-informed priors, DCM 

can recover the true spatial configuration of modeled sources. In contrast, a model that assumes the (inaccurate) lead-

field, leads to sub-optimal results. These findings indicate that a lead-field does not have to be fully specified before 

fitting the full spatiotemporal data, but can be estimated simultaneously with the neuronal and connectivity parameters. 

 

                                                 
3
 For visualization the data can be back-projected to the ERP measurement space. 

 



 15 

III.2 ERP data 

 

III.2.1 Oddball data - Mismatch negativity 

This single-subject data-set was acquired using 128 EEG electrodes and 2048 Hz sampling.  Auditory stimuli, 1000 

or 2000 Hz tones with 5 ms rise and fall times and 80 ms duration, were presented binaurally for 15 minutes, every 2 

seconds in a pseudo-random sequence.  2000-Hz tones (oddballs) occurred 20% of the time (120 trials) and 1000-Hz 

tones (standards) 80% of the time (480 trials).  The subject was instructed to keep a mental record of the number of 

2000-Hz tones. Before averaging single trials between -100 to 500 ms in peri-stimulus time, data were referenced to 

mean activity, down-sampled to 125 Hz and band-pass filtered between 0.5 and 25 Hz. Trials showing ocular artefacts 

(~30%) and 11 bad channels were removed from further analysis. 

 

The mismatch negativity was observed around 140 ms at frontal electrodes. Other late components, also 

characteristic of rare events, were seen in most frontal electrodes, centred on 250 ms to 350 ms post-stimulus.  As 

reported classically, early components (i.e. the N100) were almost identical for rare and frequent stimuli.  

 

We modeled the data between 8 and 496 ms in peri-stimulus time. We followed (David et al., 2005a) and constructed 

the following DCM (see Figure 1, left): an extrinsic (thalamic) input entered bilateral primary auditory cortex (A1) 

which was connected to ipsilateral orbitofrontal cortex (OF). In the right hemisphere, an indirect forward pathway was 

specified from A1 to OF through the superior temporal gyrus (STG). All these connections were reciprocal.  At the 

highest level in the hierarchy, OF and left posterior cingulate cortex (PC) was laterally and reciprocally connected. 

 

We found that this model is potentially over-parameterized when using all six parameters per dipole (see Discussion). 

To add more constraints and reduce the number of parameters, we assigned all dipole locations to their anatomically 

designated area (Figure 1) with a zero-variance prior. Similarly, we assumed the orientations of the primary auditory 

cortices to be known. These were derived with an auxiliary analysis using just two ECDs (bilateral auditory cortices) 

modeling the first 140 milliseconds of the data. The assumption underlying this procedure is that the temporal 

component around 100 ms (N100) is nearly exclusively generated by primary auditory cortex. This approach is often 

used in classical dipole fitting (Valeriani et al., 2001). Alternatively, we could have specified priors based on ECD fits 

of the N100 component reported in the literature. The prior distribution of the orientations of the four remaining 

dipoles (12 parameters) was non-informative with zero mean and variance of 2mm. 
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After projecting the data to its first three spatial eigenvectors, we created three DCMs that differed in terms of which 

connections could show putative learning-related changes.  The three models allowed changes in forward F, backward 

B and forward and backward FB. The log-evidences for a Bayesian model comparison (Penny et al. 2004) were -

852.67 (F), -898.96 (B), -846.10 (FB), i.e., there is strong evidence for the FB model. In Figure 2 (left), we show the 

conditional estimates and posterior confidences for this model. They reveal a profound increase, for rare events, in 

several connections.  We can be over 95% confident that these connections increased. In Figure 1 (right), we show 

the conditional means of the dipole locations and orientations overlaid on an MRI template.   The numbers alongside 

each connection are the estimated coupling-gain during oddball processing. 

 

In summary, this analysis suggests that a sufficient explanation for mismatch responses is an increase in 

connectivity, in particular to and from primary auditory cortex. This could represent a failure to suppress prediction 

error induced by unexpected or oddball stimuli, relative to predictable or learned stimuli, which can be predicted more 

efficiently. 

 

III.2.1 Median nerve stimulation - Sensory evoked potentials 

We now present a DCM of data generated by a neuronal network that has been well characterized in terms of its 

spatial deployment: The sensory evoked potential in response to a median nerve stimulus. We model only the first 150 

ms of the response because we assume that, at early peri-stimulus times, the response can be modeled by fewer areas 

than in later peri-stimulus times, when higher areas may come into play.  We model just the response to a median nerve 

stimulus. In the present context this is interesting for cross-validation purposes, because there is substantial literature on 

ECD modeling of SEPs using either EEG or MEG, (Lin and Forss, 2002;Mauguiere et al., 1997;Valeriani et al., 2001). 

The data were pre-processed using the current version of Statistical Parametric Mapping (SPM5b). Before 

averaging, the data were epoched between -100 to 150 milliseconds, down sampled to 200 Hz, filtered between 0.5 and 

35 Hz and thresholded at 100 µV (removing ca. 30% of all single trials). Five bad channels were removed from 

analysis. The ERP is shown in Figure 3 (middle). With DCM, we modeled peri-stimulus time 5 to 150 ms of one 

condition, right median nerve stimulation. 
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We assumed three areas generated the SEP: Contralateral SI (cSI), and bilateral SII (cSII and iSII). Exogenous 

input is received by cSI after passing through subcortical structures. We model forward and backward connectivity 

between contralateral SI and SII with lateral, reciprocal connections between the SII cortices. The structure of this 

neuronal network or graph is shown in Figure 5 (right). 

 

For analysis, we projected the data to a three-dimensional subspace spanned by the principal eigenvariates (see 

Figure 4 for the corresponding eigen- or spatial modes). The components capture 95.04% of the data’s variance. For 

all three dipoles, we used strong priors on location (prior variance of 8 mm
2
) based on findings of Mauguiere et al. 

(1997a). In MNI space, we specified the following coordinates: [0, 50, 45] for cSI, [20 40 10] for cSII, and [20, -40, 

10] for iSII. 

 

In Figure 5, we show the near-perfect fit to the projected data (left), and the reconstructed source activities (right). 

The early response around 40 ms is modeled nearly exclusively by contralateral SI. The activity from cSI feeds forward 

to cSII, which contributes to the component around 80 ms, with smaller contributions from the other two areas. The 

component peaking at 115 ms is generated mainly by both SII areas. The connectivity estimates reveal a strong 

interaction between areas: The forward connection strength from cSI to cSII is 27.68 (with a conditional confidence of 

100% in the coupling being greater than zero). The backward connection from cSII to cSI is 2.67 (100%). The lateral 

connection from cSII to iSII is 3.57 (99%). The reverse connection from iSII to cSII is apparently not engaged, with a 

conditional expectation of  0.95 (53%). 

 

In terms of the spatial configuration of these sources; the conditional mean of two delays on extrinsic connections 

deviated considerably from their prior mean of 16 ms. The intra-hemispheric connection from cSI to cSII had a 

propagation delay (conditional mean) of 6.53 ms, and the lateral, inter-hemispheric connection from cSII to iSII of 

50.44 ms. The precisions of these estimates were high as indicated by the conditional variances of 0.008 (cSI -> cSII) 

and 0.029 (cSII -> iSII). These delays lie in a physiologically plausible range and point to the possibility of estimating 

propagation or conduction delays from ERP/ERF data (see Discussion). 

 

The conditional means of the dipole orientations are shown in Figure 5. It is pleasing to note that all three dipole 

orientations are very close to the ones reported in (Mauguiere et al., 1997), see their Figure 2.  This result speaks to the 

face validity of the current DCM approach. 
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Note that, in our data, there is little evidence of an N20 component, which is usually seen in median nerve 

stimulation experiments. The reason is that the N20 is a high-frequency response component and our specific pre-

processing removes very high-frequency components. We used this processing for reasons of computational 

expediency, because we were interested mainly in low-frequency component. However, one can see some evidence of 

the N20 (Figure 3), but it is not fitted well. The likely reason is that the subspace used to reduce the dimensionality of 

the data did not span these early, high frequency spaces. We will assess models of the early-latency components like 

the N20 in future work looking at the effects of pre-processing and dimension reduction. 

 

 

III.1 Simulations 

III.2.1 True lead field  

In this simulation, we added noise to the systems response generated using the conditional means of the above SEP 

DCM. We specified two different models. The first used the true lead-field as known and fixed i.e. all dipole parameter 

distributions have zero prior variance with expectations equal to the true parameters (see Figure 5 for true locations 

and orientations). The second model has, for each dipole, informed, tight priors on the location and uninformed, broad 

priors on the moment parameters. For the locations, we used the true parameters as prior mean with prior variances of 

8. For the orientation priors, we used means of zero with variances of 8. For both models, the prior for the contribution 

matrix K was set to its prior expectation of the identity matrix.  The purpose of this simulation pair was to show that 

one can still obtain precise conditional estimate of neuronal parameters without knowing the spatial orientation of the 

sources. 

 

We modeled the synthetic data in its space of the first three modes of the original data. As expected, the ‘known 

lead-field’ model fits the data extremely well (plot not shown). All parameter estimates, including the coupling and 

intra-area parameters, are close to the true values. This means that all parameters can be recovered from the data when 

the spatial forward model is accurate and known.  The log-evidence for this model was -273.96. 

 

For the second model with unspecified orientations, the connectivity estimates are close to their true values. The 

estimated lead-field is also very close to the true lead-field. The log-evidence for this model was -292.53.  The lower 

model evidence reflects the use of more parameters. The dipole orientation estimates are most interesting, because we 
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used a broad zero mean prior on these.  The error (converted to angles around axes in degrees) ranged between 0.1 to 

13.8 degrees (see Table 2).  These deviations are small and do not change the overall shape of the lead-field. In 

summary, one can estimate not only coupling parameters from the data, but also, simultaneously, important lead-field 

parameters like the moment of equivalent current dipoles. 

 

  cSI cSII iSII 

Angle x 4.4 3.1 10.8 

Angle y 13.8 1.0 5.2 

Angle z 4.1 0.1 3.3 

Table 2: First simulation: deviations of dipole orientations of contralateral SI/SII and ipsilateral SII from true 

orientations (angles around axes in degrees). 

 

 

III.2.2 False lead field 

In these simulations, we generate synthetic data as above. However, this time, the prior expectation of the 

orientation parameters deviates from the true parameters (a relative rotation of 60 degrees of all dipoles around the x-

axis). The first model uses zero variance priors as before, and a prior mean that now embodies false assumptions about 

the lead-field. The second model has the same priors except that we acknowledge prior uncertainty about the 

orientations by using prior variances of 8.  The purpose of this pair of simulations was to show that failing to properly 

encode prior uncertainty can lead to a low model evidence and low-confidence estimates of coupling parameters that 

are biased by conditional dependencies among the parameters. 

  

The first model, as expected, cannot retrieve the true coupling parameters from the data, because the spatial model 

is not the true lead field. For example, the conditional mean of the forward connectivity from cSI->cSII is 8.99 (true: 

24.34) and of backward cSII->cSI is 1.20 (true: 3.57). The log-evidence for this model is -573.31. This is much lower 

than for the final model, which accurately estimates the connectivity parameters and the lead-field parameters (see 

Table 3), with a log-evidence of -249.83. 
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  cSI cSII iSII 

Angle x 1.3 1.8 0.9 

Angle y 3.3 9.7 6.6 

Angle z 3.5 2.0 3.2 

Table 3: Second simulation: deviations of dipole orientations of contralateral SI/SII and ipsilateral SII from true 

orientations (angles around axes in degrees). 

 

 IV DISCUSSION 

In this paper, we have presented dynamical causal modeling (DCM) for event-related potentials and fields using 

equivalent current dipole models. We have shown that this Bayesian approach can be used to estimate parameters for a 

generative ERP model. Importantly, one can estimate, simultaneously, source activity, extrinsic connectivity, its 

modulation by context, and spatial lead-field parameters from the data. An alternative view of DCM for ERP/ERF is to 

consider it a source reconstruction algorithm with biologically grounded temporal constraints. We have used simulated 

and real ERP data to show the usefulness and validity of the approach. Although we have not applied DCM to ERF 

data in the present paper, we note that the model can be adapted to ERFs by adjusting the electromagnetic component 

of the forward model. 

 

DCM embodies several advantages over existing approaches. To start with, the generative model describes the full 

spatiotemporal data after projection to a low-dimensional subspace. Importantly, a single parameter estimation 

encompasses all the model parameters. This is in contrast to classical ECD fitting approaches, where dipoles are 

sequentially fitted to the data interactively using user-selected periods and/or channels of the data (Valeriani et al., 

2001). Classical approaches must proceed in this way, because there is usually too much spatial and temporal 

dependency among the sources to identify the parameters precisely. With our approach, we place temporal constraints 

on the model that are consistent with the way signals are generated biophysically. As we have shown above, these 

allow the simultaneous fitting of multiple dipoles to the data.  

 

Furthermore, we can specify priors for all parameters. This informs the model about our belief concerning the 

parameters. With respect to lead-field parameters, we used zero mean priors for the dipole moments. These are 
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uninformative priors, i.e., we use the data to estimate orientations. For location parameters we used priors with a high 

precision, i.e., we have a strong belief about where areas should be located. We return to this issue below. 

 

One output of the DCM is the conditional density of the parameters. This can be used to express certainty about the 

parameter estimates. For example, if we find that the posterior variance of a dipole’s moment is much smaller than its 

prior variance, we can be certain about its orientation. As illustrated above we use Bayesian confidence intervals to 

express this certainty. The computation of these confidence intervals can be seen as a by-product of the Expectation-

Maximization algorithm, which uses the Jacobian of the model parameters (i.e. how changes in the parameters are 

expressed in measurement space). Other methods that do not use this first-order approximation typically use Monte-

Carlo and parametric bootstrap methods for the computation of dipole confidence intervals (Braun et al., 1997;Fuchs et 

al., 2004). 

 

As a Bayesian technique, DCM computes the model evidence. As we have shown above, we can use model 

evidences of competing models to assess which is the most likely given some data. Model comparisons are important, 

because they can be used to answer questions about how the data were generated. For example, in the oddball data, we 

found strong evidence for a network with extensive stimulus-dependent forward and backward connectivity, as 

opposed to a network with changes in feedforward connections only. 

 

We used the equivalent current dipole (ECD) model, because it is analytic, fast to compute and a quasi-standard 

when source-reconstructing ERP or ERF data. However, the ECD model is just one candidate for spatial forward 

models. Given some parameterisation of the lead-field, one can use any spatial model in the observation equation (Eq. 

4). A further example would be some linear distributed approach (Baillet and Garnero, 1997;Phillips et al., 2002), 

where a ‘patch’ of dipoles, confined to the cortical surface, would act as the spatial expression of one area. Possible 

parameters include the extent of the patch and location on the surface. With DCM, one could use different forward 

models for different areas in a single model (hybrid models). For example, one could employ the ECD model for early 

responses while using a distributed forward model for higher areas. 

 

An advantage of the ECD model is that there is no need for structural information from magnetic resonance 

imaging (MRI). In practice, this means that a full DCM analysis can proceed automatically in less than an hour. In 

contrast, linear distributed methods often rely on surface tessellation of the individual’s MRI, which can be time 

consuming, even if automated. The drawback of the ECD model is a potentially less accurate localization and a failure 

to model distributed, non-dipole like responses. However, note that dipole models for MEG are seen, with respect to 



 22 

localization error, as an adequate alternative to realistic boundary element methods (Darvas et al., 2004;Leahy et al., 

1998). Furthermore, with DCM, exact localization is not necessarily the primary goal. Our experience suggests that 

precise Bayesian inversion only requires each ECD is located roughly in some designated anatomical region. Also, as 

found by other authors, dipole parameters can identified precisely if neighboring areas have different orientations, e.g., 

(Forss et al., 1996).  

 

An important observation is that, after projection to a few spatial modes, the orientation of the dipoles matters more 

than their location for modeling the data. By this we mean that the conditional precision for orientation is much higher 

than for the location parameters. Intuitively, the orientation determines most of the topology of a dipole’s spatial 

expression in sensor-space. Therefore, with the first few modes of the data, orientation can be estimated with high 

precision, whereas we cannot determine location from the reduced data. However, this is not an issue with typical 

DCM studies, because the location of each dipole is implicit in the hypothesis (i.e., graphical model) the DCM 

represents. Locations can be derived from the literature (EEG/MEG, fMRI, PET). Note that a critical advantage of the 

present approach is that one can use model comparison to select the best model among different, plausible networks. In 

the present paper, we used tight priors on location. On basis of Bayesian model comparison using models with and 

without tight location priors, we recommend fixing dipole locations, i.e., to treat them as known with zero prior 

variance.  For the orientations, we suggest uninformative priors (see previous section). In cases where one wishes to 

use further spatial constraints one can use informative priors on orientation. Such priors could be derived from the 

literature, in particular for early- and medium-latency responses (< 200 ms), for which the inter-subject variance of 

dipole parameters seems to be low, e.g. (Forss et al., 1996), see their Fig. 4.  In summary, our intuition based on 

Bayesian model selection and inversion is that the data contains relatively little information about the location of 

sources but are very sensitive to their orientation.  This means that questions that are framed in terms of sources with 

known [roughly] location are more likely to be answered with conditional certainty. 

 

The number of SVD components chosen for dimension-reduction is user-dependent. One reason to perform a 

subspace projection is to make the DCM approach computationally efficient or rather, computationally feasible with 

high-density EEG or MEG measurements (128 to 300 channels). However, another reason to remove modes is that 

they cannot be modeled. For example, modes can contain artefacts, or activity from non-modeled higher areas. With 

the data described here, we found that our model is usually good at explaining up to the first 3-4 SVD components, 

especially for medium-latency peri-stimulus times. Typically, these components represent around 80-95% of the data’s 

variance and are a sensible representation of the evoked response. One way of explaining more of the data is to add 

more areas. For instance, with the SEP data we could have added areas located in the parietal cortex or frontal areas 
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(Mauguiere et al., 1997) to make a more accommodating model, especially at later peri-stimulus times. However, such 

an approach does not necessarily lead to higher model evidence because of the increased model complexity. Another 

way of potentially improving the model is to use generative models of typical artefacts; e.g., muscular or ocular 

artefacts. However, such models are difficult to formulate because of their inherent physical complexity and variable 

expression over subjects and acquisition settings. In this situation, a good approach is to rely on a generic blind 

deconvolution algorithm and separate the data into components of interest and no interest. In this paper we have used 

singular value decomposition. One can also consider independent component analysis (ICA) which provides a more 

constrained decomposition of the data (Makeig et al., 1997;Tang et al., 2005). 

 

We have shown it is possible to use DCM to estimate propagation delays between cortical areas. For these delays, 

we chose a prior mean of 16 ms. For the SEP data, the delay between cSI->cSII was estimated as 6 ms, and the delay 

from cSII->iSII as 50 ms. These estimates seem plausible given the trans-callosal connection between the SII cortices. 

Delay estimation is used for routinely diagnostic purposes. For example, the latency of the N20 component of the SEP 

measured on the scalp is used to make clinical inferences about the conduction delay from the periphery to the 

somatosensory cortex. At the sensor level, delay estimation of this sort is difficult at later peri-stimulus times, for 

which the responses of multiple areas overlap in time and space. DCM can provide estimates of inter-area delays, 

because it is informed about this spatiotemporal dispersion. 

 

 

CONCLUSION 

DCM is useful for estimating connectivity in a hierarchical network based on evoked responses measured with EEG 

and MEG data. The parameterization of the lead-field using equivalent current dipoles results in an accurate and robust 

estimation of both connectivity and dipole parameters. One can view DCM for evoked responses as a source 

reconstruction approach with temporal, physiologically informed constraints.  

 

ACKNOWLEDGMENTS 

  

 This work was supported by the Wellcome Trust. We thank Akaysha Tang and Felix Blankenburg for valuable 

discussions and Robert Oostenveld for providing us with his Matlab implementation of ECD forward models.  



 24 

 

 

 

FIGURE LEGENDS 

Figure 1: DCM specification for the auditory oddball paradigm: Left: Graph depicting the sources and connections of 

the DCM: A1: primary auditory cortex, OF: orbitofrontal cortex, PC: posterior cingulate cortex, STG: superior 

temporal gyrus.  A bilateral extrinsic input acts on primary auditory cortex which project to orbitofrontal regions.  In 

the right hemisphere, an indirect pathway was specified, via a relay in the superior temporal gyrus.  At the highest level 

in the hierarchy, orbitofrontal and left posterior cingulate cortices were assumed to be laterally and reciprocally 

connected. Right: Dipole locations and orientations (conditional means). 

Figure 2: Oddball data and corresponding source activity. Left: Temporal expression of the first three modes at the 

sensor level. These capture 82% of the variance of the data. Right: Reconstructed responses for each source and 

changes in coupling. We show the gain in coupling when rare relative to frequent events are presented. The percent 

conditional confidence that this ratio is greater than zero is shown in brackets. Only changes with 95% confidence or 

more are reported. 

Figure 3: Plot of SEP data and DCM fit in sensor space for representative channels. Middle: Plots of the ERP channel 

data from -100 to 400 ms in peri-stimulus time. Five bad channels are excluded. Left and Right: Data and DCM fit for 

six channels, between 5 to 150 ms in peri-stimulus time. 

Figure 4: First three spatial modes of SEP following median nerve stimulation. The ‘holes’ are caused by missing data 

due to bad channels. 

Figure 5: Data and DCM for SEP data. Left: The time-courses of the first three modes of the data (see Fig. 4 for their 

spatial expression) and their fit using DCM. Right: DCM using three areas. The input (unilateral left median nerve 

stimulation) feeds into contralateral SI (cSI). cSI projects to cSII and receive backward connections from cSII. cSII 

projects laterally, reciprocally to ipsilateral SII.  The numbers correspond to connection strength (Hz) and the 

(confidence that these parameters are greater than zero). 
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