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Abstract 

 

Neuronally plausible, generative or forward models are essential for understanding how event-related fields 

(ERFs) and potentials (ERPs) are generated.  In this paper we present a new approach to modeling event-

related responses measured with EEG or MEG.  This approach uses a biologically informed model to make 

inferences about the underlying neuronal networks generating responses.  The approach can be regarded 

as a neurobiologically constrained source reconstruction scheme, in which the parameters of the 

reconstruction have an explicit neuronal interpretation.  Specifically, these parameters encode, among other 

things, the coupling among sources and how that coupling depends upon stimulus attributes or experimental 

context.  The basic idea is to supplement conventional electromagnetic forward models, of how sources are 

expressed in measurement space, with a model of how source activity is generated by neuronal dynamics.  

A single inversion of this extended forward model enables inference about both the spatial deployment of 

sources and the underlying neuronal architecture generating them.  Critically, this inference covers long-

range connections among well-defined neuronal subpopulations. 

   In a previous paper, we simulated ERPs using a hierarchical neural-mass model that embodied bottom-

up, top-down and lateral connections among remote regions.  In this paper, we describe a Bayesian 

procedure to estimate the parameters of this model using empirical data.  We demonstrate this procedure by 

characterizing the role of changes in cortico-cortical coupling, in the genesis of ERPs.  In the first 

experiment, ERPs recorded during the perception of faces and houses were modeled as distinct cortical 

sources in the ventral visual pathway.  Category-selectivity, as indexed by the face-selective N170, could be 

explained by category-specific differences in forward connections from sensory to higher areas in the ventral 

stream.  We were able to quantify and make inferences about these effects using conditional estimates of 

connectivity.  This allowed us to identify where, in the processing stream, category-selectivity emerged. 

   In the second experiment we used an auditory oddball paradigm to show the mismatch negativity can be 

explained by changes in connectivity.  Specifically, using Bayesian model selection, we assessed changes 

in backward connections, above and beyond changes in forward connections.  In accord with theoretical 

predictions, there was strong evidence for learning-related changes in both forward and backward coupling.  

These examples show that category- or context-specific coupling among cortical regions can be assessed 

explicitly, within a mechanistic, biologically motivated inference framework. 

 

Keywords: Electroencephalography, magnetoencephalography, neural networks, nonlinear dynamics, 

causal modeling, and Bayesian inference. 



DCM for ERPs.  David et al 

 3

 

Introduction 

 

Event-related fields (ERFs) and potentials (ERPs) have been used for decades as putative magneto- and 

electrophysiological correlates of perceptual and cognitive operations.  However, the exact neurobiological 

mechanisms underlying their generation are largely unknown.  Previous studies have shown that ERP-like 

responses can be reproduced by brief perturbations of model cortical networks (David et al., 2005; Jansen 

and Rit, 1995; Rennie et al., 2002). The goal of this paper was to demonstrate that biologically plausible 

dynamic causal models (DCMs) can explain empirical ERP phenomena.  In particular, we show that 

changes in connectivity, among distinct cortical sources, are sufficient to explain stimulus- or set-specific 

ERP differences.  Adopting explicit neuronal models, as an explanation of observed data, may afford a 

better understanding of the processes underlying event-related responses in magnetoencephalography 

(MEG) and electroencephalography (EEG). 

 

Functional vs. effective connectivity 

The aim of dynamic causal modeling (Friston et al., 2003) is to make inferences about the coupling among 

brain regions or sources and how that coupling is influenced by experimental factors. DCM uses the notion 

of effective connectivity, defined as the influence one neuronal system exerts over another.  DCM 

represents a fundamental departure from existing approaches to connectivity because it employs an explicit 

generative model of measured brain responses that embraces their nonlinear causal architecture.  The 

alternative to causal modeling is to simply establish statistical dependencies between activity in one brain 

region and another.  This is referred to as functional connectivity.  Functional connectivity is useful because 

it rests on an operational definition and eschews any arguments about how dependencies are caused.  Most 

approaches in the EEG and MEG literature address functional connectivity, with a focus on dependencies 

that are expressed at a particular frequency of oscillations (i.e. coherence).  See Schnitzler and Gross 

(2005) for a nice review.  Recent advances have looked at nonlinear or generalized synchronization in the 

context of chaotic oscillators  (e.g. Rosenblum et al 2002) and stimulus-locked responses of coupled 

oscillators (see Tass 2004).  These characterizations often refer to phase-synchronization as a useful 

measure of nonlinear dependency.  Another exciting development is the reformulation of coherence in terms 

of autoregressive models.  A compelling example is reported in Brovelli et al (2004) who were able show 

that "synchronized beta oscillations bind multiple sensorimotor areas into a large-scale network during motor 

maintenance behavior and carry Granger causal influences from primary somatosensory and inferior 

posterior parietal cortices to motor cortex."  Similar developments have been seen in functional 

neuroimaging with fMRI (e.g. Harrison et al., 2003; Roebroeck  et al., 2005). 

 

These approaches generally entail a two-stage procedure.  First an electromagnetic forward model is 

inverted to estimate the activity of sources in the brain.  Then, a post-hoc analysis is used to establish 

statistical dependencies (i.e. functional connectivity) using coherence, phase-synchronization, Granger 

influences or related analyses such as (linear} directed transfer functions and (nonlinear) generalized 

synchrony.  DCM takes a very different approach and uses a forward model that explicitly includes long-

range connections among neuronal sub-populations underlying measured sources.  A single Bayesian 

inversion allows one to infer on parameters of the model (i.e. effective connectivity) that mediate functional 
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connectivity.  This is like performing a biological informed source reconstruction with the added constraint 

that the activity in one source has to be caused by activity in other, in a biologically plausible fashion.  This 

approach is much closer in sprit to the work of Robinson et al (2004) who show that "model-based 

electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG 

generation in ways that are complementary to and consistent with standard physiologic techniques."  DCM 

also speaks to the interest in neuronal modeling of ERPs in specific systems.  See for example Melcher and 

Kiang  (1996), who evaluate a detailed cellular model of brainstem auditory evoked potentials (BAEP) and 

conclude "it should now be possible to relate activity in specific cell populations to psychophysical 

performance since the BAEP can be recorded in behaving humans and animals."  See also Dau et al 

(2003).  Although the models presented in this paper are more generic than those invoked to explain the 

BAEP, they share the same ambition of understanding the mechanisms of response generation and move 

away from phenomenological or descriptive quantitative EEG measures. 

 

Dynamic causal modeling 

The central idea behind DCM is to treat the brain as a deterministic nonlinear dynamical system that is 

subject to inputs, and produces outputs.  Effective connectivity is parameterized in terms of coupling among 

unobserved brain states, i.e. neuronal activity in different regions.  Coupling is estimated by perturbing the 

system and measuring the response.  This is in contradistinction to established methods for estimating 

effective connectivity from neurophysiological time series, which include structural equation modeling and 

models based on multivariate autoregressive processes (Büchel and Friston, 1997; Harrison et al., 2003; 

McIntosh and Gonzalez-Lima, 1994). In these models, there is no designed perturbation and the inputs are 

treated as unknown and stochastic.  Although the principal aim of DCM is to explain responses in terms of 

context-dependent coupling, it can also be viewed as a biologically informed inverse solution to the source 

reconstruction problem.  This is because estimating the parameters of a DCM rests on estimating the hidden 

states of the modeled system.  In ERP studies, these states correspond to the activity of the sources that 

comprise the model.  In addition to biophysical and coupling parameters the DCMs parameters cover the 

spatial expression of sources at the sensor level. This means that inverting the DCM entails a simultaneous 

reconstruction of the source configuration and their dynamics. 

 

Because DCMs are not restricted to linear or instantaneous systems they generally depend on a large 

number of free parameters.  However, because it is biologically grounded, parameter estimation is 

constrained.  A natural way to embody these constraints is within a Bayesian framework.  Consequently, 

DCMs are estimated using Bayesian inversion and inferences about particular connections are made using 

their posterior or conditional density.  DCM has been previously validated with functional magnetic 

resonance imaging (fMRI) time series (Friston et al., 2003; Riera et al., 2004).  fMRI responses depend on 

hemodynamic processes that effectively low-pass filter neuronal dynamics.  However, with ERPs this is not 

the case and there is sufficient information, in the temporal structure of evoked responses, to enable precise 

conditional identification of quite complicated DCMs.  In this study, we use a model described recently 

(David et al., 2005) that embeds cortical sources, with several source-specific neuronal subpopulations, into 

hierarchical cortico-cortical networks. 
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This paper is structured as follows.  In the theory section we review the neural mass model used to generate 

MEG/EEG-like evoked responses.  This section summarizes David et al. (2005) in which more details about 

the generative model and associated dynamics can be found.  The next section provides a brief review of 

Bayesian estimation, conditional inference and model comparison that are illustrated in the subsequent 

section.  An empirical section then demonstrates the use of DCM for ERPs by looking at changes in 

connectivity that were induced, either by category-selective activation of different pathways in the visual 

system, or by sensory learning in an auditory oddball paradigm.  This section concludes with simulations 

that demonstrate the face validity of the particular DCMs employed.  Details about how the empirical data 

were acquired and processed will be found in an appendix. 

 

 

THEORY 

 

Intuitively, the DCM scheme regards an experiment as a designed perturbation of neuronal dynamics that 

are promulgated and distributed throughout a system of coupled anatomical nodes or sources to produce 

region-specific responses.  This system is modeled using a dynamic input–state–output system with multiple 

inputs and outputs.  Responses are evoked by deterministic inputs that correspond to experimental 

manipulations (i.e. presentation of stimuli).  Experimental factors (i.e. stimulus attributes or context) can also 

change the parameters or causal architecture of the system producing these responses.  The state variables 

cover both the neuronal activities and other neurophysiological or biophysical variables needed to form the 

outputs.  In our case, outputs are those components of neuronal responses that can be detected by 

MEG/EEG sensors. 

 

In neuroimaging, DCM starts with a reasonably realistic neuronal model of interacting cortical regions.  This 

model is then supplemented with a forward model of how neuronal activity is transformed into measured 

responses; here MEG/EEG scalp averaged responses.  This enables the parameters of the neuronal model 

(i.e., effective connectivity) to be estimated from observed data.  For MEG/EEG data, the supplementary 

model is a forward model of electromagnetic measurements that accounts for volume conduction effects 

(Mosher et al., 1999).  We first review the neuronal component of the forward model and then turn to the 

modality-specific measurement model. 

 

A neural mass model 

 

The majority of neural mass models of MEG/EEG dynamics have been designed to generate spontaneous 

rhythms (David and Friston, 2003; Jansen and Rit, 1995; Lopes da Silva et al., 1974; Robinson et al., 2001; 

Stam et al., 1999) and epileptic activity (Wendling et al., 2002).  These models use a small number of state 

variables to represent the expected state of large neuronal populations, i.e. the neural mass.  To date, 

event-related responses of neural mass models have received less attention (David et al., 2005; Jansen and 

Rit, 1995; Rennie et al., 2002).  Only recent models have embedded basic anatomical principles that 

underlie extrinsic connections among neuronal populations: 
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The cortex has a hierarchical organization (Crick and Koch, 1998; Felleman and Van Essen, 1991), 

comprising forward, backward and lateral processes that can be understood from an anatomical and 

cognitive perspective (Engel et al., 2001). The direction of an anatomical projection is usually inferred from 

the laminar pattern of its origin and termination.   

 

We have developed a hierarchical cortical model to study the genesis of ERFs/ERPs (David et al., 2005). 

This model is used here as a DCM.  The neuronal part of the DCM comprises a network or graph of 

sources.  In brief, each source is modeled with three neuronal subpopulations.  These subpopulations are 

interconnected with intrinsic connections within each source.  The sources are interconnected by extrinsic 

connections among specific subpopulations. The specific source and target subpopulations define the 

connection as forward, backward or lateral.  The model is now reviewed in terms of the differential equations 

that embody its causal architecture. 

 

Neuronal state equations 

The model (David et al., 2005) embodies directed extrinsic connections among a number of sources, each 

based on the Jansen model (Jansen and Rit, 1995), using the connectivity rules described in (Felleman and 

Van Essen, 1991). These rules, which rest on a tri-partitioning of the cortical sheet into supra-, infra-granular 

layers and granular layer 4, have been derived from experimental studies of monkey visual cortex.  We 

assume these rules generalize to other cortical regions (but see Smith and Poplin, 2001 for a comparison of 

primary visual and auditory cortices).  Under these simplifying assumptions, directed connections can be 

classified as: (i) Bottom-up or forward connections that originate in agranular layers and terminate in layer 4.  

(ii) Top-down or backward connections that connect agranular layers.  (iii) Lateral connections that originate 

in agranular layers and target all layers.  These long-range or extrinsic cortico-cortical connections are 

excitatory and comprise the axonal processes of pyramidal cells.   

 

The Jansen model (Jansen and Rit, 1995) emulates the MEG/EEG activity of a cortical source using three 

neuronal subpopulations. A population of excitatory pyramidal (output) cells receives inputs from inhibitory 

and excitatory populations of interneurons, via intrinsic connections (intrinsic connections are confined to the 

cortical sheet).  Within this model, excitatory interneurons can be regarded as spiny stellate cells found 

predominantly in layer 4.  These cells receive forward connections.  Excitatory pyramidal cells and inhibitory 

interneurons occupy agranular layers and receive backward and lateral inputs.  Using these connection 

rules, it is straightforward to construct any hierarchical cortico-cortical network model of cortical sources.  

See Figure 1. 

 

Figure 1 about here 

 

 

The ensuing DCM is specified in terms of its state equations and an observer or output equation 
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where x are the neuronal states of cortical areas, u are exogenous inputs and h is the output of the system.  

  are quantities that parameterize the state and observer equations (see also below under ‘Prior 

assumptions’).  The state equations ),,( uxf  (Jansen and Rit 1995; David and Friston 2003; David et al 

2005) for the neuronal states of multiple areas are1 
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where T
jjj xxx ],,[ )2()1(  .  .  The states )(

8
)(

0 ,, ii xx   represent the mean transmembrane potentials and 

currents of the three subpopulations in the i-th source.  The state equations specify the rate of change of 

voltage as a function of current and specify how currents change as a function of voltage and current.  

Figure 1 depicts the states by assigning each subpopulation to a cortical layer.  For schematic reasons we 

have lumped superficial and deep pyramidal units together, in the infra-granular layer.  The matrices 

LBF CCC ,,  encode forward, backward and lateral extrinsic connections respectively.  From Eq.2 and 

Figure 1 it can be seen that the state equations embody the connection rules above.  For example, extrinsic 

connections mediating changes in mean excitatory [depolarizing] current 8x , in the supragranular layer, are 

restricted to backward and lateral connections.  The depolarisation of pyramidal cells 320 xxx   

represents a mixture of potentials induced by excitatory and inhibitory [depolarizing and hyperpolarizing] 

currents respectively.  This pyramidal potential is the presumed source of observed MEG/EEG signals. 

 

The remaining constants in the state equation pertain to two operators, on which the dynamics rest.  The 

first transforms the average density of pre-synaptic inputs into the average postsynaptic membrane 

potential.  This transformation is equivalent to a convolution with an impulse response or kernel, 

 

                                                 
1 Propagation delays   on the connections have been omitted for clarity, here and in Figure 1.  See Appendix A.1 for 
details of how delays are incorporated. 
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where subscript “e” stands for “excitatory”. Similarly, the subscript “i” is used for inhibitory synapses.  H  

controls the maximum post-synaptic potential and   represents a lumped rate constant.  The second 

operator S transforms the potential of each subpopulation into firing rate, which is the input to other 

subpopulations.  This operator is assumed to be an instantaneous sigmoid nonlinearity 
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where 56.r  determines its form.  Figure 2 shows examples of these synaptic kernels and sigmoid 

functions.  Interactions, among the subpopulations, depend on the constants 4,3,2,1 , which control the 

strength of intrinsic connections and reflect the total number of synapses expressed by each subpopulation.  

A DCM, at the neuronal level, obtains by coupling sources with extrinsic connections as described above.  A 

typical three-source DCM is shown in Figure 3.  See David and Friston 2003 and David et al 2005 for further 

details. 

 

Figure 2 about here 

 

 

Event-related input and ERP-specific effects 

To model event-related responses, the network receives inputs via input connections UC .  These 

connections are exactly the same as forward connections and deliver inputs u to the spiny stellate cells in 

layer 4.  In the present context, inputs u model afferent activity relayed by subcortical structures and is 

modeled with two components. 

 

      ))1(2cos(),,()( 21 titbtu c
i      5 

 

The first is a gamma density function )()exp(),,( 12
1

221
11     t  ttb  with shape and scale 

constants 1  and 2  (see Table 1).  This models an event-related burst of input that is delayed (by 21   

sec) with respect to stimulus onset and dispersed by subcortical synapses and axonal conduction.  Being a 

density function, this component integrates to unity over peristimulus time.  The second component is a 

discrete cosine set modeling systematic fluctuations in input, as a function of peristimulus time.  In our 

implementation peristimulus time is treated as a state variable, allowing the input to be computed explicitly 

during integration. 
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Critically, the event-related input is exactly the same for all ERPs.  This means the effects of experimental 

factors are mediated through ERP-specific changes in connection strengths.  This models experimental 

effects in terms of differences in forward, backward or lateral connections that confer a selective sensitivity 

on each source, in terms of its response to others.  The experimental or ERP-specific effects are modeled 

by coupling gains 
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Here, ijC  encodes the strength of the latent connection to the i-th source from the j-th and ijkG  encodes its 

k-th ERP-specific gain.  By convention, we set the gain of the first ERP to unity, so that subsequent ERP-

specific effects are relative to the first2.  The reason we model experimental effects in terms of gain, as 

opposed to additive effects, is that by construction, connections are always positive.  This is assured; 

provided the gain is also positive. 

 

The important point here is that we are explaining experimental effects, not in terms of differences in 

neuronal responses, but in terms of the neuronal architecture or coupling generating those responses.  This 

is a fundamental departure from classical approaches, which characterize experimental effects descriptively, 

at the level of the states (e.g. a face-selective difference in ERP amplitude around 170ms).  DCM estimates 

these response differentials but only as an intermediate step in the estimation of their underlying cause; 

namely changes in coupling. 

 

Eq.2 defines the neuronal component of the DCM.  These ordinary differential equations can be integrated 

using standard techniques (see Appendix A.2 and Kloeden and Platen, 1999) to generate pyramidal 

depolarisations, which enters the observer function to generate the predicted MEG/EEG signal. 

 

Figure 3 about here 

 

 

Observation equations 

The dendritic signal of the pyramidal subpopulation of the i-th source )(
0

ix  is detected remotely on the scalp 

surface in MEG/EEG.  The relationship between scalp data and pyramidal activity is linear 

 

     0),( LKxxgh        7 

 

                                                 
2 In fact, in our implementation, the coupling gain is a function of any set of explanatory variables encoded in a design 
matrix, which can contain indicator variables or parametric variables.  For simplicity, we limit this paper to categorical 
(ERP-specific) effects. 
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where L is a lead-field matrix (i.e., forward electromagnetic model), which accounts for passive conduction 

of the electromagnetic field (Mosher et al., 1999).  If the spatial properties (orientation and position) of the 

source are known, then the lead-field matrix L is also known.  In this case, )( KdiagK   is a leading 

diagonal matrix, which controls the contribution K
i of pyramidal depolarisation to the i-th source density.  If 

the orientation is not known then ],,[ zyx LLLL   encodes sensor responses to orthogonal dipoles and 

the source orientation can be derived from the contribution to these orthogonal components encoded 

by TK
z

K
y

K
x diagdiagdiagK )](),(),([  .  In this paper, we assume a fixed orientation for multiple 

dipoles for each source (see Appendix A.3) but allow the orientation to be parallel or anti-parallel (i.e. K  

can be positive or negative).  The rationale for this is that the direction of current flow induced by pyramidal 

cell depolarisation depends on the relative density of synapses proximate and distal to the cell body. 

 

Dimension reduction 

For computational reasons, it is sometimes expedient to reduce the dimensionality of the sensor data, while 

retaining the maximum amount of information.  This is assured by projecting the data onto a subspace 

defined by its principal eigenvectors E 
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Because this projection is orthonormal, the independence of the projected errors is preserved and the form 

of the error covariance components of the observation model remains unchanged.  In this paper we reduce 

the sensor space to three dimensions (see appendix A.4). 

 

 

The observation model 

 

In summary, our DCM comprises a state equation that is based on neurobiological heuristics and an 

observer based on an electromagnetic forward model.  By integrating the state equation and passing the 

ensuing states through the observer we generate a predicted measurement.  This corresponds to a 

generalized convolution of the inputs to generate an output )(h .  This generalized convolution furnishes 

an observation model for the vectorised data3 y and the associated likelihood 
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3 Concatenated column vectors of data from each channel 



DCM for ERPs.  David et al 

 11

Measurement noise   is assumed to be zero mean and independent over channels, i.e. 

VdiagCov  )()(  , where   is an unknown vector of channel-specific variances.  V represents the 

errors temporal autocorrelation matrix, which we assume is the identity matrix.  This is tenable because we 

down-sample the data to about 8-ms. Low frequency noise or drift components are modeled by X, which is a 

block diagonal matrix with a low-order discrete cosine set for each ERP and channel.  The order of this set 

can be determined by Bayesian model selection (see below).  In this paper we used three components for 

the first study and four for the second.  The first component of a discrete cosine set is simply a constant. 

 

This model is fitted to data using Variational Bayes (see below).  This involves maximizing the variational 

free energy with respect to the conditional moments of the free parameters  .  These parameters specify 

the constants in the state and observation equations above.  The parameters are constrained by a prior 

specification of the range they are likely to lie in (Friston et al., 2003).  These constraints, which take the 

form of a prior density )(p , are combined with the likelihood ),|( yp , to form a posterior density 

)(),|(),|(  pypyp   according to Bayes rule.  It is this posterior or conditional density we want to 

approximate.  Gaussian assumptions about the errors in Eq.9 enable us to compute the likelihood from the 

prediction error.  The only outstanding quantities we require are the priors, which are described next. 

 

 

Prior assumptions 

 

Here we describe how the constant terms, defining the connectivity architecture and dynamical behavior of 

the DCM, are parameterized and our prior assumptions about these parameters.  Priors have a dramatic 

impact on the landscape of the objective function to be extremised: precise prior distributions ensure that the 

objective function has a global minimum that can be attained robustly.  Under Gaussian assumptions, the 

prior distribution )( ip  of the I-th parameter is defined by its mean and variance.  The mean corresponds to 

the prior expectation.  The variance reflects the amount of prior information about the parameter.  A tight 

distribution (small variance) corresponds to precise prior knowledge. 

 

Critically, nearly all the constants in the DCM are positive.  To ensure positivity we estimate the log of these 

constants under Gaussian priors.  This is equivalent to adopting a log-normal prior on the constants per se.  

For example, the forward connections are re-parameterized as )exp( F
ij

F
ij θC  , where ),()( vNp F

ij   .  

  and v  are the prior expectation and variance of F
ij

F
ij θC ln .  A relatively tight or informative log-normal 

prior obtains when 16
1v .  This allows for a scaling around the prior expectation of up to a factor of two.  

Relatively flat priors, allowing for an order of magnitude scaling, correspond to 2
1v .  The ensuing 

lognormal densities are shown in Figure 4 for a prior expectation of unity (i.e. 0 ). 

 

Table 1 about here 
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The parameters of the state equation can be divided into five subsets: (i) extrinsic connection parameters, 

which specify the coupling strengths among areas and (ii) intrinsic connection parameters, which reflect our 

knowledge about canonical micro-circuitry within an area.  (iii) Conduction delays.  (iv) Synaptic parameters 

controlling the dynamics within an area and (v) input parameters, which control the subcortical delay and 

dispersion of event-related responses.  Table 1 shows how the constants of the state equation are re-

parameterized in terms of  .  It can be seen that we have adopted relatively uninformative priors on the 

extrinsic coupling 2
1v  and tight priors for the remaining constants 16

1v .  Some parameters (intrinsic 

connections and inhibitory synaptic parameters) have infinitely tight priors and are fixed at their prior 

expectation.  This is because changes in these parameters and the excitatory synaptic parameters are 

almost redundant, in terms of system responses.  The priors in Table 1 conform to the principle that the 

parameters we want to make inferences about, namely extrinsic connectivity, should have relatively flat 

priors.  This ensures that the evidence in the data constrains the posterior or conditional density in an 

informative and useful way.  In what follows we review briefly our choice of prior expectations (see David et 

al., 2005 for details). 

 

Figure 4 about here 

 

 

Prior expectations 

Extrinsic parameters comprise the matrices },,,,{ UGLBF   that control the strength of connections 

and their gain.  The prior expectations for forward, backward, and lateral; 32ln , 16ln  and 

4ln respectively, embody our prior assumption that forward connections exert stronger effects than 

backward or lateral connections.  The prior expectation of G
ijk  is zero, reflecting the assumption that, in the 

absence of evidence to the contrary, experimental effects are negligible and the trial-specific gain is 10 e .  

In practice, DCMs seldom have a full connectivity and many connections are disabled by setting their prior 

to )0,(N .  This is particularly important for the input connections parameterized by U
i , which generally 

restrict inputs to one or two cortical sources. 

 

We fixed the values of intrinsic coupling parameters as described in (Jansen and Rit, 1995).  Inter-laminar 

conduction delays were fixed at 2 ms and inter-regional delays had a prior expectation of 16 ms. The priors 

on the synaptic parameters for the I-th area },{ H
ii    constrain the lumped time-constant and relative 

postsynaptic density of excitatory synapses respectively.  The prior expectation for the lumped time constant 

was 8-ms. This may seem a little long but it has to accommodate, not only dynamics within dendritic spines, 

but integration throughout the dendritic tree. 

 

Priors on the input parameters },,,,{ 8121
cc     were chosen to give an event-related burst, with a 

dispersion of about 32 ms, 96 ms after trial onset.  The input fluctuations were relatively constrained with a 

prior on their coefficients of )1,0()( Np c
i  .  We used the same prior on the contribution of depolarisation 
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to source dipoles )1,0()( Np K
i  .  This precludes large values explaining away ERP differences in terms 

of small differences at the cortical level (Grave de Peralta Menendez and Gonzalez-Andino, 1998).  Finally, 

the coefficients of the noise fluctuations were unconstrained, with flat priors ),0()(  Np X . 

 

Summary 

In summary, a DCM is specified in through its priors.  These are used to specify (i) how regions are 

interconnected, (ii) which regions receive subcortical inputs, and (iii) which cortico-cortical connections 

change with the levels of experimental factors.  Usually, the most interesting questions pertain to changes in 

cortico-cortical coupling that explain differences in ERPs.  These rest on inferences about the coupling gains 

G
ijk .   This section has covered the likelihood and prior densities necessary for conditional estimation.  For 

each model, we require the conditional densities of two synaptic parameters per source },{ H
ii   , ten input 

parameters },,,,{ 8121
cc     and the extrinsic coupling parameters, gains and delays 

},,,,,{  UGLBF .  The next section reviews conditional estimation of these parameters, inference 

and model selection. 

 

 

BAYESIAN INFERENCE AND MODEL COMPARISON 

 

 

Estimation and inference 

 

For a given DCM, say model m; parameter estimation corresponds to approximating the moments of the 

posterior distribution given by Bayes rule 

 

    
)|(

),(),|(
),|(

myp

mpmyp
myp

      10 

 

The estimation procedure employed in DCM is described in (Friston, 2002). The posterior moments 

(conditional mean   and covariance  ) are updated iteratively using Variational Bayes under a fixed-form 

Laplace (i.e. Gaussian) approximation to the conditional density ),()(   Nq .   This can be regarded as 

an Expectation-Maximization (EM) algorithm that employs a local linear approximation of Eq.9 about the 

current conditional expectation.  The E-step conforms to a Fisher-scoring scheme (Press et al., 1992) that 

performs a descent on the variational free energy ),,( mqF   with respect to the conditional moments. In 

the M-Step, the error variances   are updated in exactly the same way.  The estimation scheme can be 

summarized as follows: 

 

 

   Repeat until convergence 
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Note that the free energy is simply a function of the log-likelihood and the log-prior for a particular DCM and 

)(q .  )(q is the approximation to the posterior density ),,|( myp   we require.  The E-step updates 

the moments of )(q  (these are the variational parameters   and  ) by minimizing the variational free 

energy.  The free energy is the divergence between the real and approximate conditional density minus the 

log-likelihood.  This means that the conditional moments or variational parameters maximize the log-

likelihood ),( mL   while minimising the discrepancy between the true and approximate conditional density.  

Because the divergence does not depend on the covariance parameters, minimizing the free energy in the 

M-step is equivalent to finding the maximum likelihood estimates of the covariance parameters.  This 

scheme is identical to that employed by DCM for fMRI, the details of which can be found in Friston (2002) 

and Friston et al (2003). 

 

 

Conditional inference 

Inference on the parameters of a particular model proceeds using the approximate conditional or posterior 

density )(q .  Usually, this involves specifying a parameter or compound of parameters as a contrast Tc .  

Inferences about this contrast are made using its conditional covariance ccT .  For example, one can 

compute the probability that any contrast is greater than zero or some meaningful threshold, given the data.  

This inference is conditioned on the particular model specified.  In other words, given the data and model, 

inference is based the probability that a particular contrast is bigger than a specified threshold.  In some 

situations one may want to compare different models.  This entails Bayesian model comparison. 

 

Model comparison and selection 

 

Different models are compared using their evidence (Penny et al., 2004). The model evidence is 

 

    dmpmypmyp  )|(),|()|( .     12 

 

The evidence can be decomposed into two components: an accuracy term, which quantifies the data fit, and 

a complexity term, which penalizes models with a large number of parameters.  Therefore, the evidence 
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embodies the two conflicting requirements of a good model, that it explains the data and is as simple as 

possible.  In the following, we approximate the model evidence for model m, with the free energy after 

convergence.  This rests on the assumption that   has a point mass at its maximum likelihood estimate 

(equivalent to its conditional estimate under flat priors); i.e., ),(),|(ln)|(ln mLmypmyp 

 .  

After convergence the divergence is minimized and 

 

   ),,(),()|(ln mqFmLmyp        13 

 

See Eq.11.  The most likely model is the one with the largest log-evidence.  This enables Bayesian model 

selection.  Model comparison rests on the likelihood ratio of the evidence for two models.  This ratio is the 

Bayes factor ijB .  For models i and j 

 

   )|(ln)|(lnln jmypimypBij      14 

 

Conventionally, strong evidence in favor of one model requires the difference in log-evidence to be three or 

more.  We have now covered the specification, estimation and comparison of DCMs.  In the next section we 

will illustrate their application to real data using two important examples of how changes in coupling can 

explain ERP differences. 

 

 

EMPIRICAL STUDIES 

 

In this section we illustrate the use of DCM by looking at changes in connectivity induced in two different 

ways.  In the first experiment we recorded ERPs during the perception of faces and houses.  It is well-known 

that the N170 is a specific ERP correlate of face perception (Allison et al., 1999).  The N170 generators are 

thought to be located close to the lateral fusiform gyrus, or Fusiform Face Area (FFA).  Furthermore, the 

perception of houses has been shown to activate the Parahippocampal Place Area (PPA) using fMRI 

(Aguirre et al., 1998; Epstein and Kanwisher, 1998; Haxby et al., 2001; Vuilleumier et al., 2001).  In this 

example, differences in coupling define the category-selectivity of pathways that are accessed by different 

categories of stimuli.  A category-selective increase in coupling implies that the region receiving the 

connection is selectively more sensitive to input elicited by the stimulus category in question.  This can be 

attributed to a functional specialization of receptive field properties and processing dynamics of the region 

receiving the connection.  In the second example, we used an auditory oddball paradigm, which produces 

mismatch negativity (MMN) or P300 components in response to rare stimuli, relative to frequent (Debener et 

al., 2002; Linden et al., 1999).  In this paradigm, we attribute changes in coupling to plasticity underlying the 

perceptual learning of frequent or standard stimuli.  

 

In the category-selectivity paradigm there are no necessary changes in connection strength; pre-existing 

differences in responsiveness are simply disclosed by presenting different stimuli.  This can be modeled by 

differences in forward connections.  However, in the oddball paradigm, the effect only emerges once 
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standard stimuli have been learned.  This implies some form of perceptual or sensory learning.  We have 

presented a quite detailed analysis of perceptual learning in the context of empirical Bayes (Friston 2003).  

We concluded that the late components of oddball responses could be construed as a failure to suppress 

prediction error, after learning the standard stimuli.  Critically, this theory predicts that learning-related 

plasticity should occur in backward connections generating the prediction, which are then mirrored in 

forward connections.  In short, we predicted changes in forward and backward connections when comparing 

ERPs for standard and oddball stimuli. 

 

In the first example, we are interested in where category-selective differences in responsiveness arise in a 

forward processing stream.  Backward connections are probably important in mediating this selectivity but 

exhibit no learning-related changes per se.  We use inferences based on the conditional density of coupling-

gain, when comparing face and house ERPs, to address this question.  In the second example, our question 

is more categorical in nature; namely, are changes in backward and lateral connections necessary to 

explain ERPs differences between standards and oddballs, relative to changes in forward connections 

alone?  We illustrate the use of Bayesian model comparison to answer this question.  See Appendices A.3 

and A.4 for a description of the data acquisition, lead-field specification and preprocessing. 

 

Category-selectivity: effective connectivity in the ventral visual pathway 

 

ERPs elicited by brief presentation of faces and houses were obtained by averaging trials over three 

successive 20-minute sessions.  Each session comprised 30 blocks of faces or houses only.  Each block 

contained 12 stimuli presented every 2.6s for 400ms.  The stimuli comprised 18 neutral faces and 18 

houses, presented in grayscale.  To maintain attentional set, the subject was asked to perform a one-back 

task, i.e. indicate, using a button press, whether or not the current stimulus was identical to the previous. 

 

As reported classically, we observed a stronger N170 component during face perception in the posterior 

temporal electrodes.  However, we also found other components, associated with house perception, which 

were difficult to interpret on the basis of scalp data.  It is generally thought that face perception is mediated 

by a hierarchical system of bilateral regions (Haxby et al., 2002). (i) A core system, of occipito-temporal 

regions in extrastriate visual cortex (inferior occipital gyrus, IOG; lateral fusiform gyrus or face area, FFA; 

superior temporal sulcus, STS), that mediates the visual analysis of faces, and (ii) an extended system for 

cognitive functions.  This system (intra-parietal sulcus; auditory cortex; amygdala; insula; limbic system) acts 

in concert with the core system to extract meaning from faces.  House perception has been shown to 

activate the Parahippocampal Place Area (PPA) (Aguirre et al., 1998; Epstein and Kanwisher, 1998; Haxby 

et al., 2001; Vuilleumier et al., 2001). In addition, the Retrosplenial Cortex (RS) and the lateral occipital 

gyrus are more activated by houses, compared to faces (Vuilleumier et al., 2001). Most of these regions 

belong to the ventral visual pathway.  It has been argued that the functional architecture of the ventral visual 

pathway is not a mosaic of category-specifics modules, but rather embodies a continuous representation of 

information about object attributes (Ishai et al., 1999). 

 

Figure 5 about here 
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DCM specification 

We tested whether differential propagation of neuronal activity through the ventral pathway is sufficient to 

explain the differences in measured ERPs.  On the basis of a conventional source localization (see 

Appendix A.3) and previous studies (Allison et al., 1999; Haxby et al., 2001; Haxby et al., 2002; Ishai et al., 

1999; Vuilleumier et al., 2001), we specified the following DCM (see Figure 5): bilateral occipital regions 

close to the calcarine sulcus (V1) received subcortical visual inputs.  From V1 onwards, the pathway for 

house perception was considered to be bilateral and to hierarchically connect RS and PPA using forward 

and backward connections.  The pathway engaged by face perception was restricted to the right hemisphere 

and comprised connections from V1 to IOG, which projects to STS and FFA.  In addition, bilateral 

connections were included, between STS and FFA, as suggested in (Haxby et al., 2002).  These 

connections constituted our DCM mediating ERPs to houses and faces.  This DCM is constrained 

anatomically by the number and location of regional sources that accounted for most of the variance in 

sensor-space (see Appendix A.4).  Face- or house-specific ERP components were hypothesized to arise 

from category-selective, stimulus-bound, activation of forward pathways.  To identify these category-

selective streams we allowed the forward connections, in the right hemisphere, to change with category.  

Our hope was that these changes would render PPA more responsive to houses while the FFA and STS 

would express face-selective responses. 

 

Figure 6 about here 

 

Conditional inference 

The results are shown in Figure 6, in terms of predicted cortical responses and coupling parameters.  Using 

this DCM we were able to replicate the functional anatomy, disclosed by the above fMRI studies: the 

response in PPA was more marked when processing houses versus faces.  This was explained, in the 

model, by an increase of forward connectivity in the medial ventral pathway from RS to PPA.  This difference 

corresponded to a coupling-gain of over five-fold.  Conversely, the model exhibited a much stronger 

response in FFA and STS during face perception, as suggested by the Haxby model (Haxby et al., 2002).  

This selectivity was due to an increase in coupling from IOG to FFA and from IOG to STS.  The face-

selectivity of STS responses was smaller than in the FFA, the latter mediated by an enormous gain of about 

nine-fold ( 09.911.01  ) in sensitivity to inputs from IOG.  The probability, conditional on the data and 

model, that changes in forward connections to the PPA, STS and FFA, were greater than zero, was 

essentially 100% in all cases.  The connections from V1 to IOG showed no selectivity.  This suggests that 

category-selectivity emerges downstream from IOG, at a fairly high level.  Somewhat contrary to 

expectations (see Vuilleumier et al., 2001), the coupling from V1 to RS showed a mild face-selective bias, 

with an increase of about 80% ( 82.155.01  ). 

 

Note how the ERPs of each source are successively transformed and delayed from area to area.  This 

reflects the intrinsic transformations within each source, the reciprocal exchange of signals between areas 

and the ensuing conduction delays.  These transformations are mediated by intrinsic and extrinsic 

connections and are the dynamic expression of category selectivity in this DCM. 
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The conditional estimate of the subcortical input is also shown in Figure 6.  The event-related response input 

was expressed about 96 ms after stimulus onset.  The accuracy of the model is evident in the left panel of 

Figure 6, which shows the measured and predicted responses in sensor space, after projection onto their 

three principal eigenvectors. 

 

 

Auditory oddball: effective connectivity and sensory learning 

 

Auditory stimuli, 1000 or 2000 Hz tones with 5 ms rise and fall times and 80 ms duration, were presented 

binaurally for 15 minutes, every 2 seconds in a pseudo-random sequence.  2000-Hz tones (oddballs) 

occurred 20% of the time (120 trials) and 1000-Hz tones (standards) 80% of the time (480 trials).  The 

subject was instructed to keep a mental record of the number of 2000-Hz tones. 

 

Late components, characteristic of rare events, were seen in most frontal electrodes, centered on 250 ms to 

350 ms post-stimulus.  As reported classically, early components (i.e. the N100) were almost identical for 

rare and frequent stimuli.  Using an conventional reconstruction algorithm (see Appendix A.3) cortical 

sources were localized symmetrically along the medial part of the upper bank of the Sylvian fissure, in the 

right middle temporal gyrus, left medial and posterior cingulate, and bilateral orbitofrontal cortex (see insert 

in Figure 7).  These locations are in good agreement with the literature: Sources along the upper bank of the 

Sylvian fissure can be regarded as early auditory cortex, although they are generally located in the lower 

bank of the Sylvian fissure (Heschls gyrus).  Primary auditory cortex has major inter-hemispheric 

connections through the corpus callosum.  In addition, these areas project to temporal and frontal lobes 

following different streams (Kaas and Hackett, 2000; Romanski et al., 1999). Finally, cingulate activations 

are often found in relation to oddball tasks, either auditory or visual (Linden et al., 1999).  

 

Figure 7 about here 

 

DCM specification 

Using these sources and prior knowledge about the functional anatomy of the auditory system, we 

constructed the following DCM (Figure 7): an extrinsic (thalamic) input entered bilateral primary auditory 

cortex (A1) which was connected to ipsilateral orbitofrontal cortex (OF).  In the right hemisphere, an indirect 

forward pathway was specified from A1 to OF through the superior temporal gyrus (STG).  All these 

connections were reciprocal.  At the highest level in the hierarchy, OF and left posterior cingulate cortex 

(PC) was laterally and reciprocally connected. 

 

Model comparison 

Given these nodes and their connections, we created four DCMs that differed in terms of which connections 

could show putative learning-related changes.  The baseline model precluded any differences between 

standard and oddball trials.  The remaining four models allowed changes in forward F, backward B, forward 

and backward FB and all connections FBL, with the primary auditory sources.  The results of a Bayesian 

model comparison (Penny et al. 2004) are shown in Figure 7, in terms of the respective log-evidences 

(referred to the baseline model with no coupling changes).  There is very strong evidence for conjoint 
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changes in backward and lateral connections, above and beyond changes in forward or backward 

connections alone.  The FB model supervenes over the FBL model that was augmented with plasticity in 

lateral connections between A1.  This is interesting because the FBL model had more parameters, enabling 

a more accurate modeling of the data.  However, the improvement in accuracy did not meet the cost of 

increasing the model complexity and the log-evidence fell by 4.224.  This means there is strong evidence for 

the FB model, in relation to the FBL model.  Put more directly, the data are 3.68224.4 e  times more likely 

to have been generated by the FB model than the FBL model.  The results of this Bayesian model 

comparison suggest the theoretical predictions were correct. 

 

Other theoretical perspectives suggest that the MMN can be explained simply by an adaptation to standard 

stimuli that may only involve intrinsic connections (see, for example, Ulanovsky et al 2003).  This hypothesis 

could be tested using stimulus-specific changes in intrinsic connections and model selection to assess 

whether the data are explained better by changes in intrinsic connectivity, extrinsic connectivity or both.  We 

will pursue this in a future communication. 

 

Figure 8 about here 

 

Conditional inference 

The conditional estimates and posterior confidences for the FB model are shown in Figure 8 and reveal a 

profound increase, for rare events, in all connections.  We can be over 95% confident these connections 

increased.  As above, these confidences are based on the conditional density of the coupling-gains.  The 

conditional density of a contrast, averaging over all gains in backward connections, is shown in Figure 9.  

We can be 99.9% confident this contrast is greater than zero.  The average is about one, reflecting a gain of 

about 7.21 e , i.e., more than a doubling of effective connectivity. 

 

These changes produce a rather symmetrical series of late components, expressed to a greater degree, but 

with greater latency, at hierarchically higher levels.  In comparison with the visual paradigm above, the 

subcortical input appeared to arrive earlier, around 64 ms after stimulus onset.  The remarkable agreement 

between predicted and observed channel responses is seen in the left panel, again shown as three principal 

eigenvariates. 

 

In summary, this analysis suggests that a sufficient explanation for mismatch responses is an increase in 

forward and backward connections with primary auditory cortex.  This results in the appearance of 

exuberant responses after the N100 in A1 to unexpected stimuli.  This could represent a failure to suppress 

prediction error, relative to predictable or learned stimuli, which can be predicted more efficiently. 

 

Figure 9 about here 

 

 

Simulations 
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In this introductory paper we have focussed on the motivation and use of DCM for ERPs.  We hope to have 

established its construct validity in relation to other neurobiological constructs (i.e., the functional anatomy of 

category-selectivity as measured by fMRI and predictive coding models of perceptual learning).  There are 

many other aspects of validity that could be addressed and will be in future communications.  Here, we 

briefly establish face validity (the procedure estimates what it is supposed to) of the particular DCM 

described above.  This was achieved by integrating the DCM and adding noise to simulate responses of a 

system with known parameters.  Face validity requires the true values to lie within the 90% confidence 

intervals of the conditional density.  We performed two sets of simulations.  The first involved changing one 

of the parameters (the gain in the right A1 to STG connection) and comparing the true values with the 

conditional densities.  The second used the same parameters but different levels of noise (i.e., different 

variance parameters).  In short, we reproduced our empirical study but with known changes in connectivity.  

We then asked whether the estimation scheme could recover the true values, under exactly the same 

conditions entailed by the empirical studies above. 

 

The first simulations used the conditional estimates from the FB model of the auditory oddball paradigm.  

The gain on the right A1 to STG connection was varied from one half to two, i.e. G
62  was increased from 

2ln  to 2ln  in 16 steps.  The models were integrated to generate responses to the estimated subcortical 

input and Gaussian noise was added using the empirical ReML variance estimates.  The conditional 

densities of the parameters were estimated from these simulated data in exactly the same way as for the 

empirical data.  Note that this is a more stringent test of face validity than simply estimating connection 

strengths: we simulated an entire paradigm and tried to recover the changes or gain in coupling subtending 

the oddball effect.  The results of these simulations are shown in Figure 10 for the connection that changed 

(right A1 to STG: upper panel) and for one that did not (right OF to A1: lower panel).  In both cases the true 

value fell within the 90% confidence intervals.  This speaks to the sensitivity (upper panel) and specificity 

(lower panel) of conditional inferences based on this model. 

 

Figure 10 about here 

 

The results of the second simulations are shown in Figure 11.  Here we repeated the above procedure but 

changed the variance parameters, as opposed to a coupling parameter.  We simply scaled all the error 

variances by a factor that ranged from a half to two, in 16 steps.  Figure 11 shows that the true value (of the 

right A1 to STG connection) again fell well within the 90% conditional confidence intervals, even for high 

levels of noise.  These results also speak to the characteristic shrinkage of conditional estimators: Note that 

the conditional expectation is smaller than the true value at higher noise levels.  The heuristic, behind this 

effect, is that noise or error induces a greater dependency on the priors and a consequent shrinkage of the 

conditional expectation to the prior expectation of zero.  Having said this, the effect of doubling error 

variance in this context is unremarkable. 

 

Figure 11 about here 
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Discussion 

 

We have described a Bayesian inference procedure in the context of DCM for ERPs.  DCMs are used in the 

analysis of effective connectivity to provide posterior or conditional distributions.  These densities can then 

be used to assess changes in effective connectivity caused by experimental manipulations.  These 

inferences, however, are contingent on assumptions about the architecture of the model, i.e., which regions 

are connected and which connections are modulated by experimental factors.  Bayesian model comparison 

can be used to adjudicate among competing models, or hypotheses, as demonstrated above.  In short, 

DCMs can be used to test hypotheses about the functional organization of macroscopic brain activity.  In 

neuroimaging, DCMs have been applied to fMRI data (Friston et al., 2003; Penny et al., 2004; Riera et al., 

2004). We have shown that MEG/EEG event-related responses can also be subject to DCM. 

 

The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which 

the parameters of the reconstruction have an explicit neuronal interpretation, or as a characterization of the 

causal architecture of the neuronal system generating responses.  We hope to have shown that it is possible 

to test mechanistic hypotheses in a more constrained way than classical approaches because the prior 

assumptions are physiologically informed. 

 

Our DCMs use a neural mass model that embodies long-range cortico-cortical connections by considering 

forward, backward and lateral connections among remote areas (David et al., 2005). This allows us to 

embed neural mechanisms generating MEG/EEG signals that are located in well-defined regions.  This may 

make the comparison with fMRI activations easier than alternative models based on continuous cortical 

fields (see Liley et al., 2002; Robinson et al., 2001).  However, it would be interesting to apply DCM to 

cortical field models because of the compelling work with these models. 

 

Frequently asked questions 

In presenting this work to our colleagues we encountered a number of recurrent questions.  We use these 

questions to frame our discussion of DCM for ERPs. 

 

 How do the results change with small changes in the priors? 

Conditional inferences are relatively insensitive to changes in the priors.  This is because we use relatively 

uninformative priors on the parameters about which inferences are made.  Therefore, confident inferences 

about coupling imply a high conditional precision.  This means that most of the conditional precision is 

based on the data (because the prior precision is very small).  Changing the prior precision will have a 

limited effect on the conditional density and the ensuing inference.  

 

 What are effects of wrong network specification (e.g. including an irrelevant source or not including a 

relevant source or the wrong specification of connections)? 

This is difficult to answer because the effects will depend on the particular data set and model employed.  

However, there is a principled way in which questions of this sort can be answered.  This uses Bayesian 

model comparison: If the contribution of a particular source, or connection is in question, one can compute 

the log-evidence for two models that do and do not contain the source or connection.  If it was important the 
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differences in log-evidence will be significant.  Operationally, the effects of changing the architecture are 

reformulated in terms of changing the model.  Because the data does not change these effects can be 

evaluated quantitatively in terms of the log-evidence (i.e. likelihood of the data given the models in 

question).   

 

 How sensitive is the model to small changes in the parameters? 

This is quantified by the curvature of the free energy with respect to parameters.  This sensitivity is in fact 

the conditional precision or certainty.  If the free energy changes quickly as one leaves the maximum (i.e. 

conditional mode or expectation), then the conditional precision is high.  Conversely, if the maximum is 

relatively flat, changes in the parameter will have a smaller effect and conditional uncertainty is higher.  

Conditional uncertainly is a measure of the information, about the parameter, in the data. 

 

 What is the role of source localization in DCM? 

It has no role.  Source localization refers to inversion of an electromagnetic forward model.  Because this is 

only a part of the DCM, Bayesian inversion of the DCM implicitly performs the source localization.  Having 

said this, in practice priors on the location or orientation (i.e. spatial parameters) can be derived from 

classical source reconstruction techniques.  In this paper we used a distributed source reconstruction to 

furnish spatial priors on the DCM.  However, these priors do not necessarily have to come from a classical 

inverse solution.  Our current evaluations of DCM, using somatosensory evoked potentials (whose spatial 

characteristics are well known) suggest that the conditional precision of the orientation is much greater than 

the location.  This means that one could prescribe tight priors on the location (from source reconstruction, 

from fMRI analyses, or from the literature) and let DCM estimate the conditional density of the orientation.  

We will report these and related issues in Kiebel et al (in preparation). 

 

 How do you select the sources for the DCM? 

DCM is an inference framework that allows one to answer questions about a well-specified model of 

functional anatomy.  The sources specify that model.  Conditional inferences are then conditional on that 

model.  Questions about which is the best model use Bayesian model selection as described above.  In 

principle, it is possible to compare an ensemble of models with all permutations of sources and simply select 

the model that has the greatest log-evidence.  We will illustrate this in a forthcoming multi-subject study of 

the MMN in normal subjects. 

 

 How do you assess the generalisability of a DCM? 

In relation to a particular data set, the conditional density of the parameters implicitly maximizes 

generalisability.  This is because the free energy can be reformulated in terms of an accuracy term that is 

maximized and a complexity term that is minimized (Penny et al 2004).  Minimizing complexity ensures 

generalization.   This aspect of variational learning means that we do not have to use ad-hoc measures of 

generalization (e.g. splitting the data into training and test sets).  Generalization is an implicit part of the 

estimation.  In relation to generalization over different data sets one has to consider the random effects 

entailed by different subjects or sessions.  In this context, generalization and reproducibility are a more 

empirical issue.  We will report an analysis of the MMN in a large cohort of normal subjects (Garrido et al; in 

preparation). 
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 How can you be sure that a change in connectivity is not due to a wrong model? 

There is no such thing as a wrong model.  Models can only be better or worse than other models.  We 

quantify this in terms of the likelihood of each model (i.e., the log-evidence) and select the best model.  We 

then usually make conditional inferences about the parameters, conditional on the best model.  One could of 

course argue that all possible models have not been tested, but at least one has a framework that can 

accommodate any alternative model. 

 

 What is the basis for the claim that the neural mass models and DCMs are biologically grounded? 

This is based largely on the use of the Jansen and Rit model (1995) as an elemental model for each source.  

We deliberately chose an established model from the EEG literature for which a degree of predictive and 

face validity had already been established.  This model has been evaluated in a range of different contexts 

and its ability to emulate and predict biological phenomena has been comprehensively assessed (David et 

al 2003, Jansen and Rit 1995 and references therein).  The biological plausibility of the extrinsic connections 

has been motivated at length in David et al (2003), where we show that a network of Jansen and Rit sources 

can reproduce a variety of EEG phenomena. 

 

 Why did we exclude thalamus from our models?  

Because it was not necessary to answer the question we wanted to ask.  In the models reported in this 

paper the effects of subcortical transformations are embodied in the parameters of the input function.  If one 

thought that cortico-subcortical interactions were important it would be a simple matter to include a thalamic 

source that was invisible to measurement space (i.e. set the lead field's priors to zero).  One could then use 

Bayesian model comparison to assess whether modeled cortico-thalamic interactions were supported by the 

data. 

 

 Does DCM deal with neuronal noise? 

No.  In principle DCM could deal with noise at the level of neuronal states by replacing the ordinary 

differential equations with stochastic differential equations.  However, this would call for a very different 

estimation scheme in which there was conditional uncertainty about the [hidden] neuronal states.  

Conventionally, these sorts of systems are estimated using a recurrent Bayesian update scheme such as 

Kalman or Particle filtering.  We are working on an alternative (Dynamic Expectation Maximization) but it will 

be some time before it will be applied to DCM. 

 

Conclusion 

We have focused, in this paper, on the changes in connectivity, between levels of an experimental factor, to 

explain differences in the form of ERFs/ERPs.  We have illustrated this through the analysis of real ERPs 

recorded in two classical paradigms: ERPs recorded during the perception of faces versus houses and the 

auditory oddball paradigm.  We were able to differentiate two streams within the ventral visual pathway 

corresponding to face and house processing, leading to preferential responses in the fusiform face area and 

parahippocampal place area respectively.  These results concur with fMRI studies (Haxby et al., 2001; 

Vuilleumier et al., 2001).  We have shown how different hypotheses about the genesis of the MMN could be 

tested, such as learning-related changes in forward or backward connections.  Our results suggest that 
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bottom-up processes have a key role, even in late components such as the P300.  This finding is particularly 

interesting as top-down processes are usually invoked to account for late responses. 

 

The long-term agenda of our modeling program is to establish the validity of neuronal network models so 

that they can be used as forward models to explain MEG/EEG and fMRI data.  As shown in this study the 

key advantage, afforded by neuronally plausible models in comparison to conventional analyses, is the 

ability to pinpoint specific neuronal mechanisms underlying normal or pathological responses.  By 

integrating knowledge from various fields dealing with the study of the brain, i.e. cognitive and computational 

neuroanatomy, neurobiology and functional imaging, it may be possible in the near future to construct ever 

more realistic and constrained models that will allow us to test functionally specific hypotheses.  The goal of 

this paper was to demonstrate the feasibility of this approach in non-invasive electrophysiology. 

 

 

 

 

 

 

Software Note 

The analyses presented in this paper will be available as a toolbox, distributed with the next release [SPM5] 

of the SPM software (http://www.fil.ion.ucl.ac.uk/spm) 
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Appendices 

 

A.1 Integrating delay differential equations 

 

Here we describe integration of delay differential equations of the form 

 

   ))(,),(()( 11 inniii txtxftx         A.1 

 

for n states T
n txtxx )](,),([ 1  , where state j causes changes in state i with delay ij .  By taking a 

Taylor expansion about 0  we get, to first order 
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where xfJ   is the systems Jacobian.  A.2 can be expressed in matrix form as 

 

)()( txJftx          A.3 

 

where   denotes the Hadamard or element-by-element product.  On rearranging A.3 we obtain an ordinary 

differential equation that can be integrated in the usual way (see appendix A.2). 
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A.2 Integration 

 

In this work, integration of the ordinary differential equations,  

 

),()( uxftx        A.7 

 

proceeded using the Taylor expansion of the change in states 
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xuxfJ  ),( .  To avoid matrix inversion, U can be computed efficiently with the following pseudo-code 
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      A.9 

 

Critically, U is only re-evaluated whenever the input u changes.  This provides a very efficient integration 

scheme for systems with sparse inputs (e.g. ERP models).  However, this efficiency is at the cost of 

inaccuracies due to ignoring changes in the Jacobian with states (i.e. nonlinearities in A.7).  These 

inaccuracies are limited because the nonlinear state equation is evaluated fully at each update 

),( uxUfx  . 

 

A.3 Data acquisition and source reconstruction 

 

Both data sets were acquired from the same subject, in the same session, using 128 EEG electrodes and 

2048 Hz sampling.  Before averaging, data were referenced to mean activity and band-pass filtered between 

1 and 20 Hz. Trials showing ocular artifacts (~30%) and 11 bad channels were removed from further 

analysis. 

 

EEG electrodes were co-registered with subject’s structural MRI and meshes of the scalp and of the white-

gray matter interface were extracted (Mangin et al., 1995). 7204 current dipoles were then distributed over 

and normal to the cortical surface.  For each dipole, the EEG scalp topography was computed using a single 

shell spherical model (Mosher et al., 1999). Regions of interest (patches) were selected as follows: (i) About 

0.5% of dipoles were selected by retaining the most significant dipoles from the initial set (David et al., 

2002).  (ii) The dipoles at the center of mass of the ensuing clusters were selected and neighboring dipoles 

were added isotropically, to create patches corresponding to cortical patches of about 1-2 cm2.  (iii) The 

lead-field of each source (columns of the lead field matrix L) was then computed by averaging the lead-field 

of each dipole in the corresponding patch.  This assumes a uniform current density within each cortical 

patch. 
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This is quite an involved procedure.  It should be noted that a lead field could be computed for a small set of 

equivalent current dipoles, or ‘virtual electrodes’ placed at the maxima of distributed source reconstructions.  

The DCM models electrical responses of discrete sources that are defined anatomically by the lead fields.  

In our example these sources were the cortical patches above.  It is important to note that reconstruction 

procedure is only necessary to define the lead field of the forward model to provide anatomical priors on the 

model.  The analysis per se uses the original data in measurement space (or some projection) and, in 

principle, could proceed without lead fields (i.e., without any anatomical constraints). 

 

 

A.4 Data preprocessing 

 

To reduce the dimensionality of the data they were projected onto the first three spatial modes following a 

singular value decomposition of the scalp data, between 0 and 500ms.  This was for computational 

expediency.  Reduction using principal eigenvariates preserves the most information in the data, in this case 

about 70%. This selection of channels or modes that should enter a DCM will be the subject of a technical 

note (Kiebel et al in preparation).  Finally, the data were down-sampled in time to 8-ms time bins.  Again this 

was for computational reasons (equivalent results were obtained with 4ms bins; however, the integration 

scheme became unstable with 16ms bins). 
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Figure Legends 

 

Figure 1: Schematic of the DCM used to model a single source.  This schematic includes the differential 

equations describing the dynamics of the source or regions states.  Each source is modeled with three 

subpopulations (pyramidal, spiny-stellate and inhibitory interneurons) as described in (Jansen and Rit, 

1995).  These have been assigned to granular and agranular cortical layers, which receive forward and 

backward connection respectively. 

 

Figure 2: Left: Form of the synaptic impulse response function, converting synaptic input (discharge rate) 

into mean transmembrane potential.  Right: The nonlinear static transformation of transmembrane potential 

into synaptic input.  In this figure, the constants are set to unity, with the exception of 56.0r .  See main 

text for details. 

 

Figure 3: Typical hierarchical network composed of three cortical areas.  Extrinsic inputs evoke transient 

perturbations around the resting state by acting on a subset of sources, usually the lowest in the hierarchy.  

Interactions among different regions are mediated through excitatory connections encoded by coupling 

matrices. 

 

Figure 4: Log-normal densities on )exp(  entailed by Gaussian priors on   with a prior expectation of 

zero and variances of ½ and 1/16.  These correspond to fairly uninformative (allowing for changes up to an 

order of magnitude) and informative (allowing for changes up to a factor of two) priors respectively. 

 

Figure 5: Model definition for the category-selectivity paradigm: The sources comprising the DCM are 

connected with forward (solid), backward (broken) or lateral (gray) connections as shown.  V1: primary 

visual cortex, RS: retrosplenial cortex, PPA: parahippocampal place area, IOG: inferior occipital gyrus, STS: 

superior temporal sulcus, FFA: fusiform face area (left is on the left).  Insert:  Transparent views of the 

subject’s cortical mesh from the top-right, showing the sources that defined the lead field for the DCM: a 

bilateral extrinsic input acts on the primary visual cortex (red).  Two pathways are considered: (i) bilaterally 

from occipital regions to the parahippocampal place area (blue) through the retrosplenial cortex (green, 

laterally interconnected), (ii) in the right hemisphere, from primary visual areas to inferior occipital gyrus 

(yellow) which projects to the superior temporal sulcus (cyan) and the lateral fusiform gyrus (magenta).  The 

superior temporal sulcus and lateral fusiform gyrus are laterally connected 

 

Figure 6: DCM results for the category-selectivity paradigm: Left: Predicted (thick) and observed (thin) 

responses in measurement space.  These are a projection of the scalp or channel data onto the first three 

spatial modes or eigenvectors of the channel data (Faces: gray. Houses: black).  The predicted responses 

are based on the conditional expectations of the DCM parameters.  The agreement is evident.  Right:  

Reconstructed responses for each source and changes in coupling for the DCM modeling category-specific 

engagement of forward connections, in the ventral visual system.  As indicated by the predicted responses 

in PPA and FFA, these changes are sufficient to explain an increase response in PPA when perceiving 

houses and, conversely, an increase in FFA responses during face perception.  The coupling differences 

mediating this category-selectivity are shown alongside connections, which showed category-specific 
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differences (highlighted by solid lines).  Differences are the relative strength of forward connections during 

house presentation, relative to faces.  The percent conditional confidence that this difference is greater than 

zero is shown in brackets.  Only changes with 90% confidence or more are reported and are highlighted in 

bold. 

 

Figure 7: DCM specification for the auditory oddball paradigm: Left: Graph depicting the sources and 

connections of the DCM using the same format as Figure 5: A1: primary auditory cortex, OF: orbitofrontal 

cortex, PC: posterior cingulate cortex, STG: superior temporal gyrus.  Insert: localized sources 

corresponding to the lead fields that entered the DCM: a bilateral extrinsic input acts on primary auditory 

cortex (red) which project to orbitofrontal regions (green).  In the right hemisphere, an indirect pathway was 

specified, via a relay in the superior temporal gyrus (magenta).  At the highest level in the hierarchy, 

orbitofrontal and left posterior cingulate (blue) cortices were assumed to be laterally and reciprocally 

connected.  Lower right: Results of the Bayesian model selection among DCMs allowing for learning-related 

changes in forward F, backward B, forward and backward FB and all connections FBL.  The graph shows 

the Laplace approximation to the log-evidence and demonstrates clearly that the FB model supervenes.  

The log-evidence is expressed relative to a DCM in which no connections were allowed to change. 

 

Figure 8: DCM results for the auditory oddball (FB model).  This figure adopts the same format as Figure 6.  

Here the oddball-related response show many components and are expressed most noticeably in mode 2.  

The mismatch response is expressed in nearly every source (black: oddballs, gray: standards), and there 

are widespread learning-related changes in connections (solid lines: changes with more than 90% 

conditional confidence).  In all connections the coupling was stronger during oddball processing, relative to 

standards. 

 

Figure 9: Conditional density of a contrast averaging over all learning-related changes in backward 

connections.  It is evident that change in backward connections is unlikely to be zero or less given our data 

and DCM. 

 

Figure 10: Results of simulations showing true and conditional estimates of the connection whose gain was 

changed (top panel: right A1 to STG) and one whose gain remained the same (lower panel: right OF to A1).  

The solid lines are the conditional expectations and the broken lines are the true values.  The gray areas 

encompass the 90% confidence region, based on the conditional variance.  In all cases the true values falls 

within the 90% confidence region (just).  These simulations used the conditional expectations and maximum 

likelihood variance components from the empirical analysis (using the FB model) to demonstrate, 

heuristically, sensitivity and specificity of conditional inferences with this DCM. 

 

Figure 11: Results of simulations showing true and conditional estimates of coupling-gain (right A1 to STG) 

as a function of error variance.  The format of this figure is the same as Figure 10.  The variance of 

simulated observation error was scaled, from half to twice the maximum likelihood estimates of the error 

variance from the empirical analysis (using the FB model).  These simulations demonstrate, heuristically, 

how conditional uncertainty increases with noise.  Note that even at high levels of noise the 90% confidence 
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interval still permits an inference that this connection changed (i.e. zero gain falls well outside the gray 

region). 
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Tables 

 

Table 1: Prior densities of parameters 

 (for connections to the i-th source from the j-th, in the k-th ERP) 
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