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The simulation step of the SAEM-MCMC algorithm performs the simulation of the missing

data φ through a Markov chain which has p(φ|y; θ) as unique stationary distribution. For subject

i, by Bayes formula, this conditional distribution is proportional to

p(φi|yi; θ) ∝
K∏

k=1

p(yik|φik; θ)p(φi; θ).

We propose to use a Metropolis-Hastings (M-H) algorithm to simulate this Markov chain.

Let us recall the principle of this algorithm. At iteration r of the M-H algorithm, given the

current value φ
(r)
i

of the Markov Chain, the M-H algorithm proceeds as follows:

1. Simulate φc
i

with a proposal distribution q(·, φ
(r)
i

)

2. Compute the acceptance probability

α(φc

i
, φ

(r)
i

) =

∏K

k=1 p(yik|φc

ik
; θ)p(φc

i
; θ)

∏K

k=1 p(yik|φ
(r)
ik

; θ)p(φ
(r)
i

; θ)

q(φc
i
, φ

(r)
i

)

q(φ
(r)
i

, φc
i
)

3. Simulate u with a uniform distribution U [0, 1]

4. Update the Markov chain with

φ
(r+1)
i

=






φc
i

if u ≤ α(φc
i
, φ

(r)
i

)

φ
(r)
i

else

The convergence of the M-H algorithm strongly depends on the choice of the proposal distribu-

tion q. The convergence is ensured for some proposal distributions such as independent (q(·, φ
(r)
i

)

independent of φ
(r)
i

) or symmetrical (q(·, φ
(r)
i

) = q(φ
(r)
i

, ·)) proposals (?). These proposals are

detailed below. Given the dimension of φ, we also consider a Metropolis-Hastings-Within-Gibbs

algorithm, combining both Gibbs algorithm and M-H procedure. The advantage of the Gibbs

algorithm is to reduce the multi-dimensional simulation problem to the successive simulations of

one-dimension vectors. Finally, at iteration ℓ of the SAEM algorithm, given the current estimate

θ̂ℓ, we combine the three following proposal transitions:

1. the prior distribution of φi, that is the Gaussian distribution N (µ̂ℓ + β̂ℓ, Γ̂ℓ), corresponding

to an independent M-H algorithm,
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2. the multidimensional random walks N (φ
(ℓ−1)
i

, ρΓ̂ℓ) (symmetric proposal), where ρ is a

scaling value chosen to ensure a satisfactory acceptation rate, namely around 30% as

proposed in ?,

3. a succession of Kp unidimensional Gaussian random walks (symmetric proposal), i.e each

component of φi is successively updated, leading to a Metropolis-Hastings-Within-Gibbs

algorithm,

where Γ̂ℓ is equal to

Γ̂ℓ =





Ω̂ℓ + Ψ̂ℓ Ω̂ℓ . . . Ω̂ℓ

Ω̂ℓ Ω̂ℓ + Ψ̂ℓ

. . .
...

...
. . .

. . . Ω̂ℓ

Ω̂ℓ . . . Ω̂ℓ Ω̂ℓ + Ψ̂ℓ





.

Given the proposal distributions, as previously detailed, and using the theoretical convergence

results proposed in ?, this hybrid Gibbs algorithm converges and generates an uniformly ergodic

chain with p(φ|y; θ) as the stationary distribution. Consequently, by applying the convergence

theorem of ? and under assumptions (A1) and (A2), we prove that the estimate sequence

(θ̂ℓ)ℓ≥0 produced by the extended SAEM algorithm converges towards a (local) maximum of the

likelihood p(y; θ).

In practice, the convergence of the MCMC algorithm is difficult to verify. As in Bayesian

inference, the only convergence criteria existing for MCMC procedure are graphical criteria. We

have to check if the estimate sequence explores a sufficiency large domain of the Markov chain.

A convergence figure is presented and commented in section ??.
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