
HAL Id: inserm-00387875
https://inserm.hal.science/inserm-00387875

Submitted on 26 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In vivo delta opioid receptor internalization controls
behavioral effects of agonists.

Amynah A. A. Pradhan, Jérôme A. J. Becker, Grégory Scherrer, Petra
Tryoen-Toth, Dominique Filliol, Audrey Matifas, Dominique Massotte, Claire

Gavériaux-Ruff, Brigitte L. Kieffer

To cite this version:
Amynah A. A. Pradhan, Jérôme A. J. Becker, Grégory Scherrer, Petra Tryoen-Toth, Dominique Filliol,
et al.. In vivo delta opioid receptor internalization controls behavioral effects of agonists.. PLoS ONE,
2009, 4 (5), pp.e5425. �10.1371/journal.pone.0005425�. �inserm-00387875�

https://inserm.hal.science/inserm-00387875
https://hal.archives-ouvertes.fr


In Vivo Delta Opioid Receptor Internalization Controls
Behavioral Effects of Agonists
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Abstract

Background: GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies.
Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly
regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback
regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR
internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which
do not adequately model physiological environments and the complexity of integrated responses observed in the whole
animal.

Methods and Findings: In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-
eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed
the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct
internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally
reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals
initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant
receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was
temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast,
treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis
showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390
produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations
in vivo which likely lead to differential receptor trafficking.

Conclusions: Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell
surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral
desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully
controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs.
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Introduction

G protein coupled receptors (GPCRs) form the largest family of

membrane receptors [1]. A variety of physiological functions are

regulated by GPCRs, which represent the most common target for

therapeutic drugs. Stimulation of a GPCR by an extracellular

messenger, either physiological or synthetic, triggers intracellular

receptor signaling via heterotrimeric G proteins. This process is

highly regulated and receptor activation is typically accompanied by

desensitization of receptor signaling, a complex feedback regulatory

process whereby receptor responsiveness decreases upon continued

agonist stimulation. Receptor trafficking is considered to be a key

process in the regulation of receptor signaling. In particular, many

studies have shown that receptor stimulation by an agonist

concomitantly leads to receptor signaling and redistribution of

receptor molecules away from the cell surface (for review see [2–3]).
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The significance of receptor endocytosis in the regulation of

GPCR function is under intense investigation, and many aspects

deserve further clarification. First, receptor internalization may

influence agonist efficacy in different ways. The most straightfor-

ward hypothesis proposes that receptor internalization reduces

agonist effects, as fewer receptors are available at the cell surface.

On the contrary, it has also been suggested that receptor

endocytosis promotes rapid resensitization by recycling the

receptor back to the cell surface, which contributes to the main-

tenance of a large population of active receptors at the plasma

membrane [4]. Second, receptor internalization may not simply

terminate intracellular signaling. Classically, agonist binding

results in phosphorylation of the GPCR, which in turn leads to

recruitment of b-arrestins. Binding to these adaptor proteins

initiates receptor internalization and physically prevents further

receptor interaction with heterotrimeric G proteins. However,

recent findings suggest that the internalized receptor-b-arrestin

complex can in turn recruit signaling proteins and initiate further

intracellular signaling [1,5,6]. Third, the physiological relevance of

many receptor trafficking studies is limited, as the majority have

been performed in transfected cellular models. These in vitro

systems may not reflect in vivo situations in terms of receptor

density, protein content of receptor-expressing cells, or even

receptor localization within subcellular compartments, as is the

case for neurons [3]. Additionally, data from cellular models

provide no understanding of how receptor trafficking influences

integrated responses in the living organism. Fourth, individual

GPCRs vastly differ in their trafficking properties, leading to

specific regulatory mechanisms for each receptor. Overall, the

characterization of receptor trafficking in native tissues is only

beginning [7].

Due to limited availability of specific antibodies, in vivo

trafficking of GPCRs has been investigated for only a limited

number of native receptors [8–12]. Recently we have created

knock-in mice expressing a fully functional fluorescent delta opioid

receptor (DOR-eGFP) in place of the endogenous delta receptor.

In these animals DOR-eGFP are expressed at physiological levels

within their native environment. Furthermore, these receptors are

directly visible in vivo. These mutant mice have proven to be an

exceptional tool in studying receptor neuroanatomy, real-time

receptor trafficking in live neurons, and receptor movements in vivo

[13]. This unique animal model can now be used to determine the

relationship between receptor trafficking in neurons and receptor

function at a behavioral level. Our previous work using DOR-

eGFP mice showed that treatment with the delta agonist SNC80

triggered massive receptor endocytosis throughout the nervous

system, together with locomotor activation. We further showed

that mice with internalized receptors did not show locomotor

activation following a second drug administration [13]. This was a

first indication that internalization may impact delta receptor

function in vivo, at least in the case of locomotor responses.

The opioid system is involved in pain control, reward

processing, and stress responses. Genetic approaches have

revealed that the delta receptor fulfills roles highly distinct from

those of mu and kappa opioid receptors [14,15]. Several studies

have shown that delta receptors can specifically alleviate persistent

pain [16–20]. In the present study we examine the regulation of

delta opioid receptor function in the control of inflammatory pain.

We first characterize trafficking properties of two delta receptor

agonists in live neurons from DOR-eGFP mice. We show that the

two compounds have very distinct internalizing properties, despite

similar in vitro signaling potencies and efficacies. Further, we find

in vivo that a first injection of each agonist in DOR-eGFP mice

reduces inflammatory pain, with similar efficacy for the two drugs.

Importantly, we find that a subsequent agonist administration in

vivo has very distinct consequences on the behavioral response.

The high-internalizing agonist no longer relieves pain, indicating

that acute in vivo desensitization has occurred. In contrast the low-

internalizing agonist remains fully active following the second

administration, demonstrating that non-internalized receptors

remain functional. Finally, we show that receptor phosphorylation

and uncoupling parallels receptor internalization, and that

restoration of surface receptors reinstate opioid analgesia. These

data unambiguously demonstrate that receptor internalization

fully determines drug efficacy in vivo.

Results

SNC80 and ARM390 show similar pharmacology at the
DOR-eGFP receptor

SNC80 [21] is a widely used non-peptidic compound that shows

high delta selectivity in vivo, and was chosen as a reference delta

receptor agonist in this study. AR-M100390 (ARM390) is a close

SNC80 derivative [22], reported to be a poorly internalizing

agonist in a neuroblastoma cell line [23]. We compared ARM390

and SNC80 activities throughout this study. Met-enkephalin was

also examined ex vivo, as a prototypic endogenous delta opioid

receptor agonist.

We first characterized the pharmacological profiles of the three

delta receptor agonists in brain membranes prepared from DOR-

eGFP mice. In competition binding experiments, all three ligands

displaced [3H]naltrindole with binding affinities in the nanomolar

range (Table 1). The two synthetic alkaloids, SNC80 and

ARM390, had affinities which were approximately 10 times

greater than the affinity of Met-enkephalin. We compared

functional responses of all three ligands in the [35S]GTPcS

binding assay (Table 1). The three agonists had similar potencies.

Both SNC80 and ARM390 produced similar levels of receptor

stimulation, while Met-enkephalin was slightly more efficacious.

SNC80 and ARM390 therefore bind to and activate the DOR-

eGFP receptor with comparable potencies and efficacies.

SNC80 and ARM390 differentially internalize the DOR-
eGFP receptor in live neurons

Data mainly from transfected cellular models ([24], and

references therein), and also from in vivo experiments [12,25,26],

indicate that delta agonists trigger delta receptor internalization.

Similarly, our initial examination of primary neurons from DOR-

eGFP mice, showed that Met-enkephalin and SNC80 trigger rapid

internalization of the fluorescent receptor [13]. Here we compared

internalization evoked by Met-enkephalin, SNC80 and ARM390

in live hippocampal and striatal neurons from DOR-eGFP mice,

by real time confocal microscopy. Prior to drug administration,

DOR-eGFP fluorescence was distributed along the entire cell

membrane. At all tested concentrations (10 nM, 100 nM, 1 mM)

Met-enkephalin and SNC80, induced rapid DOR-eGFP cluster

formation and complete loss of surface labeling (see Figure 1A and

Movies S1 and S2). In addition, co-expression of these internalized

receptors with a lysosome marker (LysoTracker Red DND 99;

Figure 1B) indicated that DOR-eGFP receptors were targeted to

the lysosomal compartment. In contrast, 100 nM ARM390 failed

to induced receptor endocytosis (Figure 1A and Movie S3). A 100-

times higher ARM390 concentration was required to internalize

DOR-eGFP (Movie S4). Similar results were obtained for both

neuronal preparations (Table 1).

In conclusion, although SNC80 and ARM390 having similar

binding properties, the two drugs produce distinct internalization

efficacies at DOR-eGFP receptors. SNC80 is a high-internalizing

In Vivo Delta Receptor Traffic
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agonist whereas ARM390 appears to be a low-internalizing

agonist under ex vivo experimental conditions.

SNC80 and ARM390 differentially regulate DOR-eGFP
receptor function in vivo

We next determined whether equipotent (see Figure S1) doses of

SNC80 and ARM390 differentially affected behavior in a model

of inflammatory pain. DOR-eGFP mice were tested in the

Complete Freud’s Adjuvant (CFA) model of inflammatory pain

[27]. In this behavioral model, delta agonists show anti-allodynic

and anti-hyperalgesic properties [17–19] and delta receptor

knockout mice display enhanced pain [28]. CFA was injected

either in the paw or the tail of DOR-eGFP mice to measure

mechanical or thermal responses, respectively.

Forty-eight hours post-CFA, we observed mechanical allodynia

using von Frey stimulation (paw CFA) and heat hyperalgesia in a

tail immersion assay (tail CFA) (Figure 2B, C and D, dashed line

vs. control). CFA-evoked pain was almost completely abolished

with the first administration of either SNC80 or ARM390, and

both produced comparable effects (Figure 2B, C and D, Test 1).

However, a subsequent injection of SNC80 or ARM390 produced

distinct responses. The pain-relieving effects of SNC80 were

completely lost while ARM390 remained fully active (Figure 2B,

Test 2).

To determine if the acute behavioral desensitization after

SNC80 treatment could be generalized to other delta agonists, we

performed a cross-over experiment (Figure 2C). As before, the first

injection of SNC80 and ARM390 similarly reversed both CFA-

induced mechanical and thermal pain (Test 1). Mice treated with

SNC80 were subsequently administered ARM390, but this

injection was ineffective. Conversely animals treated with

ARM390 were re-challenged with SNC80, and this significantly

attenuated both mechanical and thermal pain responding

(Figure 2C, Test 2).

In order to address the possibility that these results were limited

to DOR-eGFP mice, we tested for acute behavioral desensitization

in commercial C57BL/6J mice (Figure 2D). The results were

similar to those obtained with DOR-eGFP mice. CFA in the paw

or tail produced robust allodynic or hyperalgesic responses, which

were completely reversed by the first injection of SNC80 or

ARM390 (Figure 2D, Test 1). As seen previously, a subsequent

injection of SNC80 was ineffective, but repeated injection of

ARM390 continued to attenuate mechanical allodynia and

thermal hyperalgesia (Figure 2D, Test 2).

Altogether, SNC80 treatment prevents further responding to

either agonist, whereas ARM390 treatment does not disrupt

subsequent responses to the two drugs. Therefore, initial exposure

to the high-internalizing but not the low-internalizing agonist

abolishes DOR function in vivo.

DOR-eGFP receptor internalization in vivo parallels
receptor phosphorylation and uncoupling from G
proteins

We characterized the status of DOR-eGFP receptors in

neurons, at the time of the second injection. Three other groups

of animals were treated identically to control, SNC80 and

ARM390 groups, but were sacrificed for ex vivo analysis, instead

of receiving the second drug treatment (see time line in Figure 2).

In the first group of animals we examined DOR-eGFP

subcellular localization in three CNS regions (striatum, hippo-

campus, and spinal cord) as well as in dorsal root ganglia using

confocal microscopy (Figure 3A). SNC80-treated animals showed

robust internalization of DOR-eGFP in all regions examined.

Table 1. Pharmacological and internalization properties of delta agonists at the DOR-eGFP receptor (see Materials and Methods).

Affinity (Competition Binding) G protein coupling ([35S]GTPcS binding)

Ligand Ki (nM) EC50 (nM) Emax (% basal)

SNC80 9.160.5*** 121.5636.3 228.468.7

ARM390 2.360.3*** 169.369.5 214.369.6

Met-enkephalin 66.85612.9 94.5764.0 294.263.9***

Endocytosis efficiencies

Concentration (nM) Striatum Hippocampus

E1/2 (min) E1/2 (min)

SNC80 1000 1.860.5 3.360.8

100 3.860.8 4.960.5

10 10.661.8 14.962.0

ARM390 1000 4.760.7 5.860.3

100 ND ND

Met-enkephalin 1000 1.3260.22 1.4160.37

100 3.9360.16 2.8760.52

10 7.1360.98 4.0660.75

For competition binding experiments, affinities are shown as Ki values. For the [35S]GTPcS assay, ligand potencies are expressed as EC50 values, and maximum activation
levels are indicated as Emax. Basal binding (100%) is defined as [35S]GTPcS responses in absence of ligand. All data are expressed as mean6SEM from 3–4 independent
experiments performed in duplicate with two different membrane preparations.
***p,0.001, one-way ANOVA. In primary neuron cultures, quantification of agonist-induced internalization was performed using real time confocal microscopy. The

number of DOR-eGFP vesicles at various time points was counted from the corresponding videos. When internalization occurred it was completed by 60 min, and
the number of DOR-eGFP vesicles at this time point was defined as 100%. Endocytosis efficiencies (E1/2) were defined as the time needed to internalize 50% of DOR-
eGFP. ND indicates that weak or no change in surface labeling was detected. Data are mean6SEM for 4–9 independent experiments.

doi:10.1371/journal.pone.0005425.t001
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Even almost 5 hours after drug administration, very little DOR-

eGFP was observed on the cell surface of neurons, in both cell

bodies and processes. In contrast, almost no DOR-eGFP vesicles

were observed in the ARM390 group, where continuous

fluorescent labeling was clearly located on the cell surface.

Quantification of intracellular fluorescence confirmed that

SNC80, but not ARM390, induced internalization (Figure 3A,

histogram). Noticeably, injections of higher doses of ARM390 (30

and 60 mg/kg) also failed to produce DOR-eGFP internalization

(data not shown), confirming the poor internalization potency of

this compound in vivo. Hence, although both agonists showed

similar pain relieving properties, only SNC80 produced DOR-

eGFP internalization in vivo in both central and peripheral nervous

systems.

In the second group of animals, we investigated DOR-eGFP

coupling to G proteins in brain membranes and spinal cord

homogenates at the time of the second injection (Figure 3B).

Concentration response curves in the [35S]GTPcS binding assay

were established to both SNC80 and ARM390. SNC80-treated

animals showed a 50–70% decrease in Emax responses, indicative

Figure 1. Delta agonists differentially internalize DOR-eGFP in primary neurons. Striatal and hippocampal primary neurons were treated
for 60 minutes with Met-enkephalin, SNC80 or ARM390. (A) Representative images of hippocampal neurons treated with 100 nM of agonists are
shown. Scale bar is 12 mm. (B) Internalized DOR-eGFP co-localized with lysosomes. Striatal primary neurons were incubated with Met-enkephalin
(100 nM) or SNC80 (100 nM) for 20 or 120 minutes, along with LysoTracker Red DND 99 (300 nM); scale bar is 12 mm.
doi:10.1371/journal.pone.0005425.g001
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of cellular desensitization. However, the ARM390-treated group

showed similar [35S]GTPcS binding to the control group,

demonstrating that surface receptors remained functionally

coupled.

In the third group, we determined whether SNC80 and

ARM390 induce different DOR-eGFP phosphorylation states, as

GPCR desensitization is often preceded by agonist-induced

receptor phosphorylation [7,29]. DOR-eGFP mice were treated

with drug, and the presence of phospho-DOR Ser(363) was

determined using western blot (Figure 3C). Only SNC80

treatment produced significantly higher levels of phosphorylated

receptor as compared to controls. To control for the specificity of

the antibody, delta opioid receptor knockout mice were also

treated with SNC80 (10 mg/kg ), and in this case no phospho-

DOR band was detected. Thus, SNC80-induced phosphorylation

of DOR-eGFP likely contributes to receptor desensitization, a

phenomenon not observed after ARM390 treatment.

Hence, SNC80 triggered DOR-eGFP phosphorylation, uncou-

pling and endocytosis, while none of these events occurred with

ARM390. This result indicates that regulatory processes, which

occur at the neuronal level, are triggered by SNC80 only and are

likely associated in vivo.

Behavioral desensitization is transient
We finally determined whether SNC80-induced behavioral

desensitization could be reversed over time (Figure 4A). As seen

previously, first exposure to SNC80 significantly attenuated

allodynia, and a subsequent injection 4 hours later was ineffective.

In contrast, mice that were re-challenged 24 hours following the

first injection showed a clear anti-allodynic response to SNC80.

Correspondingly, robust DOR-eGFP endocytosis was observed 4,

but not 24 hours following drug treatment (Figure 4B). Hence,

SNC80-induced internalization and the concomitant behavioral

desensitization are transient phenomena.

Discussion

Delta opioid receptors undergo long-term sequestration
in vivo

GPCR trafficking to and from the cell surface has been

extensively studied in cellular models [2]. Agonist-induced

endocytosis reduces the number of receptors accessible to

extracellular agonists, and decreases drug efficacy shortly after

internalization. Subsequently, internalized GPCRs can be sorted

into multiple regulatory pathways. Some receptors recycle rapidly

from early endosomes, leading to prompt resensitization of

receptor function. Other receptors are targeted to late endosomes

and may recycle slowly or be targeted for lysosomal degradation,

resulting in prolonged attenuation of agonist-induced responses

(for review see [2,5]).

Many studies in neuronal and non-neuronal cell lines indicate

that delta receptors are degraded after agonist-induced internal-

ization [30–33]. However, no study has addressed the trafficking

of delta receptors in vivo. Our data indicate that receptor

internalization does not result in fast receptor recycling in DOR-

eGFP mice. Four hours after the first injection of SNC80, a

substantial amount of DOR-eGFP remained in intracellular

clusters, and surface fluorescence was undetectable in neurons

Figure 2. Differential in vivo regulation of DOR by SNC80 and
ARM390. (A) Time line of the experiments is shown on top. (B, C and
D) Test 1: mechanical (CFA paw) and thermal (CFA tail) responses in
animals treated with vehicle (Control), SNC80 (10 mg/kg) or ARM390

(10 mg/kg). Test 2: animals re-challenged four hours later with the same
drug (B and D) or the other drug (C). Dashed lines represent baseline
mechanical or thermal responses pre-CFA. For drug effects *** p,0.001,
two-way RM ANOVA, n = 5–8 mice/group.
doi:10.1371/journal.pone.0005425.g002
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Figure 4. Restoration of DOR-eGFP function. (A)Test 1: mechanical (CFA paw) and thermal (CFA tail) responses in animals treated with vehicle
(Control) or SNC80 (10 mg/kg). Test 2: animals re-challenged 4 (left panels) or 24 hours (right panels) with SNC80. Dashed lines represent baseline
mechanical or thermal responses pre-CFA. For drug effects * p,0.05, **p,0.01, two-way RM ANOVA, n = 4–8 mice/group. (B) CNS regions were
analyzed by confocal microscopy, and representative images are shown. Mean intracellular DOR-eGFP fluorescence was quantified in 5–7 sections/
region/mouse. White bars, control group; black bars, SNC80 group re-challenged 4 hours after Test 1; grey bars, SNC80 group re-challenged 24 hours
after Test 1; **p,0.01, *** p,0.001, one-way ANOVA, n = 3–5 mice/group.
doi:10.1371/journal.pone.0005425.g004

Figure 3. SNC80, but not ARM390, triggers DOR-eGFP internalization, uncoupling, and phosphorylation in vivo. Separate groups of
DOR-eGFP mice were treated as in Figure 2, but instead of the second drug administration (A and B) or 20 min later (C) tissue was harvested for ex
vivo analysis. (A) CNS regions and dorsal root ganglia were analyzed by confocal microscopy and representative images are shown. Mean intracellular
DOR-eGFP fluorescence was quantified in 5–7 sections/region/mouse. White bars, control group; black bars, SNC80 group; grey bars, ARM390 group;
*p,0.05, **p,0.01, *** p,0.001, one-way ANOVA, n = 3–5 mice/group. (B) [35S]GTPcS concentration-response curves to SNC80 and ARM390. y-axis
shows mean6SEM specific [35S]GTPcS binding expressed as percentage basal binding (i.e. absence of agonist). Experiments were performed in
triplicate; n = 3–5 mice/group. (C) Western blot of phospho-DOR (Ser 363) in hippocampal samples collected 20 min post-drug injection. KO, DOR
knockout mouse challenged with SNC80 (10 mg/kg). Mean optical density was assessed for n = 3 mice/group.
doi:10.1371/journal.pone.0005425.g003

In Vivo Delta Receptor Traffic

PLoS ONE | www.plosone.org 7 May 2009 | Volume 4 | Issue 5 | e5425



from all areas examined. One cannot exclude the possibility that

some recycling of DOR-eGFP occurred after SNC80 treatment,

which was not detectable in our experimental conditions.

However, our behavioral data indicate that at this time point

there was not enough DOR-eGFP on the cell surface to respond to

the second infusion of agonist. Therefore, the predominant effect

of agonist-induced internalization was long-term sequestration.

Furthermore, in primary neurons from DOR-eGFP mice treated

with SNC80 or Met-enkephalin, we found that internalized DOR-

eGFP colocalized with a lysosomal marker as soon as two hours

after agonist exposure. These data strongly suggest that internal-

ized delta opioid receptors are targeted for degradation in living

neurons. Together, our ex vivo and in vivo data definitively classify

delta receptors among slow-recycling/degrading GPCRs. It

remains to be determined if the restored pool of functional

DOR-eGFP receptors observed at the surface of neurons 24 hours

after agonist treatment arises from slow externalization of internal

receptor pools or receptor neosynthesis.

Distinct ligand-dependent conformational states control
DOR-eGFP activity in vivo

The results of this study indicate that DOR-eGFP internaliza-

tion was strongly correlated to receptor phosphorylation and

uncoupling from G proteins. SNC80 produced robust DOR-eGFP

endocytosis, which was concomitant with an increase in receptor

phosphorylation and a decrease in [35S]GTPcS binding. ARM390

did not produce internalization, and correspondingly there was no

change in [35S]GTPcS responses. Thus, in our experiments

receptor coupling and internalization either occurred together or

not at all. Evidence from previous in vitro studies suggest that

GPCR uncoupling can occur without internalization. In neuro-

blastoma cells, ARM390 incubation resulted in desensitization of

the cAMP response, but no change in receptor internalization

[23]. In the same cell line, pharmacological treatments that block

receptor internalization, such as concanavalin A and hypertonic

sucrose, did not affect receptor desensitization [34]. In this study,

we observed no dissociation between these two events in vivo,

suggesting that in this case in vitro observations may not always

predict in vivo processes.

One may speculate on molecular mechanisms governing the in

vivo phosphorylation-uncoupling-internalization regulatory re-

sponse that we observed. Studies in transfected systems have

proposed a general scheme for the desensitization of GPCR

signaling. The agonist-activated receptor is initially phosphorylat-

ed by GPCR kinases (GRKs), and the phosphorylated receptor, in

turn, recruits b-arrestin to the cell surface [6]. Arrestins promote

receptor internalization, and also physically prevent further

receptor coupling to G proteins (for review see [2,29]).

Considering this scenario, we observed that SNC80 but not

ARM390 produced DOR-eGFP phosphorylation on the Ser363

site. This site is a primary phosphorylation site following delta

agonist stimulation, and plays a significant role in subsequent delta

receptor desensitization and internalization [35,36]. The differ-

ence in the ability of SNC80 and ARM390 to produce

phosphorylation at this site, likely accounts for the divergent

internalization profiles of these two drugs. Further, a recent study

in transfected cells showed that delta receptors can adopt several

ligand-specific conformations, which produce different G protein

signaling complexes [37]. In our study, both SNC80 and ARM390

clearly activate a signaling cascade that leads to pain inhibition.

However, ARM390 may bind in a mode that produces receptor

signaling, but may not cause subsequent receptor phosphorylation

and internalization. In contrast, SNC80 may interact differentially

with the receptor binding pocket to promote a distinct active

conformation, which in turn triggers signaling, as well as receptor

phosphorylation and internalization. Consistent with this hypoth-

esis of two different receptor-agonist complexes, molecular models

that compared the two ligands indicated that both compounds

bound to the same region of the delta receptor, but that ARM390

only partially covered the conformational space occupied by

SNC80 [22].

A therapeutic potential for non-internalizing delta
agonists?

In this study we extensively characterized the in vitro and in vivo

properties of ARM390. This compound is a derivative of

SNC80, and has a higher selectivity for delta over mu and

kappa opioid receptors [22]. In DOR-eGFP brain membranes,

ARM390 acted as an agonist and had binding affinities and

potencies similar to SNC80, consistent with the initial charac-

terization of the compound in transfected cells [22]. Further,

ARM390 did not produce substantial receptor internalization

in vivo, as previously observed in cell lines [23]. The lack of

ARM390-induced internalization correlated with continued

receptor coupling to G proteins and in vivo efficacy of

ARM390 at the second drug administration. The inability of

ARM390 to induce receptor endocytosis, therefore, maintained

full receptor function across two sequential drug treatments.

From a therapeutic perspective, these properties could be

advantageous for chronic treatments. Previous studies have

shown the development of rapid tolerance to some of the

behavioral effects of SNC80 in rats [38]. Further, tolerance to

the effects of SNC80 on food response rates was also observed in

rhesus monkeys following both acute and chronic exposure to the

drug [39]. A non-internalizing delta agonist may induce less

analgesic tolerance, although this remains to be studied in

chronic treatment paradigms.

More generally, molecular mechanisms underlying tolerance

are likely unique to each GPCR-agonist combination. To date

the relationship between receptor internalization and in vivo

tolerance has largely been debated in the context of the mu

opioid receptor, where morphine tolerance represents a major

clinical limitation (see [40]). A classical view is that mu receptor

internalization strongly contributes to tolerance, supported

notably by the absence of tolerance to analgesic effects of

morphine in b-arrestin 2 knockout animals [41]. The observa-

tions that morphine poorly internalizes mu receptors [9,10,42],

and that sequestered mu receptors resensitize rapidly by

recycling ([40] and references therein), has led to a different

theory of opioid tolerance. Potent internalizing mu agonists

would allow continuous interruption and subsequent restoration

of receptor function, whereas morphine would produce accele-

rated in vivo tolerance via adaptive cellular responses to

uninterrupted signaling [43,44]. However, mechanistic hypoth-

eses from mu receptor data remain speculative, and are not

directly transposable to delta receptors where rapid recycling

does not occur.

In conclusion, we establish for the first time a direct link

between the localization and function of the delta opioid receptor

in vivo. Delta agonists reduce inflammatory pain, and the lack of

receptor internalization maintains the response whereas receptor

endocytosis acutely desensitizes this response. Our approach may

be valuably extended to other slow-recycling GPCRs, and increase

our knowledge of regulatory mechanisms driving in vivo GPCR

function. The application of these findings may also have

important consequences for drug discovery in many therapeutic

areas.
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Materials and Methods

DOR-eGFP mice
All experiments were performed in accordance with the

European Communities Council Directive of 24 November

1986. Knock-in mice were produced by homologous recombina-

tion. In these mice the eGFP cDNA was introduced into exon 3 of

the delta opioid receptor gene, in frame and 59 from the stop

codon [13]. Receptor binding and signaling properties were

unchanged in DOR-eGFP mutants. Mice aged 12 weeks on

average, were housed in a temperature- and humidity-controlled

animal colony on a 12 h dark-light cycle. Food and water were

available ad libitum.

Delta agonists
SNC80 [21] is a widely used non-peptidic compound that shows

high delta selectivity in vivo, and was selected as a reference delta

agonist in this study (Tocris). AR-M100390 (ARM390, N,

N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide) is a

SNC80 derivative [22], reported to be a poorly internalizing

agonist in a neuroblastoma cell line [23] and was synthesized at

AstraZeneca R&D Montreal (Canada). ARM390 was adminis-

tered per os (p.o) by gavage, as it is an irritant when injected i.p.

(AstraZeneca personal communication).

Ex vivo tissue analysis of DOR-eGFP mice
Membrane preparations were carried out as described previ-

ously [45]. Whole brain and the lumbar segment of the spinal cord

were removed, immediately frozen in isopentane or dry ice, and

stored at 280uC prior to use. For the brain, [3H]naltrindole and

[35S]GTPcS assays were performed on whole brain membranes.

The [35S]GTPcS assay for the spinal cord was performed on

homogenates. Whole brain membranes were prepared by

homogenizing the brain in ice-cold 0.25 M sucrose solution 10

vol (ml/g wet weight of tissue). Samples were then centrifuged at

1100 g for 10 min. Supernatants were collected and diluted 5

times in buffer containing 50 mM TrisHCl (pH 7.4) and 1 mM

EDTA, following which they were centrifuged at 35 000 g for

30 min. The pellets were homogenized in 2 ml ice-cold sucrose

solution (0.32 M), aliquoted and kept at 280uC until further use.

Spinal cords were prepared for binding by homogenization in the

binding buffer (50 mM TrisHCl, 3 mM MgCl2, 0.2 mM EGTA,

100 mM NaCl, pH7.4) and used immediately.

For competition studies, 50 mg of membrane proteins were

incubated with 1 nM [3H]naltrindole, in the presence of variable

concentrations (1024 to 10212 M) of SNC80 or ARM390 for 1 h

at 25uC. Membranes were washed and filtered, and radioactivity

was quantified using a liquid scintillation counter. Assays were

performed in duplicates, in 3 to 4 experiments using 2 different

membrane preparations.

For each [35S]GTPcS binding assay 5 mg of protein was used

per well. Samples were incubated with and without delta opioid

receptor agonists (1024 to 10212 M), for 1 hour at 25uC in assay

buffer containing 30 mM GDP and 0.1 nM [35S]GTPcS. For

whole brain membranes, the buffer used was 50 mM TrisHCl

(pH 7.4), 3 mM MgCl2, 100 mM NaCl, 0.2 mM EGTA. In the

case of spinal cord homogenates, the buffer was the same as that

used for homogenization. For saturation experiments, incubation

was terminated by rapid filtration and washing in ice-cold buffer

(50 mM TrisHCl, 5 mM MgCl2, 50 mM NaCl, pH 7.4). Bound

radioactivity was quantified using a liquid scintillation counter.

Non-specific binding was defined as binding in the presence of

10 mM GTPcS, and basal binding indicates binding in the absence

of agonist.

For Western blot analysis of phosph-DOR, DOR-eGFP mice

were administered either DOR agonist (10 mg/kg) or vehicle and

sacrificed 20 min later. Immediately after decapitation, the

hippocampus was rapidly dissected and kept at 280uC. Frozen

hippocampi were homogenized and sonicated in 2% SDS buffer

containing (in mM) 50 Tris, pH 6.8, 1 EDTA, 1 sodium fluoride,

and 1 sodium orthovanadate, as well as a Complete protease

inhibitor mixture (Roche Applied Science). Homogenates were

boiled at 96u for 4 min, and total protein content was determined

by Bradford assay. Twenty micrograms of protein was loaded on a

SDS-10% bisacrylamide gel and separated by constant voltage of

100 V for 1.5 h, then transferred to polyvinylidene difluoride

membranes at a constant voltage of 100 V for 1 h in cold transfer

buffer (Tris-borate). Membranes were blocked in 5% nonfat dry

milk in a phosphate buffered saline (PBS) solution containing 0.2%

Tween 20, for 2 h. Membranes were probed for phospho-DOR

with primary anti-phospho-DOR (Ser363) antibody (rabbit

polyclonal antibody, 1:1000 Cell Signaling Technology) diluted

in 5% bovine serum albumin and incubated overnight at 4uC.

Membranes were washed three times for 10 min in PBS-0.2%

Tween solution and incubated for 1 h at room temperature in

horseradish peroxidase conjugated anti-rabbit IgG secondary

antibodies (1:20,000; GE Healthcare). The signal was developed

using enhanced chemiluminescent reagents (ECL+; GE Health-

care) and quantified using IMAGEJ. As a loading control, b-

tubulin content was analyzed on the same membrane. Membranes

were stripped of antibodies for 30 min (Re-blot plus solution;

Millipore), rinsed, and blocked at room temperature for 2 h. Blots

were reincubated with b-tubulin primary antibody (mouse

monoclonal) at room temperature for 3 hours, then washed three

times for 10 min and incubated for 1 h at room temperature in

horseradish-peroxidase conjugated anti-mouse IgG secondary

antibodies (1:20,000; GE Healthcare) before reaction with ECL+
solution.

To determine the subcellular distribution of DOR-eGFP after

agonist stimulation, mice were anaesthetized with ketamine/

xylazine (100/10 mg/kg) and intracardially perfused with 10 ml

9.25% sucrose in ddH2O followed by 30 ml 4% paraformalde-

hyde in 0.1 M phosphate buffer (PB; pH 7.4). Brains, spinal cords

and dorsal root ganglia were then post-fixed for 2 hours at 4uC in

the fixative solution. The tissue was then cryoprotected at 4uC in a

30% sucrose, 0.1 M PB solution until the tissue sank. Tissue was

then frozen in isopentane and stored at 280uC until cut. Freely

floating sections were cut at 30 mM in a cryostat. Sections were

mounted on SuperfrostTM glass slides in 0.01 M PBS, and DOR-

eGFP receptor distribution was immediately examined in five

different delta receptor-rich regions. All samples were observed

under Leica confocal microscopes (SP1 or SP2UV; 636objective

and numerical aperture of 1.32), and the LCS (Leica) software was

used for image acquisition. Quantification of cytoplasmic mean

fluorescence intensity was determined using IMAGEJ software.

Nuclear fluorescence defined the background level and was

subtracted from the intracellular fluorescence measures. For each

region several intracellular samples were taken and averaged to

determine the intracellular mean fluorescence. In total, 5–7

different neurons were examined/region/mouse; n = 3–5 mice/

group.

Internalization in primary neuron cultures from DOR-
eGFP mice

Both the preparation of primary neuron cultures, and the real

time confocal microscopy were performed as described previously

[13]. Briefly, P0 mice pups were decapitated, and hippocampi

and striata were dissected and digested with papain (15 U/ml,
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Worthington). Cells were plated either on glass coverslips, or in

glass-bottom dishes coated with poly-L-lysine (PLL, Sigma) in

B27/NeurobasalA medium (Invitrogen) completed with 0.5 mM

glutamine and antibiotics. Cells were plated at a density of

86104 cells/cm2. Medium was replaced 30 min after plating,

and half the medium changed every 5–7 days. Cultures were

maintained for 15 days in vitro (DIV). Fully matured primary

neurons (DIV 10 to 14) were used for agonist-induced receptor

internalization studies. Samples were observed under a Leica

confocal microscope (SP2 AOBS MP) using a heated stage

(Tempcontrol 37-2, Pecon) and 636 objective (zoom 46) at

37uC. Images were recorded over 60 minutes, and reconstituted

videos (TIMT; in-house software) contained 86 images and lasted

3 seconds. Primary neuron cultures were acutely treated with

SNC80 (10 nM, 100 nM, 1 mM), or ARM390 (100 nM, 1 mM,

10 mM). When internalization occurred, it was completed by

60 min and the number of vesicles was counted manually at 30

to 46 different time points in images extracted from recorded

videos. The number of DOR-eGFP vesicles at 60 min was

defined as 100%. Altogether, 4 to 9 independent experiments

were performed/agonist/concentration.

Inflammatory pain in DOR-eGFP mice
All experiments were performed between 8:00–16:00 h. In all

cases DOR-eGFP animals were habituated to the testing area for

20 minutes daily for 2 days prior to baseline testing. Two different

variations of the Complete Freund’s Adjuvant (CFA) model of

inflammatory pain were used. To assess mechanical pain CFA was

injected into the paw. To assess thermal pain CFA was injected

into the tail. Separate groups of animals were used for each

endpoint.

For mechanical responses, the threshold for responses to

punctate mechanical stimuli (mechanical allodynia) was tested

according to the up-and-down method [46]. In this case, the

plantar surface of the animal hindpaw was stimulated with a series

of eight von Frey filaments (bending force ranging from 0.01 to

2 g). Prior to the injection of CFA baseline mechanical responses

(dashed line) were determined. Inflammation was induced by

injecting 8 ml of CFA into the plantar surface of the paw, and

animals were subsequently tested 48 hours later [27].

For thermal responses, heat hyperalgesia was assessed by

immersing the tail (5 cm from the tip) into a 46uC water bath.

Tail withdrawal latencies were determined, and a cut-off of 40 s

was established. Prior to the injection of CFA baseline mechanical

responses (dashed line) were determined. Inflammation was

induced by injecting 20 ml of CFA 3 cm from the tip of the tail,

and all drug tests occurred 48 hours later.

In order to ensure that all animals were treated similarly, each

mouse received both i.p. and p.o. injections. Therefore, animals

challenged with SNC80 (10 mg/kg, i.p.) also received a p.o.

injection of dH2O (SNC80 group), those challenged with

ARM390 (10 mg/kg, p.o.) received an i.p. injection of 0.9%

saline (ARM390 group), and control animals were injected with

i.p. saline and p.o. dH2O (Control group). Pain responses were

assessed 45 minutes after drug treatment (Test 1). Mice were then

re-challenged with drug or vehicle treatments 4 h or 24 h after the

first test, and tested again 45 min later (Test 2).

Statistical Analysis
All non-linear regression analysis was performed with Graph-

Pad Prism v4 (GraphPad San Diego, CA). In vitro pharmacology

experiments were analyzed using a one-way ANOVA. For

behavioral experiments, a two-way repeated measures ANOVA

was performed using Sigmastat software. Multiple comparisons

were made using Bonferroni corrected t-tests. For quantification of

intracellular fluorescence, a one-way ANOVA was performed, and

Tukey’s tests were used for post-hoc analysis.

Supporting Information

Figure S1 SNC80 and ARM390 produce comparable pain-

relieving effects. DOR-eGFP mice were tested 48 h after

intraplantar injection of CFA into the paw. Separate groups of

mice were challenged with differing doses of SNC80 or ARM390,

and mechanical allodynia was assessed 45 min post-drug. Dashed

line represents basal mechanical responses pre-CFA. *** p,0.001,

two-way ANOVA, n = 3–4 mice/group.

Found at: doi:10.1371/journal.pone.0005425.s001 (0.74 MB TIF)

Movie S1 Real time confocal imaging of Met-enkephalin

(100 nM) induced DOR-eGFP internalization in a primary

hippocampal neuron. A representative movie is shown (n = 4).

Agonist was added at time 0, and remained in the bath for the full

recording duration. Images were automatically recorded during

60 minutes, with increasing time intervals. For details see Methods

section.

Found at: doi:10.1371/journal.pone.0005425.s002 (1.83 MB

MPG)

Movie S2 Real time confocal imaging of SNC80 (100 nM)

induced DOR-eGFP internalization in a primary hippocampal

neuron. A representative movie is shown (n = 5). Agonist was

added at time 0, and remained in the bath for the full recording

duration. Images were automatically recorded during 60 minutes,

with increasing time intervals. For details see Methods section.

Found at: doi:10.1371/journal.pone.0005425.s003 (2.55 MB

MPG)

Movie S3 Real time confocal imaging of ARM390 (100 nM),

which failed to induce DOR-eGFP internalization in a primary

hippocampal neuron. A representative movie is shown (n = 6).

Agonist was added at time 0, and remained in the bath for the full

recording duration. Images were automatically recorded during

60 minutes, with increasing time intervals. For details see Methods

section.

Found at: doi:10.1371/journal.pone.0005425.s004 (3.12 MB

MPG)

Movie S4 Real time confocal imaging of ARM390 (1 mM)

induced DOR-eGFP internalization in a primary hippocampal

neuron. A representative movie is shown (n = 4). Agonist was

added at time 0, and remained in the bath for the full recording

duration. Images were automatically recorded during 60 minutes,

with increasing time intervals. For details see Methods section.

Found at: doi:10.1371/journal.pone.0005425.s005 (2.18 MB

MPG)
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