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Abstract
Purpose

To compare results of population PK analyses obtained with a full empirical design (FD) and an optimal sparse design (MD) in a
Drug-Drug Interaction (DDI) study aiming to evaluate the potential CYP3A4 inhibitory effect of a drug in development, SX, on a
reference substrate, midazolam (MDZ). Secondary aim was to evaluate the interaction of SX on MDZ in thein vivo study.

Methods

To compare designs, real data were analysed by population PK modelling using either FD or MD with NONMEM FOCEI for SX and
with NONMEM FOCEI and MONOLIX SAEM for MDZ. When applicable a Wald’s test was performed to compare model
parameter estimates, such as apparent clearance (CL/F), across designs. To conclude on the potential interaction of SX on MDZ PK, a
Student paired test was applied to compare the individual PK parameters (i.e. log(AUC) and log(C,,,,)) obtained either by a
non-compartmental approach (NCA) using FD or from empirical Bayes estimates (EBE) obtained after fitting the model separately
on each treatment group using either FD or MD.

Results

For SX, whatever the design, CL/F was well estimated and no statistical differences were found between CL/F estimated values
obtained with FD (CL/F =8.2L/h) and MD (CL/F =8.2L/h). For MDZ, only MONOL X was able to estimate CL/F and to provideits
standard error of estimation with MD. With MONOL1X, whatever the design and the administration setting, MDZ CL/F was well
estimated and there were no statistical differences between CL/F estimated values obtained with FD (72 L/h and 40 L/h for MDZ
alone and for MDZ with SX, respectively) and MD (77 L/h and 45 L/h for MDZ alone and for MDZ with SX, respectively). Whatever
the approach, NCA or population PK modelling, and for the latter approach, whatever the design, MD or FD, comparison tests
showed that there was a statistical difference (p<0.0001) between individual MDZ log(AUC) obtained after MDZ administration alone
and co-administered with SX. Regarding C, .., there was a statistical difference (p<0.05) between individual MDZ log(C,..) obtained
under the 2 administration settingsin all cases, except with the sparse design with MONOL I X. However, the effect on C was smalll.
Finally, SX was shown to be a moderate CYP3A4 inhibitor, which at therapeutic doses increased MDZ exposure by a factor 2 in
average and almost did not affect theC__..

Conclusion

The optimal sparse design enabled the estimation of CL/F of a CYP3A4 substrate and inhibitor when co-administered together and to
show theinteraction leading to the same conclusion than the full empirical design.

MESH Keywords Adolescent ; Adult ; Clinical Trials, Phase | as Topic ; methods ; Computer Simulation ; Cytochrome P-450 CY P3A ; antagonists & inhibitors ; Drug
Interactions ; Enzyme Inhibitors ; administration & dosage ; pharmacokinetics ; pharmacology ; Humans ; Male ; Midazolam ; administration & dosage ; pharmacokinetics ;
pharmacology ; Models, Biological ; Predictive Value of Tests ; Research Design ; Substrate Specificity ; Time Factors ; Y oung Adult

INTRODUCTION

Metabolic drug-drug interactions (DDIs) have recently led to prescribing restrictions, non-approval of drugs and withdrawal from the
market by regulatory agencies (1, 2). Thus, the evaluation of the potential risk of metabolic DDI is of high importance within the
pharmaceutical industry in order to improve safety but also reduce the attrition rate of new drugs. According to the guidance for industry
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from the Food and Drug Administration (FDA) (3) dealing with drug interaction studies (Study Design, Data Analysis and Implications for
Dosing and Labeling), “ (...) drug development should follow a sequence in which early in vitro and in vivo investigations can either fully
address a question of interest or provide information to guide further studies. Optimally, a sequence of studies could be planned, moving
from in vitro studies to in vivo human studies, including those employing specia study designs and methodologies where appropriate.
Indeed, in many cases, negative findings from early in vitro and early clinical studies alow to eliminate the need for later clinical
investigations'. In this context, the aim of this work was to evaluate a global strategy to design early clinical DDI studies using only early
in vitro study results.

Based on early in vitro study results, a DDI study was planned to evaluate the potential inhibitory effect of a phase | compound from
Servier research (called SX in the present paper) on areference CY P3A4 substrate, midazolam (MDZ). At this stage of SX development,
only in vitro information was available regarding the potential DDI and the goal for the pharmacokinetic (PK) department was to
determine the design of the in vivo DDI study, such as the sampling time design.

To achieve this goal, a global approach including physiologically based pharmacokinetic (PBPK) model predictions, population PK
modelling and multiresponse optimal design, was applied to advise an optimal sampling time schedule. Methods and results from this
study are presented in ajoint paper (4). A full empirical design (FD) in which the optimal sampling times were included was used in the
clinical trial. The FD contained 11 and 13 sampling times for MDZ and SX, respectively, whereas the MD had only 5 joint sampling times
for both drugs.

To evauate if this global approach could be applied in drug development, the main objective of the present work was to analyse real
data by population PK modelling using either FD or MD and then to compare population PK parameters between the two designs.
Secondary objectives were to evaluate the potential metabolism interaction of SX on MDZ, and to compare observations to PBPK
predictions.

MATERIAL AND METHODS
Study design of the DDI clinical trial

The study was conducted in 12 Caucasian male healthy volunteers aged between 18 and 40 years (inclusive), with a weight between
50 kg and 100 kg and a Body Mass Index (BMI) less than or equal to 28 kg/m?2 (BMI= Weight (kg)/Height? (m?)). All subjects gave
informed written consent to participate in the study.

Subjects were hospitalized in the clinical unit from the morning of day 0 (DO) to the morning of D8 remaining under permanent
medical and nursing supervision. Treatments prohibited in the 4 weeks before inclusion and during the study were any treatment which
could lead to induction or inhibition of hepatic microsomial enzymes P450 3A4 (such as ketoconazole and other antifungal azole
derivatives, macrolides antibiotics, cisapride, cimetidine, omeprazole, tricyclic antidepressant drugs, sildenafil, phenobarbital). Grapefruit
consumption (juice or fruit) was stopped at least 2 weeks before inclusion of subjects and during the study.

Before drug administration, the subjects were fasting since the previous evening. Study drugs were administered with a standard glass
of till water (180 ml) and a standard meal was allowed no sooner than 2 hours after drug administration.

On D1, the 12 subjects received a single dose of MDZ (7.5 mg, per 0s) in order to assess its PK after administration of MDZ alone.
From D2, SX was administered twice a day to reach approximately steady-state (SS) at D6 (96 h after first SX dose). On D6, 2 hours after
the first daily dose of SX, a single dose of MDZ (7.5 mg, po) was administered in order to reach maximal concentrations (C,,) at the
same time for both compounds. SX was administered once again on D6, 12h after the morning SX dose (Study design schemain Fig. 1).

For PK assessment of MDZ, the sampling times were as follows: on D1, prior to MDZ administration (HO) and 15min, 30min, 1h, 2h,
3h, 4h, 5h30min, 8h30min, 10h30min, 12h30min and 22h after D1 MDZ administration; on D6, the sampling times were the same as those
on D1. Thisfull sampling design with 11 sampling times (without taking into account the predose sample) each day was called MDZ FD.

For PK assessment of SX, the sampling times were as follows: on D6, prior to the first daily dose of SX (HO) and 40min, 1h, 2h,
2h15min, 2h30min, 3h, 4h, 5h, 6h, 7h30min, 10h30min and 12h after D6 morning SX administration, and then 30min, 40min, 2h30min,
4h, 6h, 7h30min and 12h after the second daily dose of SX. This full sampling design with 13 sampling times (including the predose
sample) over thefirst daily dose interval was called SX FD. Amongst these 13 sampling times, 8 were the same as those of MDZ FD.

A multiresponse optimal design approach has been previously performed (4) to determine joint optimal sampling times for both MDZ
and SX. Thus, among the sampling times of the full sampling design, the 5 joint optimal sampling times each day determined previously
by a multiresponse design approach were as follows: on D1, 15min, 1h, 5h30min, 10h30min and 22h after D1 MDZ administration; on
D6, 2h15min, 3h, 7h30min, 12h30min and 24h after the first daily dose of SX, which corresponds to15min, 1h, 5h30min, 10h30min and
22 h after D6 MDZ administration.
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Thus, for MDZ, the 5 optimal sampling times were the same over the 2 periods (D1 and D6), and by definition they were the same for
SX on D6. This optimal sparse sampling time design was denoted MD (for multiresponse design) throughout the paper.

Population PK modelling

To analyze observed data of the clinical trial by population PK modelling, models previously developed from PBPK simulations were
directly applied and PK model parameters were estimated. See the first part of thiswork (4) for the details about building and evaluation of
the population PK models built from PBPK simulated data.

Briefly, the SX population PK model was a two-compartment model with a first-order absorption constant (k) which was fixed.
Estimated fixed-effect parameters were the apparent elimination clearance (CL/F), the apparent central compartment volume (V /F), the
apparent distribution clearance (Q/F) and the apparent peripheral volume (Vp/F). Exponential random-effects were added on all
fixed-effect parameters to describe inter-individual variability (11V) and a correlation between the random variables of CL/F and V /F was
estimated. The residual error model was a combined (additive and proportional) error model in which the additive part was fixed. SX
parameter estimates from PBPK simulations are in the Table V111 of the first part of thiswork (4).

For MDZ the population PK model was a two-compartment model with a zero-order absorption constant. Estimated fixed-effect
parameters were CL/F, Vc/F, Q/F, Vp/F and the duration of the absorption (T,,). Exponential random-effects were added on all
fixed-effect parameters to describe 11V and a correlation between the random variables of CL/F and Vc/F was estimated. The residual error
model was a combined (additive and proportional) error model in which the additive part was fixed. MDZ parameter estimates from PBPK
simulationsarein Table IX of the first part of thiswork (4).

The population PK models were applied separately to fit SX and MDZ ohserved concentration-time profiles obtained in the clinical
trial from either FD or MD. For MDZ, the MDZ model was applied to observed PK data of both administration settings (without and with
SX co-administration) but each occasion was analysed separately. Population PK parameters were estimated using NONMEM (5) with the
FOCEI (First Order Conditional Estimation with Interaction) method. When, the minimization was not successful or when the covariance
step was not obtained in NONMEM with FOCEI, population PK parameters were estimated using MONOLIX version 2.1 with the SAEM
(Stochastic Approximation version of the Expectation Maximization algorithm) method. MONOLIX (www.monolix.org) is a new
software dedicated to the analysis of non-linear mixed effect models developed by Lavielle and Mentré (6). The algorithm used in this
software combines the SAEM algorithm with a Markov Chain Monte Carlo procedure. The convergence of this algorithm and its good
statistical properties have been proven and published (7, 8, 9, 10). The algorithm is fast and efficient and converges in situations where
other reference methods (including NONMEM) do not. It has aready been used with success for different PK and PK/PD
(Pharmacodynamic) applications (6, 11).

SX and MDZ population PK parameter estimates obtained with MD were compared statistically to those obtained with FD using a
Wald test (p<0.05). For each parameter, we tested whether the difference between the estimates obtained with each design, FD and MD,
was statistically significant using the following Wald statistic (12):

[PFD wMD
| FDy MD)\?
VSE(y™) +SE(p™)
where wFP and yMP are the population PK estimates obtained using FD and MD, respectively, and, SE(wP) and SE(yMP) are the
standard error of estimation of the corresponding population PK parameter using FD and MD, respectively. Asymptotically, maximum
likelihood estimators follow a normal distribution. Therefore, under HO (null hypothesis), w should follow a normal distribution with a

mean equalsto 0 and a variance equalsto 1 (N(0,1)) and can be compared to the corresponding critical value of aN(0,1).

W=

Individual empirical Bayes estimates (EBES) of the MDZ PK parameters were derived from the results in each group independently
i.e. for each administration setting, for each design and for each estimation method.

Non-compartmental analysis from full design

Based on the MDZ and SX individual concentration-time profiles obtained in the clinical trial with the FD, a non-compartmental
approach (NCA) analysis was performed using the method described in the first part of this work (4). PK parameters were calculated for
each subject, under each administration setting for MDZ (alone or co-administered with SX), and for SX after the two SX administrations
at D6 (dose interval=12h). Calculated parameters are the maximal concentration (C_..,), the area under the curve of concentrations over the
dose interval (AUC;) for SX and the area under the curve between 0 and the infinity (AUC) for MDZ. Results are expressed as median |

minimum-maximum] values.

The NCA analysis was performed with WinNonli n® Professional version 3.3 and SAS version 8.
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Analysis of the potential metabolism interaction: comparison tests

To study the interaction of SX on MDZ, comparison tests were performed to test the difference between MDZ individual PK
parameters (i.e. AUC and C_ ) obtained after administration of MDZ alone and when co-administered with SX. The Student paired test
with n-1 degrees of freedom is the usual test for the comparison between the two groups of the mean of log(AUC) estimated by NCA. As
described by Panhard and Mentré (13, 14), this test can aso be applied to compare the mean log(AUC) between the two treatment arms
estimated from the individual EBE after fitting the population model separately on each treatment group. AUC are derived from CL/F by
AUC= D/CL/F where D is the dose. Therefore, the Student paired test was applied to compare the log(AUC) between the two treatment
groups (MDZ alone and MDZ co-administered with SX) obtained by NCA using FD but also by population PK modelling using either FD
or MD.

In the same way, Student paired tests were applied to compare the log(C,.,) between the two treatment groups for each approach. In
the population PK modelling approach, individual C_,, were obtained by simulation (step of 0.1h for time interval).

90% confidence intervals (Cl) of geometric means were computed for MDZ AUC and C_, ratios (AUC,,,./AUC,,, and C
mbz+sx! Crmax Mpz) Obtained either by NCA or by population PK modelling.

Comparison of in vivo resultswith PBPK predictions

PBPK predictions described in the first part of this work (4) were compared with in vivo concentration-time profiles observed in the
clinical trial. Firstly, for both compounds, MDZ and SX, at D1 for MDZ only and D6 for both drugs, median, 5 and 95" percentiles of
PBPK simulated concentration-time profiles were computed and compared graphically to observed concentration-time data obtained in the
clinical trial.

Secondly, PK parameters previously computed from PBPK predictions by NCA (4) were compared to PK parameters obtained by
NCA of the in vivo concentrations-time profiles observed in the clinical trial. For in vivo data analysis, observed AUC and C,_, inhibition
ratios (AUC,,p74+5/AUCpz ad C . vipz+sx/C ) were compared to predicted C_,, and AUC inhibition ratios obtained by PBPK
approach.

max MD.

RESULTS

Analysis of thein vivo data by population PK modelling
SX population PK model

The SX population PK model previously devel oped was applied to data observed in the clinical trial with FD and MD. There were 240
and 60 SX concentrations obtained in the 12 subjects after repeated oral doses of SX (dose interval of 12h for 5 days) in the FD and the
MD, respectively.

For FD and MD, SX parameter estimates with their relative standard errors (RSE%) obtained with NONMEM arein Table | (a). Using
NONMEM, the minimization was successful and the covariance step was obtained for the 2 designs with the FOCEI method. With the FD,
parameters were well estimated (RSE% were less than or equal to 16% for fixed-effect parameters, except for Q/F for which RSE was 28%
). With MD, RSEs were higher than with FD (between 5 and 64% for fixed-effect parameters). SX CL/F was very well estimated whatever
the design as CL/F RSEs were 6 and 5% with FD and MD, respectively. There were no statistical differences (p<0.05, Wald's test)
between parameters estimated using FD and MD, except for the estimates of Vp/F and of the proportional part of the residual error. The
difference of estimates between the two designs was high only for Vp/F. This could be due to the FOCEI agorithm in NONMEM, which
stopped in alocal minimum.

MDZ population PK model

The MDZ population PK model previously developed was applied to observed data when MDZ was given alone (D1) or
co-administered with SX (D6) using FD or MD. There were 142 and 58 MDZ concentrations obtained in the 12 subjects after a single
7.5mg MDZ ora dose administration with or without SX co-administration in the FD and the MD, respectively.

MDZ parameter estimates with their relative standard errors (RSE%) obtained with NONMEM and MONOLIX, arein Table | (b) for
FD and MD, and for the two administration settings, with or without SX co-administration. Fits of MDZ concentration-time profiles after
administration of a single dose of MDZ (7.5mg, per o0s) alone and co-administered with SX, obtained with MONOLIX using the optimal
sparse design (MD) are displayed in Fig. 2 for atypical subject.

Using NONMEM, the minimization was successful for 3 out of the 4 population PK analyses of MDZ using the FOCEI method. The
minimization was not successful for the sparse sampling time design, MD, when MDZ was co-administered with SX. The run was
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terminated due to rounding errors (error 134 in NONMEM), but parameter estimates were close to those obtained with the full sampling
time design, FD. Moreover, for MD, the covariance step was not obtained when MDZ was administered alone. For all these analyses, only
[V on CL/F and V JF were estimated.

With FD, whatever the administration setting, with or without SX co-administration, parameters were well estimated (less than or
equal to 21% for fixed-effect parameters). With MD, the accuracy of estimation was not obtained. Thus, with NONMEM, parameter
estimates were not compared across designs, as the covariance step was not obtained with MD (Wald's test not applicable). Therefore,
MONOLIX was used in order to try to obtain parameter estimates with their standard errors of estimation for the 4 population analyses.

Using MONOLIX, convergence was obtained in the 4 MDZ population analyses. Only 1V on CL/F and V /F were estimated, except
for MD without co-administration of SX for which 11V was also estimated on T, (absorption duration of the zero-order absorption
constant).

RSE (%) given by MONOLIX were aways obtained and were always higher than those given by NONMEM (when obtained). For
FD, RSEs were between 11 and 34% for fixed-effect parameters. RSEs were higher for MD than for FD, and particularly much higher for
V/F and Q/F. However, CL/F were always adequately estimated with MD whatever the administration setting. With MONOLIX, there
were no statistical differences (p<0.05, Wald's test) between parameters estimated using FD and MD.

With FD, MDZ inhibition ratios of CL/F (CL/Fy;57 4ond CL/Fyipz+sx) Were 1.9 and 1.8 with NONMEM and MONOLIX, respectively,
and with MD, they were 2.0 and 1.7 with NONMEM and MONOL X, respectively. Whatever the design and the estimation method used,
MDZ CL/F inhibitory ratios were in the same range and led to the conclusion of a moderate interaction between the two drugs. MDZ CL/F
was about 2 fold smaller with SX co-administration.

Results of the analysis of the potential metabolism interaction: comparison tests

MDZ NCA resuits are displayed in Table 2. Tests of comparison based on individual parameters (i.e. log(AUC) and log(C,,)) were
performed using either individual parameters obtained by NCA or individual EBES assessed by population PK modelling. This latter
approach was performed with both designs (FD and MD) and for both estimation methods (FOCEI in NONMEM and SAEM in
MONOLIX). Results are displayed in Table I1. Whatever the approach, NCA or population PK modelling, AUC of MDZ were statistically
different (p<0.001) when administered without SX or with SX. 90% confidence intervals of geometric means of AUC were similar
whatever the approach and showed that SX can be considered as a moderate CY P3A4 inhibitor. In the population PK approach, the same
conclusions were obtained whatever the design, MD or FD, and whatever the estimation method, FOCEI in NONMEM or SAEM in
MONOLIX.

Whatever the approach, NCA or population PK modelling, C_, of MDZ were statistically different (p<0.05) when administered
without SX or with SX, except for the MD with MONOLIX. 90% confidence intervals of geometric means of C,. were in the same range
whatever the approach, athough for the MD with MONOLIX, the 90%Cl was slightly lower than for the others. Therefore, clinical
conclusions based on C_, were the same whatever the approach and whatever the design in the population PK modelling approach: SX
had little effect on MDZ C_..

Comparison between PBPK predictionsand in vivo results

For both compounds, SX and MDZ, and on both periods (D1 for MDZ only and D6 for both compounds), medians, 51 and 95
percentiles of PBPK simulated concentration-time profiles and observed concentration-time data obtained in the clinical trial are displayed
on Fig. 3 and 4(a &b). Observed SX concentration-time profiles were well predicted by the SX PBPK model (Fig. 3), however the SX
PBPK model over-predicted the inter-individual variability. The MDZ PBPK model predicted the MDZ concentration-time profiles well
when MDZ was administered alone (Fig. 4a) but slightly under-predicted the MDZ concentration-time profiles when MDZ was
co-administered with SX (Fig. 4b).

Regarding PK parameters computed by NCA using the full design, SX C_, and AUC obtained in the in vivo study in 12 subjects after
repeated doses were in the range of SX C_ . and AUC predicted by the SX PBPK model in 100 (simulated) subjects. However, predicted
SX C,, and AUC ranges were very wide. Indeed, predicted SX median [min-max] C_,, and AUC by the SX PBPK model were 1394 [743
-6023] ng/mL and 18721 [8555-121484] ng.h/mL, respectively, whereas observed SX [min-max] C_, were [714-2296] ng/mL and
observed SX median [min-max] AUC were 26647 [18987-53799] ng.h/mL.

After asingle dose administration of MDZ (7.5mg, per os), observed MDZ C_ . and AUC obtained in the clinical trial in 12 subjects
were quite well predicted by the MDZ PBPK model since observed MDZ median [min-max] C,_ and AUC were 40 [18-77] ng/mL and
103 [57-224] ng.n/mL, respectively, and predicted MDZ median [min-max] C_, and AUC were 43 [21-143] ng/mL and 114 [47-455]
ng.h/mL, respectively.
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After a single dose administration of MDZ (7.5mg per os) co-administered with SX at steady-state, observed MDZ C_ . obtained in
the clinical trial in 12 subjects were well predicted by the DDI PBPK models (observed C,, median [min-max] = 51 [35-134] ng/mL, and
predicted C_,, median [min-max] = 52 [25-151] ng/mL). However observed inhibitory ratio for C_, were slightly under-predicted by the
DDI PBPK models (observed R, ., median [min-max] = 1.3 [0.76-2.6] and predicted R, ..., median [min-max] = 1.1 [1.1-1.5]). Observed
MDZ AUC were dlightly under-predicted by the DDI PBPK models (observed AUC median [min-max] = 201 [110-367] ng.h/mL, and
predicted AUC median [min-max] = 140 [47-455] ng.h/mL). Hence, observed inhibitory ratio for AUC were dlightly under-predicted by
the DDI PBPK models (observed R, ,,c median [min-max] = 1.9 [1.4-2.6] and predicted R, 5, median [min-max] = 1.2 [1.1-2.1]).

DISCUSSION

A DDI study was planned to assess the potential inhibitory effect of a phase | compound (SX) on a reference CYP3A4 substrate,
MDZ. This clinical study was optimally designed, without any in vivo data, using PBPK predictions, population PK modelling and
multiresponse design optimization. A first paper (4) described the methods and results of PBPK predictions, population PK modelling and
sampling time optimization with evaluation by simulation. The present paper compared full (FD) and optimal sparse (MD) sampling time
designs by population PK modelling using real data, analysed the results of the clinical trial by population PK modelling and
non-compartmental approach, and then compared results of the clinical trial with PBPK predictions.

Analysis of the SX in vivo data, using the SX model previously developed, showed that even if, as expected, RSES were higher with
the optimal sparse design, SX CL/F was well estimated by NONMEM with both designs. There were no statistical differences (p<0.05,
Wald's test) between parameters estimated using FD and MD, except for the estimates of V /F and of the proportional part of the residual
error. Analysis of the MDZ in vivo data, using the MDZ model previously developed, showed that MDZ CL/F was adequately estimated
with both designs whatever the administration setting (without or with SX co-administration) using MONOLIX. With NONMEM, the
covariance step was not obtained with the sparse design (MD) and therefore, the standard errors of CL/F estimation were not assessed.
However, using NONMEM, MDZ CL/F estimates obtained with MD were close to those obtained with FD and therefore inhibitory CL/F
ratios were 1.9 and 2.0 with FD and MD, respectively. With MONOLIX, there were no statistical differences (p<0.05, Wald's test)
between parameters estimated using FD and MD and inhibitory CL/F ratios were 1.8 and 1.7 with FD and MD, respectively. Thus,
whatever the estimation method and the design (full or sparse), we concluded that SX is a moderate CY P3A4 inhibitor, which given at
maximum therapeutic doses reduced the apparent clearance of MDZ by half. These results were also in agreement with those obtained by
non-compartmental analysis since the median inhibition ratio of AUC was 1.9.

Using NONMEM, the minimization was successful and the covariance step was obtained in 4 out of 6 runs whereas with MONOLI X,
the 6 runs converged and accuracies of parameter estimation were always obtained. Moreover MONOLIX (version 2.1) was by far faster
than NONMEM (version V).

Inter-individual variability was estimated only on MDZ CL/F and V /F whereas the MDZ population PK model developed using MDZ
PBPK simulations had inter-individual variability on all parameters; thisis likely due to the small humber of subjects (n=12) in the clinical
trial. The PBPK models correctly predicted the concentration-time profiles of SX and MDZ when administered separately, but
under-predicted the interaction of SX on MDZ. Although the PBPK model did not predict a 2-fold decrease in MDZ CL/F, the MDZ
population PK model developed from the simulated PBPK MDZ concentration-time profiles was able to fit the observed data.

In the present work, the analysis of observed PK data by population PK modelling was performed by estimating model parameters of
the population PK models previously developed with PBPK simulations. As no in vivo PK data were used to develop these population PK
models, this was a challenge due to a high risk of model misspecification. However, whatever the design and the compound, model runs
were successful at least with MONOLIX and results in terms of fit were satisfactory. Moreover, according to usual GOF plots, the models
did not suffer from model misspecification except in one case, i.e. MDZ co-administered with SX and with the optimal sparse design.
Comparison of reference model parameter estimates (those obtained from model buildings from PBPK simulations) with those obtained
from observed PK data showed that both models suffered from parameter misspecification. PK modelling results may have been improved
if models had been built from in vivo data.

Whatever the compound, the design and the software, proportional error estimates of the residual error models were much higher with
observed data than with PBPK simulations and therefore it may be more realistic to increase the noise in the simulated data.

For MDZ CL/F, the expected RSE given by PopDes (15) with MD was around 20% (4), which was in agreement with CL/F RSE
obtained with MONOLIX (17%) when MDZ was administered alone (i.e. no interaction) and not too far from that obtained when MDZ
was co-administered with SX (29%). Thus, CL/F RSEs obtained with MONOLIX were in agreement with expected RSEs given by
PopDes (the software used to estimate the joint optimal sampling times). For SX CL/F, the expected RSE given by PopDes with MD was
31%, which was high in comparison with NONMEM CL/F RSE (5%).
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Comparisons were performed to test the difference between MDZ PK without and with SX co-administration. This was performed on
the logarithms of AUC and C_, since the Food and Drug Administration (16, 17) and the European Agency for the Evaluation of
Medicina Product (EMEA) (18, 19) guidelines recommend to test comparison or equivalence as the ratio of the geometric means of PK
parameters such asthe AUC and C_ .. AUC and C_, are usually estimated by NCA, which is amethod that typically uses alarge number
of samples per subject. Since in the present work, we were interested in comparing two designs, a full design and an optimal sparse design,
on their capability to detect a potentia interaction between two drugs, data were analyzed by a population approach and the same tests
were applied on AUC and C,_, derived from EBE (13, 14). Indeed, Panhard and Mentré showed that results of EBE and NCA tests are
similar except when the number of samples per subject is very low. Thus, NCA tests are applicable when the number of sample per subject
is large, whereas non-linear mixed-effects modelling is very powerful for cross-over studies where the number of samples per subject is
limited. However, the shrinkage in parameter must be low (less than 20%) to apply this method to EBE. As the shrinkage in CL/F was
aways satisfactory, the method based on EBE was applicable to AUC. In only one case, the optimal sparse design with MONOLIX when
drugs are co-administered, the shrinkage was higher than 20% for one parameter, the apparent central volume. Consequently we can have
some reserves about the method when applied to C_, in this case only.

Regarding AUC, results of NCA and EBE tests were similar with FD whatever the estimation method used for the population PK
modelling, and results of EBE tests performed with the full design were similar to those obtained with the optimal sparse design (MD)
with SAEM (MONOLIX) as well as with FOCElI (NONMEM). All methods led to the same conclusion with respect to the difference of
AUC between the two administration settings, without and with SX co-administration. Regarding C__,, all tests concluded to the
difference of MDZ C_,, between the 2 administration settings except with the optimal sparse design with MONOLIX. However, the effect
onC,_,, Wassmaller than on AUC.

According to the general strategies of drug-drug interaction studies reported in the guidance for industry (3), drug development should
follow a sequence of studies from in vitro studies to in vivo human studies, including those employing specia study designs and
methodol ogies where appropriate. A complete understanding of the quantitative relationship between the in vitro findings and in vivo
results of metabolism/drug-drug interaction studies is still emerging. Nonetheless, in vitro studies can frequently serve as a screening
mechanism to rule out the importance of a metabolic pathway and the drug-drug interactions that could occur through this pathway so that
subsequent in vivo testing is unnecessary. In the present example, in vitro studies showed a potential inhibitory effect of SX on areference
CYP3A4 substrate, MDZ.

On the one hand, using the current recommended approach, in which the likelihood of an in vivo interaction is projected based on the [
[1/Ki ratio where [I] represents the mean steady-state C,, value for total drug (bound plus unbound) following administration of the
highest proposed clinical dose of the inhibitor, the predicted interaction was considered possible but not likely (0.1<[1}/Ki<1) and therefore
in vivo evaluation was recommended. On the other hand, using a PBPK modelling approach, which allowed the concentration-time
profiles of the two co-administered drugs in each tissue of the whole body, such as the liver, to be taken into account, the predicted
inhibitory AUC ratio was 1.2 [1.1-2.1] (median [min-max]) and SX was considered as a weak inhibitor of CYP3A4. The discrepancy
between the two approaches could be due to the high binding of SX to plasma proteins, which was taken into account with the PBPK
modelling approach whereas it was not with the classical recommended approach and also to the use of liver concentrations in the PBPK
approach. Bearing in mind that drug development must be as fast as possible with limited costs and limited investigations in healthy
volunteers, our objective was to evaluate the global approach used in the present work with real data to further apply it to assess DDI
directly in patients in phase Il studies for drugs with weak predicted inhibitory effect (PBPK approach) or for which the predicted
interaction was possible but not likely (classical approach with 0.1<[11/Ki<1).

Although the DDI was dlightly under predicted by PBPK predictions, the population PK analysis with the optimal sparse design
determined from PBPK predictions allowed the measurement of the same extent of drug interaction from observed data as the
non-compartmental analysis with the full design. Moreover, the optimal sampling time design would allow the use of 12 fewer sampling
times for MDZ clearance estimation in comparison to the full empirical design and therefore the sparse optimal design could be used in
phase Il studies and limit costs. By performing some DDI studies directly in patients, the development could be faster and information
could be directly obtained in the target population. In the present work, no PK differences were expected between healthy volunteers and
patients. Nevertheless, the PBPK modelling approach is capable to predict patient PK profiles when necessary (19, 20, 21)

The present example was particularly challenging as only in vitro data were used to perform PBPK predictions, but we could imagine
applying this approach just after the first dose in man study and therefore including prior knowledge of the drug PK into the PBPK model.

In the present example, the maximum therapeutic dose of the inhibitor, the drug in development, was known at early stage of the
development, and therefore it was possible to design a study in agreement with guidelines (i.e. to test the maximum therapeutic dose of the
inhibitor). Thisis avery rare case. However this global approach can be applied to evaluate the effects of well-know inhibitors on drugsin
development (substrate), and therefore it is not necessary to know the therapeutic dose of the substrate to use this approach.
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Lastly, if an interaction is expected between a drug in development (inhibitor/substrate) with a drug (substrate/inhibitor) likely to be
co-administered in the target population, an optimal study design with joint sampling times for the two co-administered drugs could allow
the assessment of the PK DDI and the characterization of the clinical impact of the drug interaction in large-scale clinical studies (phase
I11) by linking the drug exposure to potential adverse events.

CONCLUSION

For the first time, a global strategy including PBPK predictions, population PK modelling and multiresponse optimal design was
applied to design a drug-drug interaction study without any in vivo prior information. While a first paper (4) described the method to
design the clinical trial, the present paper analyzed the results of the clinical trial. Although, the drug-drug interaction was slightly under
predicted by PBPK predictions, population PK analysis with the optimal sparse design allowed the assessment of the drug interaction
equally well as the non-compartmental analysis with the full design. Thus, this global approach allows the quantification of the drug-drug
interaction with an ethical and cost limited design, and can be applied in drug development. This global approach could be extended to
assessment of DDI in phase Il and I11 clinical trials.
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Fig. 1
Study design of the drug-drug interaction clinical trial. MDZ stands for Midazolam, SX for a phase | compound, s.d. for single dose and Di
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Fig. 2

MgDZ concentration-time profile in atypical subject after a 7.5 mg MDZ single dose administration (top) and after a 7.5 mg MDZ single dose
administration given to 2h after the first daily dose of SX (bottom). Dots correspond to observed MDZ concentration-time data, lines
correspond to individual predicted profiles and dotted lines correspond to population predicted profiles. Concentrations used were those
measured at the optimal sampling times (sparse optimal sampling time design, MD) and modelling was performed with MONOLIX version
2.1
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Fig. 3

Comparison of observed SX concentration-time data with simulated concentration-time profiles obtained using SX PBPK model. Thin dashed
lines with dots correspond to observed SX concentration-time data, and plain line and both large dotted lines correspond to the median and the
5th and 95t percentiles of simulated SX concentration-time data, respectively.
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Fig. 4

Cc?mparison of observed MDZ concentration-time data with simulated concentration-time profiles obtained using MDZ PBPK model. These
results correspond to MDZ concentration-time data after a 7.5mg MDZ single oral dose (top) without SX co-administration, (bottom) with
SX co-administration. Thin dashed lines with dots correspond to observed MDZ concentration-time data and plain line and both large dotted
lines correspond to the median and the 51 and 951 percentiles of simulated MDZ concentration-time data, respectively.
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Tablel
Tablel (a). SX population PK model parameter estimates using either the FD or the MD with NONMEM at day 6 (repeated doses with a dose interval of 12h for 5 days).

Estimate (RSE%) FD MD Wald's test
CL/F (L/h) 8.2 (6) 8.2(5) ns
VJF (L) 17 (16) 24 (35) ns
QIF (L/h) 8.1(28) 14 (64) ns
V/F (L) 1000 (14) 19 (58) p<0.001
k, (™) 0.19 FIXED 0.19 FIXED na
w? CL/F 0.04 (125) 0.04 (56) ns
w2 VJF 0.14 (49) 0.51 (94) ns
correlation CL/F -V JF -0.035 (0.015) 0.027 (0.081) ns
Prop (CV%) 26 (8) 20 (11) p=0.048
Add (ng/mL) 0.2 FIXED 0.2 FIXED na

Tablel (b).MDZ population PK model parameter estimates using either the FD or the MD with NONMEM and MONOL X under the 2 administration settings, without and with co-administration of
SX.

Without SX With SX
Estimates (RSE%)
FD MD Wald'stest FD MD Wald’stest

CLIF (L) NONMEM 75 (12) 101 (nd) na 40 (10) 50 (nd) na
MONOLIX 72(12) 77 (17) ns 40 (11) 45 (29) ns
VIF W) NONMEM 150 (20) 178 (nd)” na 110 (14) 187 (nd)” na
MONOLIX 116 (29) 169 (32) ns 125 (15) 181 (16) ns
OF (L) NONMEM 23 (21) 85 (nd)* na 10 (12) 10 (nd)** na
MONOLIX 30 (30) 20 (68) ns 8(34) 9(85) ns
Vp/F L NONMEM 88 (17) 215 (nd) na 56 (14) 88 (nd) na
MONOLIX 80 (18) 93 (41) ns 53 (30) 177 (351) ns
T, M) NONMEM 1.1(6) 1.0 (nd) na 1.2(10) 1.0 (nd) na
MONOLIX 1.2 (16) 1.0(32) ns 0.8 (12) 1.0 (20) nd
P G NONMEM 0.13(38) 0.09 (nd)* na 0.11 (45) 0.089 (nd)** na
- MONOLIX 0.13 (47) 0.11(77) ns 0.12 (47) 0.09 (77) ns
W2V JF NONMEM 0.37 (32) 0.29 (nd)* na 0.19 (63) 0.038 (nd)** na
- MONOLIX 0.46 (49) 0.15 (165) ns 0.12 (60) 0.47 (197) ns
correlation NONMEM 0.160 (0.076) 0.110 (nd) na 0.110 (0.074) 0.058 (nd) na
CL/F_VJF MONOLIX 0.167 (nd) 0.128 (nd) na 0.105 (nd) 0.201 (nd) na
W T NONMEM 0 fixed 0 fixed na 0 fixed 0 fixed na
="e MONOLIX 0 fixed 0.20 (117) na 0 fixed 0 fixed na

NONMEM A * 4. **
Prop (CV%) o 5(6) 61 (nd) na 043 (5) 0.56 (nd) na
MONOLIX 43(8) 56 (15) ns 42(7) 54 (13) ns
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Add NONMEM
(ng/mL) MONOLIX

0.2 fixed
0.2 fixed

0.2 fixed na
0.2 fixed na

0.2 fixed
0.2 fixed

0.2 fixed
0.2 fixed

na stands for not applicable, ns stands for no statistical difference between parameter estimates obtained with both designs (Wald's test, p<0.05), nd stands for not determined,

: stands for run for which the covariance step was not obtained,

™ stands for run for which the minimization was not successful. w? Q/Fand wZ_Vp/F were fixed to zero in the model.

Tablell
Comparison tests based on log (AUC) and log(C,, ) individual parameters between groups (MDZ without SX and MDZ co-administered with SX).
AUC median [min-max] Log(AUC)
Estimation method Design MDZ alone MDZ with SX Estimate [90% Cl] of ratio Student paired test
NCA FD 103 [57-224] 201 [110-367] 19[1.7-2.1] p<0.0001
NONMEM FD 98 [565-182] 182 [110-355] 19[1.6-2.1] p<0.0001
MD 78 [51-123] 143 [99-226] 20[1.8-2.2 p<0.0001
MONOLIX FD 102 [58-184] 180 [108-344] 1.8[1.6-2.1] p<0.0001
MD 100 [67-166] 155 [110-250] 1.7[1.6-1.9] p<0.0001
C nax Median [min-max] Log(C, )
Estimation method Design MDZ alone MDZ with SX Estimate [90% CI] of ratio Student paired test
NCA FD 40 [18-77] 51 [35-134] 1.3[1.1-1.7] p=0.0224
NONMEM FD 39 [17-70] 50 [34-125] 15[1.1-1.9] p=0.0195
MD 26 [17-42] 33 [26-45] 1.3[1.1-1.5] p=0.0063
MONOLIX FD 42 [18-75] 51 [32-102] 1.3[1.1-1.7] p=0.0487
MD 35 [21-56] 34 [27-48] 11[1.0-1.2) p=0.1935
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