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Objective: This work aimed at building a population pharmacokinetic (PK) model for

lamivudine (LMV), stavudine (STV) and zidovudine (ZDV), estimating their inter and intra-

individual PK variability and investigating the influence of different covariates.

Methods: Population PK of LMV, STV and ZDV was separately evaluated from plasma

concentrations obtained in 54, 39 and 27 HIV1-infected patients, respectively, enrolled in the

COPHAR1-ANRS102 trial. The primary objective of this trial was to study the pharmacoki-

netics of indinavir (IDV) and nelfinavir (NFV) in treated patients with a sustained virological

response. Concentrations of nucleoside analogs (NA) were measured in plasma as a secondary

objective. A one compartment model with first order elimination was used, with zero order

absorption for LMV and first order absorption for STV and ZDV.

Results: Mean parameters (inter-patient variability in CV%) of LMV, STV and ZDV were:

oral volume of distribution (V/F ) 145L (52%), 24 L (81%) and 248 L (80%), oral clearance

(Cl/F) 32 L/h, 16 L/h (74%) and 124 L/h (51%), respectively. For LMV, absorption duration

(Ta) was 1.46 h (64%). For STV and ZDV, ka was 0.46 h−1 and 2.9 h−1, respectively. We found

a systematic effect of combination with NFV vs IDV. We found that intra-patient variability

was greater than inter-patient variability (except for STV) and greater than 55% for the three

drugs.

Conclusion: This trial enabled the estimation of the population PK parameters of three NA

in patients with a sustained virological response, and the median curves could be used as ref-

erences for concentration-controlled strategies. We observed, as for the protease inhibitors, a

great variability of PK parameters.

INTRODUCTION

Therapeutic drug monitoring (TDM) of protease inhibitors and non-nucleoside reverse tran-

scriptase inhibitors has been largely investigated, and its importance has been demonstrated in

special populations (pregnant women, hepatic failure, etc ...). Pharmacokinetic (PK) studies

performed in patients having an optimal response to HAART, are the gold standard to define

reference curves for TDM.
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For nucleoside analogs (NA), TDM is generally not recommanded because the concentra-

tion/effect relationship has not been clearly defined and because NA in plasma need to be

phophorylated before becoming active in the cell. On the other hand, the potential interest

of concentration-controlled regimens of NA has already been shown [1–4]. However, very few

data are available on the PK of NA in patients succesfully treated with HAART. Such data

are important to correlate plasma and intracellular concentrations and to establish a range of

effective and non toxic plasma concentrations of all components of HAART.

The COPHAR1-ANRS102 trial was a prospective, open-label, multicenter trial which pri-

mary objective was to study the PK of indinavir (IDV) and nelfinavir (NFV) in patients on

sustained virological success. Reference therapeutic windows for the TDM of IDV and NFV

were defined according to the concentration data measured in this trial [5]. The population ap-

proach was also used to describe the PK of IDV and NFV, to estimate inter- and intra-patient

variabilities of the PK parameters, and to test the effect of covariates. An increase of IDV

and NFV clearance was found in patients receiving zidovudine (ZDV) as part of their treat-

ment [6, 7]. In COPHAR1-ANRS102, patients received either lamivudine (LMV), stavudine

(STV) or zidovudine (ZDV) as part of their treatment, in addition to one protease inhibitor.

As a secondary objective, NA concentrations were measured in the same plasma samples col-

lected to study the PK of NFV and IDV. The aim of the present study was to build a population

PK model for LMV, STV and ZDV, to estimate their inter- and intra-individual PK variability

and to investigate the influence of different covariates on the PK parameters of these three

drugs.

MATERIAL AND METHODS

Study design and patients

The COPHAR1-ANRS102 trial was a prospective, multicentre, open-label trial which included

HIV-infected adults currently treated with an antiretroviral combination of at least two drugs,

containing either IDV or NFV. Enrolment started in February 2001 and the last subject com-

pleted the study in October 2002. To be eligible, patients had to be treated with a stable
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regimen for at least 4 months with a sustained virological response defined by a plasma HIV

RNA level below 200 copies/mL for at least 4 months. The main exclusion criteria were the

following: concomitant use of drugs interacting with IDV or NFV, renal failure (defined by a

serum creatinine greater than 180 µmol/L), liver dysfunction (defined by a serum aminotrans-

ferase level greater than twice the upper limit of normal, a prothrombin test below 50% or a

diagnosed liver cirrhosis), pregnancy, ongoing acute opportunistic infection or cancer.

All patients received the standard dose of 300 mg per day for LMV. The STV dose was

prescribed according to subject’s weight: 60 mg per day for subjects whose weight was less than

60 kg, and 80 mg per day for those whose weight was greater than 60 kg. The recommended

standard daily dose for ZDV was 600mg.

The Ethical Review Committee of the Bicêtre Hospital, Paris, France reviewed and approved

the study protocol. All participants provided written informed consent. At the screening visit

(V0), inclusion criteria were checked. At visit 1 (V1), one month after inclusion, patients

underwent a 6-hour blood sampling for concentration assay. At visit 2 (V2), four months after

inclusion, two additional blood samples were collected. The trial ended 8 months after inclusion

(V3), when clinical, immunological and virological data were collected. Only patients with a

sustained virological response, i.e. 4 months before inclusion plus 8 months after inclusion, were

analysed.

Adherence was evaluated using a validated auto-questionnaire and applying the algorithm

proposed by Carrieri et al. [8]. Patients were classified as highly adherent if they reported taking

100% of their prescribed regimen in the last four days, moderately adherent if they reported

missing no more than 20% of their treatment, and non-adherent if they reported taking less

than 80% of their treatment.

PK samples and concentration measurement

PK sampling was designed according to the dosing regimen of the PIs. The interval between the

last dose on the previous day and the morning dose was planned for 12 hours (+/-2 hours) for

bid dosing and for 8 hours (+/- 2 hours) for tid dosing. At V1, plasma samples were collected

before dosing (trough sample) and at 0.5 hour, 1, 3 and 6 hours after drug intake. At V2, a
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sample was collected 8 hours (+/-2 hours) or 12 hours (+/-2 hours) for tid and bid dosing,

respectively, after the last drug intake, and a second sample 1 hour after observed drug intake

in patients treated with IDV alone, or 3 hours after observed drug intake in patients receiving

NFV or IDV/ritonavir in order to reach the Cmax of the corresponding PI. For each sample

performed after the observed drug intake, the exact interval between last drug intake and blood

sampling was recorded. For trough samples, the delay since last dose was evaluated from the

time of last evening dose reported by the patient and the exact sampling time in the morning.

All NA concentrations measured at V1 and NA concentrations measured one hour (C1h) and

three hours after dose (C3h) measured at V2 are analysed in this paper.

NA concentrations were measured in each plasma sample in a central laboratory of phar-

macology in Paris. NA were isolated from alkaline plasma samples by double-step solid-liquid

extraction and their concentrations were determined by specific high-performance liquid chro-

matography assays with ultraviolet - photodiode array [9]. Interlaboratory quality control

results at three concentrations (50, 400 and 1000 ng/mL for LMV and 25, 200 and 400 ng/mL

for both STV and ZDV) were within 20% of the target values for the three NA. Lower limits

of quantification (LOQ) were 20 ng/mL, 10 ng/mL and 10 ng/mL for LMV, STV and ZDV,

respectively.

Population pharmacokinetic model

For each of the 3 NA, we tested a one-compartment model with first-order absorption or zero

order absorption to analyse concentrations measured at V1. The parameters of these two models

are the first-order absorption rate constant (ka) or the zero order absorption duration (Ta), the

apparent elimination clearance (Cl/F ) and the apparent volume of distribution (V/F ).

With respect to timing assumptions, exact sampling times were taken for samples scheduled

at 0.5, 1, 3 and 6 hours after the morning dose. For modelling, we assumed that trough samples

were obtained after the other measurements on the same PK profile.

For each NA, the statistical model for the observed concentration Cij of patient i at the

sampling time tij is:

Cij = f(tij, θi) + εij
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where θi is the vector of the logarithm of all the PK parameters of patient i and εij is the

measurement error.

For each NA, we assumed that the errors εij given θi are independent and normally dis-

tributed with a null mean and an heteroscedastic variance σ2
ij , which was modelled using a

combined proportional and additive error model:

σ2
ij = σ2(a+ f(tij, θi))

2

This combined error model (additive and proportional) is commonly used in population pharma-

cokinetics. For high concentrations, variance becomes proportional to the squared concentration

whereas for low concentrations, the variance becomes proportional to a2. When LMV, STV or

ZDV concentrations were below the LOQ, we set them at LOQ/2 [10]. If several consecutive

concentrations were below the LOQ, the first was set to the corresponding value of LOQ/2 and

the others were removed from the analysis.

We assumed that the logarithm of the individual parameters θi are random vectors and that

θi can be decomposed as:

θi = θ + bi

where θ is the population mean vector of size p, and bi is the random effect of subject i, which

is assumed to be normally distributed with zero mean and diagonal variance Ω. The standard

deviations of the additive random effects on the log transformed PK parameters are then a first

order approximation of the coefficient of variation (CV ) of the original PK parameters. These

standard deviations are the square roots of the diagonal elements of Ω.

The parameters were estimated using Lindström and Bates’ algorithm implemented in the

nlme function of R 2.0 software (R Foundation for Statistical Computing, Vienna, Austria)

[11–13]. The estimates for the standard errors (SE) of the parameters were used to derive the

corresponding asymptotic 95% confidence intervals.
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Modelling strategy

For each drug, we first selected the pharmacokinetic model (one compartment model with

zero order or first order absorption and first order elimination) based on the Akaike criterion

(AIC) [14] using a combined error model. We then selected the error model, starting with the

previous combined error model where a and σ are estimated. We also tried a model where a is

fixed, a model where a is fixed to zero, and an additive error model. Using the best error model,

selected according to the AIC, we built a model with random effects on all PK parameters. We

used a backward elimination procedure to test whether each random effect should stay in the

model. Goodness-of-fit plots (weighted residuals versus predicted concentrations and versus

time) were examined for each model. Models were also compared using the AIC.

For each NA and for each PK parameter whose random effect remained in the model, we eval-

uated the effects of the following covariates: age, sex, body weight, co-administrated protease

inhibitor (NFV or IDV), co-administration of other antiretroviral drugs (as a binary variable

for each drug) and treatment adherence (as a categorical variable). We tested the covariates

on the Empirical Bayes estimates of each individual parameter using Spearman non-parametric

correlation tests for continuous covariates and Wilcoxon or Kruskal-Wallis tests for categorical

covariates with two or more than two categories, respectively. The population covariate model

was then built with the covariates which were found to have an effect on the Empirical Bayes

estimates with a p-value smaller than 0.20. Continuous covariates were centered on their me-

dian. All population models with all the combinations of these selected covariates were then

evaluated. The combination with the smallest AIC was chosen as the best population covariate

model. The p-values of the covariates were then derived using the Likelihood Ratio Test (LRT).

Model evaluation

We produced the goodness-of-fit plots (population predicted concentrations vs observed con-

centrations, individual predicted concentrations versus observed concentrations and population

weighted residuals versus observed concentrations) for each of the three NA. We also simu-

lated steady-state concentration profiles for the three studied NA and compared them to the
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observed data in order to evaluate the predictive performance of the model. More precisely,

a vector of PK parameters was simulated for 5000 patients using the final model of each NA.

Each parameter vector was drawn in a normal distribution with a variance equal to the inter-

variability estimated before. We simulated the covariates included in the final model, using the

estimated distribution in the sample of patients. A simulated measurement error was added to

each simulated concentration. We simulated 5000 concentration profiles by increments of 0.01

hour. The 10th, 50th and 90th percentiles of the simulated concentrations at each time were com-

pared with the observed concentration data for the patients with the corresponding regimen.

The 50th percentile of the simulated concentrations was compared with the observed median of

concentration data estimated at 0.5, 1, 3 and 6 hours after drug intake and for the trough con-

centration. For trough concentrations, we calculated the median from concentrations measured

between 10 h and 14 h after drug intake, since there was an important variability of sampling

time for that measurement. The simulations were performed using R 2.0 (R Foundation for

Statistical Computing, Vienna, Austria) [13].

Estimation of intra-patient variability

From the two concentration measurements of the same time at visit 1 and visit 2, we estimated

the inter- and intra-patient variability for C1h in patients receiving IDV alone and for C3h in

patients receiving IDV/ritonavir or NFV. We did not estimated the intra-patient variability of

trough concentrations since the time of drug intake on the previous day suffered from too much

uncertainty. Moreover, since the sampling protocole had been designed for the two PIs, an

important proportion of the NA trough concentrations were below the LOQ : 7.3% for LMV;

35.7% for STV and 46.3% for ZDV; therefore, the estimation of intra-patient variability would

have been difficult.

We used a linear mixed effects model and assumed that the logarithm of the individual

concentrations yik of patient i on visit k (k = 1, 2) can be decomposed as:

log(yijk) = µ+ β.Ti + ηi + κ′ik (1)
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where Ti is equal to 0 if C1h was analysed for subject i and 1 if C3h was analysed; β is the

effect quantifying the difference between concentrations measured 1 hour and 3 hours after drug

intake, ηi is the random effect of subject i with null mean and variance γ2 and κik is the intra-

individual random effect, with null mean and variance ψ2. Using a first order approximation, γ

and ψ are estimates of the inter- and intra-patient coefficient of variation of the untransformed

concentrations. The estimation was performed using the lme function of R 2.0 [12, 13].

RESULTS

Patients

Ninety-five patients were included in the COPHAR1-ANRS102 trial. Eighty-eight of them

had a sustained virological response for the 8 months of follow-up and were analysed. The

characteristics of these patients are shown on table I. The pharmacokinetics of 54, 39 and 27

patients also receiving LMV, STV and ZDV respectively could be analysed. Some patients had

to be excluded since their NA intake was not compatible with the PK samples. The number of

patients is therefore different between table I and table II. For LMV, the only regimen was 150

mg twice daily. For STV, 31 patients received 40 mg bid and 8 patients received 30 mg twice

daily. For ZDV, 24 patients received 300 mg twice daily and 3 patients received 250 mg twice

daily. The repartition of these patients between the two PI groups is shown on table II.

Lamivudine

Two hundred and sixty-seven concentration data were obtained from the 54 patients receiv-

ing LMV (Fig. 1.A). Eight concentrations were below the quantifition limit (LOQ); six were

set to LOQ/2, and the other two were exluded, since they were consecutive to a first con-

centration found below the quantification limit. The one-compartment model with zero-order

absorption and first order elimination achieved the smallest AIC. Moreover, the model had to

be parametrized in log(k) rather than log(Cl/F ) to achieve convergence. A combined error

model, where a was estimated, was selected. Random effects could be estimated on log(Ta) and

log(V/F ). The parameter estimates of this basic model are displayed in table III.
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From the univariate selection performed on the individual parameters, several significant covari-

ates were found on log(Ta) only: the co-administered PI, combination with ZDV, combination

with STV, age, BMI and creatinine clearance. Since a model with these 6 covariates did not

achieve convergence, we performed a preselection using a multiple linear model with a backward

selection on the individual parameters of log(Ta). The final model included the co-administered

PI, age and BMI, and was therefore:

Ta = 1.46 × 0.605NFV
× 0.896(BMI−23)

× 1.03(Age−41) h

where NFV equals 1 if patient received NFV as a part of his treatment, and 0 otherwise.

Absorption duration was 40% smaller in patients receiving NFV versus IDV as a PI (p¡10−4).

The effect found for age corresponds to an increase of 36% of Ta for an increase of 10 years

of age (p=0.0143). The effect found for BMI corresponds to a decrease of 10% of Ta for an

increase of one BMI unit (p¡10−4). Parameters estimates are presented in table III. Inter-patient

variability was found to be large: 63.7% for log(Ta) and 52.1% for log(V/F ). The predicted

curve for the mean PK parameters corresponding to each co-administered PI are overlayed on

the observed concentration data of LMV in Fig. 1.A.

Stavudine

One hundred and eighty two concentration data were obtained from the 39 patients receiv-

ing STV. Seventeen concentrations were below the quantifition limit (LOQ) and were fixed

to LOQ/2.The one-compartment model with first-order absorption and first order elimination

achieved the smallest AIC. A combined error model with a fixed to 120 ng/mL was selected,

and random effects could be estimated on log(Cl/F ) and log(V/F ). The parameter estimates

of the basic model are displayed in table IV. The univariate covariate selection identified the co-

admisitered PI, creatinine clearance and body weight as possibly significant factors explaining

the variability observed on log(Cl/F ). No covariate was found to be associated with log(V/F ).

The final model found for Cl/F included only NFV as a covariate and was:

Cl/F = 15.94 × 1.56NFV L.h−1
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where NFV equals 1 if patient received NFV as a part of his treatment, and 0 otherwise.

The oral clearance was found to be 56% higher in patients receiving NFV versus IDV as a

PI (p=0.031). Inter-patient variability was found to be even larger than for LMV: 77.2%

for log(Cl/F ) and 82.4% for log(V/F ). The predicted curve for the mean PK parameters

corresponding to each co-administered PI are overlayed on the observed concentration data of

STV in Fig. 1.B.

Zidovudine

One hundred and thirty three concentration data were obtained from the 27 patients receiving

ZDV. Sixteen concentrations were below the quantifition limit (LOQ); fourteen were set to

LOQ/2, and the other four were exluded, since they were consecutive to a first concentration

found below the quantification limit. The one-compartment model with zero-order absorption

and first order elimination achieved the smallest AIC. A combined error model with a fixed to

120 ng/mL was selected. Random effects could be estimated on log(Cl/F ) and log(V/F ). The

parameter estimates of the model are displayed in table V. The co-administered PI was the

only possibly significant covariate found on both log(Cl/F ) and log(V/F ) during the univari-

ate analysis performed on the individual parameters. The model used for Cl/F and V/F was

therefore:

Cl/F = 124 × 2.24NFV L.h−1V/F = 248 × 1.88NFV L

where NFV equals 1 if patient received NFV as a part of his treatment, and 0 otherwise. The

oral clearance and the oral volume were found to be 124% (p=0.0003) and 88% (p=0.0263)

higher, in patients receiving NFV versus IDV as a PI, respectively. Inter-patient variability

was found to be 50.9% for log(Cl/F ) and 80.1% for log(V/F ). The predicted curve for the

mean PK parameters corresponding to each co-administered PI are overlayed on the observed

concentration data of ZDV in Fig. 1.C.
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Model evaluation

The goodness-of-fit plots are displayed in Fig. 2. They were satisfactory for the three studied

NA. The adequation of the observed concentrations with the simulated 10th and 90th percentiles

and the adequation of the 50th percentile with the median of the observed concentrations are

displayed in the log scale in Fig. 3. The model seems to underpredict residual concentrations

for STV and ZDV. The percentage of concentrations outside the interval defined by 10th and

90th percentiles were 22.85%, 24.10% and 21.80% for LMV, STV and ZDV, respectively. We

considered that these results were close enough to the expected value of 20% to keep the final

model for the three NA.

Inter- and intra-patient variability

The observed C1h and C3h at the two visits are displayed in Fig. 4. For each NA, the estimates

of the inter- and intra-patient coefficient of variation of these concentrations are shown in table

VI, together with the coefficient of variation for total variability. Both inter- and intra-patient

variabilities were important. Moreover, intra-patient variability was greater than inter-patient

variability, except for STV, and was greater than 55% for the three NA. These large variabilities

were not expected in patients with sustained virological response, since the exact sampling times

and the exact time of drug intake, which took place at the hospital, were known for C1h and

C3h.

DISCUSSION

The COPHAR1-ANRS102 study, first designed to study the pharmacokinetics of protease in-

hibitors, allowed us to estimate the population PK parameters of three NA, LMV, STV and

ZDV, together with their inter-patient variability. Concentration data obtained at a second

visit allowed us to estimate the intra-patient variability of concentrations.

Population PK approach for NA has essentially been applied to analyze data obtained in

patients treated with mono or bitherapies [15–21]. A first population analysis of all the com-

ponents of an antiretroviral treatment was performed in patients receiving a triple combination
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of nevirapine plus zidovudine plus didanosine [22], and found a large intra-patient variability

(greater than 50%) for ZDV. A population analysis of tenofovir in patients on HAART was also

recently performed [23], but did not estimate intra-patient variability. None of these papers

proposed reference concentration curves for the studied NA.

We observed a systematic interaction effect of combination with NFV vs IDV for the three

drugs. It resulted in lower ZDV concentrations in patients receiving NFV, that may be related

to the induction of glucuronidation by NFV via an increase of the activity of glucuronosyltrans-

ferase. It also resulted in lower STV concentrations in the NFV group, that may be due to

the interaction of NFV on the hepatic enzymes involved in the metabolism of the drug. These

results should be taken into account for the choice of ZDV or STV regimens when prescribed

in combination with NFV. A decreased exposition to NFV in patients co-medicated with ZDV

had also been found in COPHAR1-ANRS102 [7], indicating that precautions should be taken

when co-prescribing these two drugs.

For LMV, the increased absorption duration in patients receiving NFV may be partly ex-

plained by a food effect. Indeed, patients of the NFV group received a light meal before drug

intake. In the IDV group, the 7 patients also receiving ritonavir were fed, whereas the other 17

receiving IDV alone took their medication in fasted conditions. Absorption of LMV has been

shown to be slower in fed compared to fasted patients [24, 25], which is in agreement with the

increased Ta observed in the NFV group. However, the clinical relevance of this effect and those

of BMI and age seem small, since these covariates influence the absorption duration, which has

a smaller influence on the AUC. It should be noticed that adherence measured at V1 by the

auto-questionnaire was not found to influence significantly the PK parameters of the three NA.

We performed the population analysis from concentration data of the first visit only since

the model including data from both V1 and V2 could not be fitted using nlme for LMV and

STV. We therefore estimated both inter- and intra-patient variability from the observed C1h

or C3h measured at two occasions for the three NA. Both variabilities were important for the

three drugs, and intra-patient variability is always greater than 55%, resulting in an overall

variability of 85% to 155%, even greater than the variability found by Zhou et al. for ZDV [22].

As drug accumulation is very small for the three studied NA, as illustrated by the important
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proportion of trough concentrations below the LOQ, and as the exact time of drug intake is

know for these measurements, this high intra-patient variability may be essentially due to an

important variability of bioavailability, both absorption and presystemic metabolism.

The simulated concentrations used for the graphs of Fig 3 could be used to build reference

intervals for NA concentrations. For the three NA, the logarithm of the 5000 concentrations

simulated one hour after drug intake was distributed according to a normal distribution, with

a variability of 82%, 67% and 61% for LMV, STV and ZDV, respectively. The corresponding

whithin-patient variabilities were 67.7%, 56.8% and 122.9% (cf table IV). A reasonable hypoth-

esis is to perform TDM only for drug with a within-patient variability of concentrations inferior

to the inter-patient variability used to define target concentration intervals. The within-patient

variability observed for ZDV would therefore question the interest of TDM for this specific

drug. However, results obtained for a single sampling time are not sufficient, and it would be

necessary to analyse more complete PK profiles taken at several occasions to be able to better

estimate within-patient variability for these three drugs and connect it to safe and effective

concentration intervals.

The concentration-effect relationships, that are a prerequisite for TDM [26], have only been

demonstrated for some NA, and only when given in monotherapies [27,28]. We could not study

these relationships in this trial since all patients had a sustained undetectable viral load. We

believe that if all the elements justifying TDM of NA are not available yet, concentration-

controlled therapy of the NA composing HAART could be performed. Indeed, Kakuda et al.

have already demonstrated the usefulness of this approach for a treatment composed of ZDV,

LMV and IDV [4]. Since patients of COPHAR1-ANRS102 achieved sustained virological re-

sponse, the 50th percentile curves simulated to evaluate the final model for the three drugs (Fig.

2.) could be used as reference curves for LMV, STV and ZDV in patients. In Western countries,

new combinations of nucleoside analogues have appeared since this trial, but the combination

of lamivudine plus zidovudine remains largely prescribed, as well as new QD regimens including

LMV with either abacavir or tenofovir. LMV, STV and ZDV are still commonly used used all

over the world. It is therefore important to have an adequate reference PK profile obtained in

patients with sustained virological response for the TDM of these three NA.
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Legends for figures

Fig 1: Observed concentrations of LMV (A), STV (B) and ZDV (C) and curve predicted

for the fixed effects for patients comedicated with IDV (dashed line) and NFV (solid line). Two

concentrations greater than 2000 ng/mL are not displayed for STV.

Fig 2: Goodness of fit plots for the final model for LMV (A), STV (B) and ZDV (C):

population predicted concentrations versus observed concentrations, individual predicted con-

centrations versus observed concentrations and population weighted residuals versus population

predicted concentrations.

Fig 3: Evaluation of the final model: comparison between the 10th, 50th (solid line) and

90th percentiles for the 1000 simulations for patients receiving LMV (A), STV (B) and ZDV

(C) with the observed data and the median of the observed concentrations measured at 0.5, 1,

3 and 6 hours, and between 10 and 14h for the trough sample (dark grey rectangles and dark

grey line). Two concentrations greater than 2000 ng/mL are not displayed for STV.

Fig 4: Variability of the concentrations observed 1 hour (C1h, ◦ and dotted line) and 3 hours

(C3h, • and full line) after drug administration between the two visits (V1 and V2) in patients

receiving LMV (A), STV (B) and ZDV (C).
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Tables

Table I. Characteristics at baseline of the 88 studied patients with
sustained virological response.

Median [range]

Sex (Male/Female) 73/15

Age (years) 41 [21-66]

Weight (kg)∗ 70 [41-110]

BMI (kg.m−2)∗∗ 23 [16-40]

Time since first ARV treatment (years) 4.0 [0.8-11.7]

CD4 cell count (mm−3) 516 [150-1425]

PI prescribed
Indinavir 42
Nelfinavir 46

NA combinations
Lamivudine + Stavudine 31
Lamivudine + Zidovudine 25
Didanosine + Stavudine 16
Lamivudine + Didanosine 3
Lamivudine + Abacavir 1
Didanosine + Abacavir 1
Zidovudine + Didanosine 1
0, 1 or 2 NA + Nevirapine 6
1 NA + Efavirenz 3

Adherence (High/Moderate/Low)∗ 49/31/3

∗ Five missing values
∗∗ Eight missing values
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Table II. Repartition of patients treated with LMV, STV or ZDV between the two PI groups.

PI

NA Indinavir Nelfinavir
Alone With ritonavir

LMV 17 7 30

STV 9 5 25

ZDV 10 2 15
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Table III. Population pharmacokinetic parameters of LMV and 95% confidence intervals.

Basic model Final Model

Parameters Estimate 95% CI Estimate 95% CI

Ta (h) 1.09 [0.84-1.42] 1.46 [1.04-2.04]

βNFV
Ta

– – 0.605 [0.374-0.979]

βBMI
Ta

– – 0.896 [0.834-0.964]

βAge
Ta

– – 1.03 [1.01-1.06]

k (h−1) 0.213 [0.192-0.237] 0.22 [0.19-0.24]

V/F (L) 147 [122-177] 145 [120-174]

ωTa
(%) 76.0 [57.7-100.3] 63.7 [46.5-87.3]

ωV/F (%) 52.3 [40.3-67.9] 52.1 [40.1-67.7]

σ (%) 37.6 [29.0-48.9] 36.1 [27.6-47.1]

a (ng.mL−1) 99.1 [38.3-256.1] 108.2 [42.9-272.9]
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Table IV. Population pharmacokinetic parameters of STV and 95% confidence intervals.

Basic model Final Model

Parameters Estimate 95% CI Estimate 95% CI

ka (h−1) 0.455 [0.303-0.683] 0.452 [0.311-0.656]

Cl/F (L.h−1) 21.0 [15.9-27.7] 15.9 [10.4-24.4]

βNFV
Cl/F – – 1.56 [0.91-2.67]

V/F (L) 24.9 [14.0-44.3] 23.9 [13.4-42.6]

ωCl/F (%) 79.7 [61.2-103.8] 74.0 [57.1-96.0]

ωV/F (%) 64.6 [36.6-114.1] 80.6 [50.5-128.7]

σ (%) 37.0 [31.6-43.4] 37.7 [32.7-43.4]

a (ng.mL−1) 120∗ – 110∗ –

∗ Fixed
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Table V. Population pharmacokinetic parameters of ZDV and 95% confidence intervals.

Basic model Final model

Parameters Estimate 95% CI Estimate 95% CI

ka (h−1) 2.66 [1.38-5.12] 2.86 [1.47-5.55]

Cl/F (L.h−1) 195 [148-256] 124 [89-173]

βNFV
Cl/F – – 2.24 [1.42-3.55]

V/F (L) 344 [220-537] 248 [141-435]

βNFV
V/F – – 1.88 [0.93-3.80]

ωCl/F (%) 64.4 [46.5-89.3] 50.9 [35.6-72.8]

ωV/F (%) 87.0 [60.8-124.6] 80.1 [55.0-116.5]

σ (%) 33.2 [28.3-38.9] 35.4 [30.2-41.6]

a (ng.mL−1) 120∗ – 100∗ –

∗ Fixed
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Table VI. Estimated inter-patient, intra-patient and total variabilities (in CV%) for LMV,
STV and ZDV concentrations measured 1 hour or 3 hours after observed drug intake on
two occasions.

Variability (%)

NA Number of patients Inter-patient Intra-patient Total

Lamivudine 54 50.2 67.7 85.0

Stavudine 38 71.1 56.8 93.6

Zidovudine 26 58.1 122.9 155.0
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