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ABSTRACT 
 

 

In electroencephalographic (EEG) measurements performed during functional Magnetic 

Resonance Imaging (fMRI), imaging and cardiac artefacts strongly contaminate the EEG 

signal. Several algorithms have been proposed to suppress these artefacts and most of them 

have shown important improvements with respect to uncorrected signals. However, the 

relative performances of these algorithms have not been properly assessed. In particular, it is 

not known to what extent such algorithms deteriorate the EEG signal of interest. In this study, 

we propose to cross-validate different methods proposed for artefact correction, using a 

forward model to generate EEG and MR-related artefacts. The methods are assessed under 

various experimental conditions (described in terms of EEG sampling rate, artefacts 

amplitude, frequency band of interest, etc.). Using experimental data, we also tested the 

performance of the correction methods for alpha rhythm imaging and for epileptic spike 

reconstruction. Results show that most of the methods allow the observation of the 

modulation of alpha rhythms and the identification of spikes, despite subtle differences 

between algorithms. They also show that over-filtering the data may degrade the EEG. Our 

results indicate that the optimal artefact removal technique should be chosen according to 

whether one is interested in fast (>10 Hz) vs. slow (<10 Hz) oscillations or in evoked vs. 

ongoing activity. 
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I INTRODUCTION 

 

Simultaneous use of electroencephalography (EEG) and functional Magnetic Resonance 

Imaging (fMRI) has been actively developed over the last years (Gotman et al., 2004; 

Hamandi et al., 2004; Salek-Haddadi et al., 2003). Recording EEG during fMRI (EEG/fMRI) 

enable using fMRI in applications whereby the regressors of interest are to be derived from 

brain electrical activity. For statistical analysis of fMRI data, EEG signals play then the role 

of the stimulus function or of other extrinsic inputs, as is classically performed in cognitive 

psychology when modelling stimuli or changes in the experimental context. Examples of such 

applications are studies of ongoing oscillatory activity (Goldman et al., 2002; Laufs et al., 

2003), of sleep (Czisch et al., 2002) and of epilepsy (Bénar et al., 2003; Krakow et al., 2001; 

Lemieux et al., 2001). 

Recording EEG during fMRI is challenging because signals due to underlying 

neuronal activity may be small in comparison to signals of instrumental origin and of other 

physiological nature. Both the static field (B0) and the time-varying fields (generated by the 

radio-frequency excitations and by the imaging gradients) generate artefacts in EEG 

measurements. These two types of artefacts are referred to as ballistocardiogram (BCG) 

(Bonmassar et al., 2002) and imaging artefacts (Allen et al., 2000; Felblinger et al., 1999), 

respectively. 

The BCG, or pulse artefact, is caused by pulsations of the scalp arteries (Allen et al., 

1998; Ives et al., 1993). The ensuing motion of the scalp electrodes and of the attached leads 

produces an electromotive force proportional to the strength of the static field. It may be 

considerably higher than the brain-related scalp EEG (up to 200 µV at 3T). It is difficult to 

remove the BCG artefact mainly because it is highly non-stationary: its duration and 
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amplitude, although correlated in time, appear to differ stochastically between successive 

heartbeats. In addition to this important non-stationarity, other difficulties originate from the 

facts that: (i) most of BCG power lies in the frequency range (1-10 Hz) corresponding to 

where most of the EEG power occurs (theta, delta and alpha bands, evoked potentials); (ii) 

BCG waveforms are often similar to interictal spikes and thus represent an important 

confound in EEG/fMRI applied to epilepsy; (iii) BCG amplitude varies considerably between 

EEG channels, depending on the particular spatial configuration of electrodes and of leads 

within the static magnetic field; (iv) BCG amplitude and morphology vary within and 

between subjects. 

Imaging artefacts are induced by the MR sequences, i.e. by the radio-frequency pulses 

applied for spin excitation and by the switching of gradients of magnetic field (B) applied for 

spatial encoding of the MR signal. The electromotive forces that produce imaging artefacts 

are proportional to the cross-sectional area of wire loops and to the time derivative of the 

magnetic field (dB/dt). Furthermore, acoustic vibrations of the scanner due to gradient 

switching cause small movements of the subject and of the equipment, thus contributing to 

the artefacts. This occurs in addition to intrinsic subject’s motion, which produces a slowly 

varying modulation of the amplitude of imaging artefacts because the spatial configuration of 

conductors in the magnetic field is modified. Overall, the amplitude of imaging artefacts is 

huge, up to several mV. Without any correction, it is usually not possible to use EEG 

recordings for further analysis. 

Several methods have been proposed to remove imaging artefacts (Allen et al., 2000; 

Bénar et al., 2003; Felblinger et al., 1999; Garreffa et al., 2003; Hoffmann et al., 2000; 

Negishi et al., 2004; Niazy et al., 2005; Sijbers et al., 1999; Wan et al., 2006a) and/or BCG 

artefacts (Allen et al., 1998; Bénar et al., 2003; Briselli et al., 2006; Ellingson et al., 2004; 

Goldman et al., 2000; Kim et al., 2004; Nakamura et al., 2006; Niazy et al., 2005; Sijbers et 
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al., 2000; Srivastava et al., 2005; Wan et al., 2006b). Each of these algorithms has its own 

pros and cons. They are difficult to evaluate on the basis of the literature as most of these 

methods have been validated by simple visual tests, i.e. checking whether artefacts were still 

visible after correction (Bénar et al., 2003; Briselli et al., 2006; Hoffmann et al., 2000; 

Negishi et al., 2004; Sijbers et al., 2000; Srivastava et al., 2005; Wan et al., 2006a) or whether 

artificial spikes were present in the corrected signal (Allen et al., 1998; Allen et al., 2000; 

Bonmassar et al., 2002). Similarly to EEG modelling studies, comparing the EEG spectrum 

obtained before and after artefact suppression has also been used to validate results 

(Bonmassar et al., 2002; Niazy et al., 2005; Srivastava et al., 2005). It is likely, however, that 

correction methods might suppress significant EEG signal, in addition to BCG and imaging 

artefacts. Suppression of EEG activity in the signal cannot be assessed merely by visual 

inspection or computation of EEG spectra as the EEG is often undistinguishable from 

coloured noise (amplitude spectrum in 1/f where f is the frequency). 

Experimental solutions to attenuate the limitations induced by imaging artefacts can be 

interleaved (Bonmassar et al., 2002) or EEG-triggered (Krakow et al., 1999) acquisitions. In 

interleaved acquisitions, pauses in fMRI acquisitions are introduced to record EEG during 

artefact-free time windows. In EEG-triggered acquisitions, MRI scanning is triggered by EEG 

events, such as epileptic spikes. However, these methods have important drawbacks: (i) EEG 

events occurring during scanning may be lost in EEG-triggered acquisition because not 

detected online; (ii) a refractory period after scanning is needed in triggered acquisitions for 

complete T1 relaxation; (iii) the scanning time is considerably lengthened. Clearly, 

continuous EEG/fMRI acquisition associated with efficient artefact correction is the optimal 

approach. 

In this study, we use simulated data to assess to what extent the true EEG signal is 

recovered or deteriorated by the different correction algorithms. First, we develop a forward 
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model of the EEG and of the different sources of artefacts. Then, we describe briefly the 

different correction procedures selected from the literature. In the Results section, we present 

the results obtained from the simulations and we show how these results translate to 

experimental data. We conclude by proposing general recommendations for optimal 

processing of experimental data. 

 

 

II MATERIALS AND METHODS 

 

We developed a simple forward model to generate EEG data and associated MR-related 

artefacts. As shown below, we consider ongoing EEG activity as being well approximated by 

additive stochastic processes occurring in different frequency bands. On top of that, we 

assume additive MR-related artefacts. The dynamics of these artefacts were chosen so as to 

reproduce experimental data obtained in our centre. Such forward modelling is aimed at 

evaluating the influence of different parameters on the quality of artefacts rejection. 

Evaluation was done by comparing the EEG activity without any artefact to the output of the 

artefact removal algorithms. 

 

II.1 Forward modelling 

 

II.1.1 Electroencephalogram 

Ongoing EEG activity is thought to be mainly, but not only, generated by the 

depolarisation of apical dendrites of cortical principal cells (Nunez and Srinivasan, 

2005). Accordingly, biophysical models of the neural mass have been proposed (David et 

al., 2007). Because neural networks generating the EEG are extremely complex, and not 
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well understood, biophysical models do not generally capture easily all possible EEG 

dynamics. Alternatively, one might be interested in modelling the EEG dynamical 

properties only, with a higher precision than what biophysical models can generally do, 

using simple generative procedures. 

Because we were mainly interested in EEG dynamical properties, and not so much in 

the biophysical origins of EEG, we have chosen to reproduce the spectrum of ongoing EEG 

activity in a simple way. We simulated EEG as a linear mixture of seven Gaussian 

distributions. Each Gaussian distribution was bandpass filtered in different frequency bands 

within the range between 1 Hz and 70 Hz. The amplitude and variance of each distribution 

was adjusted to fit experimental data obtained in one subject (Figure 1). We modelled a 

dropout of the EEG signal in the 45-55 Hz band to mimic the effect of a notch filter for the 

line noise (assumed to be at 50 Hz here). We furthermore assumed a modulation of amplitude 

in the alpha band (8-12 Hz) to simulate a standard EEG/fMRI paradigm of alpha rhythm 

imaging where subjects open and close their eyes successively every 20 seconds. This was 

accomplished by modulating with a sine wave the amplitude of the Gaussian distribution 

representing the alpha band between a low value (eyes opened, amplitude of alpha 

oscillations=10 µV) and a high value (eyes closed, amplitude of alpha oscillations=30 µV). 

To model the spatial correlation between EEG channels due to the diffusion of the electric 

potential on the scalp, we finally correlated the different EEG time series. To do so in a 

general way, i.e. not assuming a specific neuronal configuration which would correspond to a 

specific spatial pattern of correlation, we assumed a circular connectivity between EEG 

channels and applied a smoothing convolution kernel at each time bin. This kernel was a 

Gaussian function with a standard deviation equal to 4 channels. In summary, our EEG model 

is not biophysical, but it allows to generate signals showing realistic spatial-temporal 

statistical properties, at least for first order dynamics. 
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Figure 1 about here 

 

II.1.2 Imaging artefacts 

A template of imaging artefacts was derived by averaging experimental EEG recordings. 

They were obtained in our 3T scanner (3T Bruker BioSpin, Bruker Medizintechnik GmbH, 

Ettlingen, Germany) using an MR compatible EEG amplifier (SD32, Micromed, Treviso, 

Italy) with 17 c-shaped electrodes positioned according to the 10/20 system (O1 and O2 were 

not used to preserve subjects’ comfort). A gradient-echo Echo Planar Imaging (GE-EPI) 

sequence was used (TR = 3 s, TE = 30 ms, flip angle = 80°, RF pulse duration = 1.536 ms, RF 

modulation bandwidth = 3516 Hz, FOV = 216 mm x 216 mm, matrix 72x72, 41 adjacent 

slices 3.5 mm thick). The EEG acquisition sampling rate was 1024 Hz. An antialiasing 

hardware low-pass filter was implemented by a Sigma-Delta AD converter at 268.8 Hz. EEG 

signals were calibrated with a square wave of 100 µV using an external calibrator plugged on 

all inputs.  

Despite the fact that EEG amplifiers are generally equipped with low-pass filters to 

avoid aliasing of radio-frequency signals (Abacherli et al., 2005; Anami et al., 2003; Hamandi 

et al., 2004), a radio-frequency component is usually observed in imaging artefacts, albeit of 

less amplitude than the gradient component. For simplicity, we did not take into account the 

radio-frequency artefact, mainly because its duration (usually less than 5 ms) is negligible in 

comparison to the duration of gradient artefacts (usually about 60 ms). 

The template of imaging artefacts was then over sampled at 50 kHz (Figures 2A and 

2B, left). Figure 2C shows its amplitude spectrum to indicate the overlap with the EEG 

spectrum (Figure 1B). Finally, the amplitude of the imaging artefact was varied between 
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channels, from 0 up to 7000 µV peak-to-peak, to model observed differences in experimental 

data. 

 

II.1.2.1 Asynchronicity of MRI and EEG clocks 

The use of different clocks in the MR console and in the EEG acquisition system is a major 

source of residual gradient-induced spikes after correction (Allen et al., 2000). These residual 

spikes are particularly important when the EEG sampling rate is low. One approach to 

improve suppression of these artefacts is to use the EEG clock as a trigger for the EPI 

sequence. It appears that this procedure is not easy to implement practically on most current 

MR acquisition systems. The alternative is to adjust the repetition time (TR) to the sampling 

rate of the EEG. 

In simulations, we introduced a slight timing offset of 152 µs per second between EEG 

and MRI clocks, similarly to what we noticed in our recordings. We then sampled down the 

data to various sampling rates, from 256 Hz to 8192 Hz (Figure 2B, middle). These data have 

been used to evaluate to what extent correction methods are sensitive to the sampling rate, 

given a slight mismatch between EEG and MRI clocks. 

 

II.1.2.2 Slow modulation of the imaging artefact amplitude 

In addition to a fast modulation of the imaging artefact waveform that could be attributed to 

the timing offset problem, we noticed a slow modulation (up to 500 µV) of the amplitude of 

the imaging artefact in experimental recordings. This drift may be due to several sources of 

temporal fluctuations such as subject’s motion and electronic or mechanical instabilities due 

to temperature variation. We thus modelled this effect by modulating the amplitude of the 

imaging artefact by a sine wave (period=200 s, amplitude adjusted to simulations as indicated 

in Section II.3.1) (Figure 2B, right). 
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Figure 2 about here 

 

II.1.3 Ballistocardiogram (BCG) 

We modelled the BCG to match as well as possible global features of experimental recordings 

obtained at 3T, in the absence of MR measurements. First, the heart rate was modulated 

smoothly between 65 and 85 beats per minute using a sine wave of one minute period (Figure 

3A). Second, the mean BCG amplitude of a channel was varied from 10 to 200 µV to 

investigate different levels of EEG contamination (Figure 3B). Third, the amplitude of the 

BCG was varied between two successive cardiac events by taking into account equally the 

amplitude of the last event and a random fluctuation which followed a normal distribution 

with a standard deviation of 15% of the BCG mean amplitude (Figure 3C). Fourth, we 

modelled phase lags between vessel pulsations over the head, by introducing a latency of 

several milliseconds (random latency of 15 ms standard deviation) between the BCG of the 

different channels (Figure 3D). Finally, we noticed a jitter (about 20 ms) on the timing of the 

QRS complex as determined using available automatic techniques for QRS detection. We 

modelled this jitter by adding a random latency for each QRS event (Figure 3E). The 

distribution of the latencies was normal, zero-mean and with a variance which was varied to 

test for the sensitivity of the correction methods to suboptimal detection of cardiac events. 

 

Figure 3 about here 
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II.2 Artefact correction methods 

 

In this section, we present the different artefact correction methods that were tested. All 

methods have been thoroughly described in the literature. We used the original code from 

(Niazy et al., 2005). Otherwise, we used our own implementation which followed as faithfully 

as possible published equations. We will indicate below the parameters we have chosen for 

each algorithm. 

 

II.2.1 Imaging artefacts 

 

II.2.1.1 Image Artefact Reduction (IAR) 

Image Artefact Reduction (IAR) algorithm was proposed in (Allen et al., 2000). This method 

is composed of two successive steps: (i) average artefact waveform subtraction followed by 

(ii) adaptive noise cancellation (ANC). For the averaging step, the EEG is assumed to be 

uncorrelated between MR volume acquisitions. That assumption is usually valid as the 

autocorrelation function of the EEG is much narrower than that of the imaging artefacts 

(particularly true for higher frequencies). 

In our implementation of the IAR algorithm, EEG data were first interpolated to get a 

sampling rate of 10 kHz. This interpolation allowed a sufficiently small time resolution to 

proceed to a slice timing alignment to reduce the phase drift caused by the different clocks of 

EEG and MRI systems. Artefact waveforms were obtained using a moving average of 25 

repetition times and subtracted from the noisy EEG. The corrected EEG was then down-

sampled to the initial sampling frequency and low-pass filtered (finite impulse response filter, 

cut-off 50 Hz) to reduce aliasing. Finally, an ANC process was used to estimate the artefact 

residuals in the EEG by adjusting the weights of an ANC filter using a least mean square 
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(LMS) algorithm. This filter minimises the correlation between the source of noise, estimated 

during the first step, and the noisy EEG. 

 

II.2.1.2 FMRI Artefact Slice Template Removal (FASTR) 

FMRI Artefact Slice Template Removal (FASTR) algorithm was proposed in (Niazy et al., 

2005). Similarly to other approaches (Negishi et al., 2004), it is based on temporal Principal 

Component Analysis (PCA). It decomposes the spatio-temporal EEG matrix into orthogonal 

temporal components, the number of which is equal to the number of EEG channels. 

Components are sorted according to the variance they explain in the EEG. Since the imaging 

artefacts are uncorrelated to neuronal activity and of much higher amplitude, they are usually 

captured in the very first PCA components. 

The FASTR algorithm proceeds into four steps. The first two steps are identical to 

those applied in the IAR algorithm: (i) realignment following interpolation and slice-timing; 

(ii) subtraction of local artefact templates. The third step is a decomposition of the residuals 

using several basis functions (those that explain most of the variance of the residuals). The 

basis functions are obtained by PCA applied to a matrix containing the artefact segments of 

each channel, independently. The second and third steps are complementary because the 

second step capture large changes in the artefact shape whereas the third step capture more 

subtle variations in the artefact shape. Finally, the fourth and last step is ANC filtering similar 

to that described in the previous method (IAR). 

We used the implementation of the FMRIB plug-in for EEGLAB 

(http://www.sccn.ucsd.edu/eeglab/, Salk Institute, La Jolla, CA) provided by the University of 

Oxford Centre for Functional MRI of the Brain (FMRIB) with the following parameters: low-

pass filter cut-off frequency = 50 Hz, averaging window length = 25 and up-sampling 

frequency = 10 kHz. The principal components were sorted according to their eigenvalues, in 
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decreasing order. The number of components removed was equal to the number of 

eigenvalues for which the relative difference with the following eigenvalue was greater than a 

fixed threshold (empirically adjusted). This method evaluated the number of components 

describing artefacts to be usually comprised between 2 and 4. 

 

II.2.1.3 Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a statistical approach for blind source separation, 

which is often used to remove EEG artefacts (Jung et al., 2000), in particular in simultaneous 

EEG/fMRI recordings (Bénar et al., 2003; Briselli et al., 2006; Nakamura et al., 2006; 

Srivastava et al., 2005). The purpose of temporal ICA is to identify components that present 

maximal temporal statistical independency. This appears a priori as a valid approach to 

separate neuronal EEG and imaging artefacts because these signals are generated by different 

(uncorrelated) processes. 

ICA decomposition was done with the EEGLAB toolbox from the Computational 

Neurobiology Laboratory (http://www.sccn.ucsd.edu/eeglab/, Salk Institute, La Jolla, CA), 

using an approach based on the Infomax ICA algorithm (Bell and Sejnowski, 1995). We 

selected the components which were correlated with the imaging artefact template. This was 

done by keeping the components with a normalised cross-correlation coefficient that was 

higher than the average plus one standard deviation of that coefficient computed for all the 

components. Selected components were excluded from the reconstruction: 

AIWSEEGGEE 0

1)(
~ −−=  where EEG is the noisy EEG, W is the ICA matrix of weights, S is 

the data sphering matrix, A is the activation time course of the output components and I0 is a 

diagonal matrix of ones or zeros indicating which components were kept and which were 

excluded (the corresponding elements of the diagonal were set either to one or to zero, 

respectively). WS  is known as the unmixing matrix. 
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II.2.1.3 Filtering in the frequency domain using the Fourier Transform (FT) 

Imaging artefacts can be removed in the frequency rather than in the time domain, because 

EPI artefacts are periodic and distributed over a limited range of frequencies (Hoffmann et al., 

2000). Filtering in the frequency domain is particularly efficient if imaging artefacts and EEG 

have non-overlapping frequency spectra. In other words, this method is optimal for MR 

sequences designed so as to generate imaging artefacts at frequencies non overlapping EEG 

frequencies of interest. A priori, EEG signals should be sampled fast enough to avoid aliasing 

effects. 

To filter imaging artefacts in the frequency domain, we first calculated the Fourier 

transform (FT) of the imaging artefact template { }artefactFTN = . We then created a vector 

W that contained the weights )(iW  applied to each spectral component of the Fourier 

transform of the noisy EEG. If the ith coefficient N(i) exceeded a given threshold, )(iW  was 

set to the inverse of that coefficient ( )(/1)( iNiW = , where N(i) is much greater than 1 

according to the threshold used). Otherwise, )(iW  was set equal to one. For each channel, we 

calculated the Fourier transform of the noisy EEG ( { }EEGFTE = ) and we multiplied the 

results by the weighting vector W to attenuate the coefficients corresponding to the artefact 

( EWE =
~

). Finally, we applied the inverse Fourier transform to obtain the corrected EEG: 

{ }EFTGEE
~~ 1−= . This process is very similar to the algorithm proposed in (Hoffmann et al., 

2000). The only difference is that we introduced a weighting inversely proportional to Fourier 

transform coefficients of the artefact whereas these coefficients were set to zero in 

Hoffmann’s approach. In a preliminary study (not shown in the Results section), we 

found that weighting in comparison to zeroing improved the results for two reasons: (i) 
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mainly, less signal of interest was removed, (ii) less importantly, the ringing artefact 

(Bénar et al., 2003) which may occur using this type of filtering was potentially reduced. 

 

II.2.2 Ballistocardiogram 

 

II.2.2.1 Average Artefact Subtraction (AAS) 

Similarly to what can be done with imaging artefacts, subtracting an averaged artefact 

template of cardiac activity is probably the simplest way to reduce the BCG. An explicit 

assumption here is that the BCG is reproducible between successive heartbeats. This may be 

less valid than for imaging artefacts. 

We used the Average Artefact Subtraction (AAS) algorithm proposed in (Allen et al., 

1998). In our implementation, we calculated a moving average artefact template over 30 

successive heartbeats, and we then subtracted this template from the data. AAS algorithm 

includes identification of ECG peaks and rejection of section contaminated by strong artefacts 

(such as eye blinks or muscular activity). These steps were not used in simulations because 

synthetic data were free from ocular and muscular artefacts and because the onsets of QRS 

complexes were known a priori (no problem of QRS detection). It has been proposed to 

replace the moving average by a weighted moving average (Goldman et al., 2000) or by a 

median filter (Ellingson et al., 2004; Sijbers et al., 2000). Using these adaptations of the AAS 

algorithm, we obtained similar results (not shown below) to those obtained using the original 

AAS approach. Therefore we will only present below results obtained with the first 

formulation of AAS. 
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II.2.2.2 Kalman Adaptive Filtering 

Kalman adaptive filtering has been proposed to filter the BCG (Bonmassar et al., 2002). This 

method uses a piezoelectric motion sensor located over the temporal artery to obtain an 

indirect measure of the BCG waveform alone (assumed to be a mechanical artefact). The 

algorithm uses the correlation between the motion sensor signal and the EEG to remove the 

BCG signal from EEG by adaptive filtering. 

The shape of the BCG and of the motion sensor signal is usually different. For 

simulations, we assumed that the relationship between those two signals was instantaneous 

and nonlinear, as might be found in electro-mechanical coupling. We therefore postulated a 

sigmoid transfer function. This transformation converts the BCG signal into a model of the 

motion signal of different shape that could have been recorded by the sensor. The sigmoid 

function used was: ( )[ ]
( )tax

e
txm

−
+

=
1

1
 where )(tx  is the BCG averaged over all channels and 

a = 0.1. The parameter of the sigmoid function was chosen so as to induce a strong saturation 

of motion signal, thereby modelling strong nonlinear effects. Introducing such nonlinear 

effects was important for us to evaluate the robustness of Kalman filtering. Under this 

condition, the choice of the sigmoid function was not critical and any other nonlinear transfer 

function could have been used instead for simulations.  

The Kalman adaptive filter computes a linear minimum mean-square estimate of the 

Finite Impulse Response (FIR) filter coefficients using a one-step predictor algorithm. The 

Kalman filter which was used (Bonmassar et al., 2002) is expressed in matrix form as: 

P
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M
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where t is the index of the current algorithm iteration, m(t) is the buffered motion signal at 

step t, P(t) is the correlation matrix of state estimation error (initial variance set to 1), k(t) is 

the vector of Kalman gains at step t, )(ˆ tw  is the filter-tap estimate at step t, )(ˆ ts  is the filtered 

output at step t, e(t) is the estimation error at step t, s(t) is the desired response at step t, QM is 

the correlation matrix of the measurement noise (set to 100) and QP is the correlation matrix 

of the process noise (variance set to 10
-8

). In our simulations, the FIR filter length was equal 

to 80. 

 

II.2.2.3 Principal Component Analysis (PCA) 

In addition to being used for removal of imaging artefacts, temporal PCA has also been used 

to remove BCG (Bénar et al., 2003; Negishi et al., 2004; Niazy et al., 2005). The main 

advantage of this method in comparison to the subtraction of an average artefact is that it 

allows for slight variations in the shape of successive BCG artefacts. This is achieved by 

selecting different components that can be used as a basis data set. In other words, the first 

components of a PCA are assumed to capture most of the variance introduced by the BCG. 

However, removing too many components deteriorates the EEG data as EEG and BCG are 

not strictly orthogonal. We have therefore chosen to use only the first 3 components, 

including the average BCG using the FMRIB plug-in for EEG, provided by the University of 

Oxford Centre for Functional MRI of the Brain.  The principle for removing the BCG with 

temporal PCA is similar to what has been discussed earlier with respect to imaging artefacts. 

 

II.2.2.4 Independent Component Analysis (ICA) 

Similarly to what has been described above for imaging artefacts, temporal ICA can be used 

to remove the BCG (Bénar et al., 2003; Briselli et al., 2006; Nakamura et al., 2006; Srivastava 
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et al., 2005). Using the same algorithm as for imaging artefacts, we excluded from the 

reconstruction the components which were the most correlated with cardiac activity. 

 

 

II.3 Performance evaluation using simulations 

 

Using the forward model described above, several simulations have been designed to 

investigate the influence of different key parameters on the quality of artefact correction, for 

the different methods described above. The quality of artefact correction was evaluated as 

follows. We first created a model of noisy EEG by adding together the models of the original 

EEG data and of the artefacts (either BCG or imaging artefacts). Then, we applied the 

correction routines to this noisy EEG to obtain an estimated EEG ( GEE
~

) that was eventually 

compared to the original EEG ( EEG ). The correction quality was quantified using the signal 

to noise ratio (SNR), the value of which is noted SNR: 

( )
)

~
( GEEEEGstd

EEGstd
SNR

−
= .      (2) 

The SNR is calculated as the ratio between the standard deviation (std) of original EEG  

(signal) and the standard deviation of the difference between EEG  and GEE
~

 (noise). It is a 

summary of discrepancies between two signals. However, because it is normalised, it does not 

quantify the absolute value of residual noise. Moreover, it is limited to difference detection 

and does not allow distinguishing between signal attenuation or amplification. 

For each simulation, we generated 10 data sets and averaged the results to increase the 

precision and to reduce the effects of outliers. It appeared that the outcome of the simulations 

was highly reproducible, however. Unless otherwise specified, (i) EEG signals were 

simulated over 20 channels, during 3 minutes, and were sampled at 1024 Hz ; (ii) the 
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amplitude of imaging artefacts was slowly modulated (10% of the mean amplitude) when 

correcting imaging artefacts; (iii) a QRS detection jitter was set to 25 ms (standard deviation) 

when correcting BCG. Given these parameters, we have successively varied one of them to 

investigate key phenomena, as listed just below. 

 

II.3.1 Imaging artefacts 

 

• EEG sampling rate: The EEG sampling rate was varied from 256 to 8192 Hz. 

• Artefact amplitude modulation: The artefact amplitude was slowly modulated. The 

amplitude of modulation was varied from 0% up to 25% of the artefact mean 

amplitude. 

• Deterioration of the EEG spectrum after correction: When studying ongoing activity 

in EEG/fMRI, it is important to evaluate how the artefact correction influences the 

estimation of the signal power in the frequency domain of interest. The optimal 

correction method may indeed depend on the particular frequency band one is mainly 

interested in. In this simulation, the SNR was estimated in successive frequency bands 

(Hz): [0-4]; [4-8]; [8-12]; [12-16]; [16-20]; [20-25]; [25-30]; [30-35]; [35-40]; [40-

45]; [45-50]; [50-55]; [55-60]; [60-65]; [65-70]. First, we corrected the artefacts as 

described above. Second, we filtered the corrected EEG in successive frequency bands 

before computing the SNR. 

 

II.3.2 Ballistocardiogram 

 

• BCG amplitude: The mean amplitude of the BCG was varied between 10 to 200 µV, 

corresponding to BCG detected in magnetic fields up to at least 3T. 
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• QRS detection jitter: The standard deviation of the QRS detection jitter was varied 

from 0 to 50 ms. 

• Deterioration of the EEG spectrum after correction: Identically to what we did when 

assessing imaging artefacts, we evaluated the influence of the BCG removal 

algorithms on the EEG spectrum. 

 

 

II.4 Experimental recordings 

 

To evaluate the performance of correction algorithms in experimental data, we analysed 

experimental EEG data acquired at 3T. The EPI sequence and EEG apparatus were the same 

as those used in simulations (GE-EPI sequence: TR = 3 s, TE = 30 ms, flip angle = 80°, RF 

pulse duration = 1.536 ms, RF modulation bandwidth = 3516 Hz, FOV = 216 mm x 216 mm, 

matrix 72x72, 41 adjacent slices 3.5 mm thick; Micromed SD32, 17 EEG electrodes + 2 ECG 

electrodes). First, imaging artefacts were removed using the different algorithms. Second, the 

BCG was corrected, following imaging artefact correction with the method that performed 

best in the previous step. For removal of the BCG artefacts, it was not possible to test the 

adaptive filtering approach because we did not have any motion sensor. All experiments were 

approved by the ethical committee of the Grenoble University Hospital. 

 

II.4.1 Alpha rhythm imaging 

 

A healthy subject was asked to open and close his eyes every 15 seconds during 5 minutes. 

The experiment was performed with an EEG sampling rate equal to 1024 Hz. The EEG data, 

referenced to Cz, were corrected with the different methods previously described and the 
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alpha power (between 8-12 Hz) was estimated on electrode T3, which was the electrode 

showing most alpha power modulation during measurements performed outside the MR 

scanner. To evaluate the quality of the EEG correction, we calculated for each method the 

correlation coefficient between the estimated alpha power and the experimental block design. 

 

II.4.2 Interictal spike morphology 

 

A young adult patient, suffering from drug-resistant partial epilepsy since childhood, 

exhibited a substantial focal interictal spiking activity on standard EEG recordings (10 

interictal spikes per minute). Interictal discharges were recorded in this patient outside the 

MR scanner just before the EEG/fMRI scan for epilepsy mapping. During EPI acquisition, 

EEG data were recorded for 15 minutes with the patient at rest, using a very low EEG 

sampling rate of 256Hz. To evaluate the quality of the different correction methods, we 

computed the cross-correlation coefficient between twenty interictal spikes acquired on the 

same electrodes (dipolar derivations F8-T4 and T4-T6), ten outside the scanner and ten during 

EPI acquisition. For each method, we then averaged 100 correlation coefficients to measure 

the similarity between spikes acquired outside and inside the scanner. 

 

III RESULTS 

 

III.1 Simulations 

 

In this section, results of simulations are summarised in Figures showing the average and 

standard deviation of the SNR, obtained from 10 simulations, as indicators of the accuracy of 

the estimated EEG after correction. In all simulations, the standard deviation of the 



 22 

original EEG was set to 10.9 µµµµV. From Equation 2, the residual noise after correction 

can be easily calculated knowing the SNR reported in Figures. For instance, SNR=2 

(typical value obtained in simulations) gives a residual noise of standard deviation equal 

to 5.45 µµµµV. 

 

III.1.1 Imaging artefacts 

 

Figure 4A shows the effect of the EEG sampling rate on the performance of imaging artefact 

removal algorithms. For each correction method assessed, results improve with increasing 

sampling rate. However, beyond a sampling rate of 2 kHz, improvements are not substantial 

for most methods. Only ICA seems to require very high sampling rate (4 kHz) for optimal 

performances. ICA is by far the method presenting the best results. FASTR and IAR are 

approximately equivalent, except for low sampling rates (<1 kHz) where FASTR behaves 

better. FT is significantly less powerful. 

Figure 4B shows the effect of the slow modulation of the gradient artefact amplitude. 

As intuitively anticipated, the accuracy of the EEG estimation decreases with increasing 

modulation. Interestingly, the FT approach is much less sensitive than other approaches to 

this modulation, up to the point that it might become the optimal approach for recordings with 

large modulation, i.e. with large subject’s motion. 

Figure 4C shows the performance of the different methods as a function of the EEG 

frequency. In the lowest part of the frequency spectrum, ICA appears to be the most powerful 

on average. However, in high frequencies (>30 Hz), the FASTR approach becomes 

competitive and might even be optimal for highest frequencies. 

Overall, the simulations indicate that ICA performs best for correcting imaging 

artefacts, on average. However, the standard deviation of ICA results is much higher than that 
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of other approaches, showing that this method is not highly reproducible and might be 

unstable. We will come back to this issue when analysing experimental data. 

 

Figure 4 about here 

 

III.1.2 Ballistocardiogram 

 

The results obtained for correction of the cardiac artefacts with the methods previously 

described are summarised in Figure 5 (see description of algorithms in Methods Section for 

parameter values). 

Figure 5A shows the effect of the mean amplitude of the BCG. All methods show a 

dependency on this parameter, except FASTR. At low field strength, ICA and adaptive 

filtering appear to represent the best choice. At high field strength, FASTR and adaptive 

filtering should be clearly favoured. Overall, the AAS method poorly performs in comparison 

to other methods. 

As shown in Figure 5B, the AAS method also appears to behave poorly for increasing 

QRS detection jitter. Other methods present much less sensitivity to variations of this 

parameter. This is particularly the case for adaptive filtering. This technique is not influenced 

by the jitter because the correction algorithm does not rely upon this type of information. 

However, if QRS are well detected, then AAS is the optimal approach. 

Figure 5C shows the influence of the BCG removal algorithms on the different 

frequency bands of the estimated EEG. Above 10 Hz, the corrected EEG is approximately 

equivalent (for adaptive filtering) or worse (for the other correction methods) to the 

uncorrected EEG in terms of resemblance with the true EEG. This means that no cardiac 
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correction should be applied when studying frequencies above 10 Hz. The ballistocardiogram 

removal is useful only for frequencies below 10 Hz. 

To sum up, it appears that adaptive filtering is the optimal approach to suppress the 

ballistocardiogram when assuming some difficulties to perfectly detect QRS events. This 

technique necessitates the use of an additional motion sensor, however. Also, optimal 

parameters of the Kalman filter must be estimated, which is relatively easy in the case of 

simulations because we know a priori the EEG without artefacts. In the case of experimental 

data, it may be difficult to find optimal filter parameters and the results should be affected by 

this imprecision. Alternatively, the PCA approach offers a relative robustness. In the case of 

an ECG of high quality, the AAS technique is by far the most powerful and should be chosen. 

In any case, ICA behaves poorly on average for BCG correction. Again, ICA showed high 

standard deviations in comparison to other methods. This suggests instability issues which 

might be even more important in experimental data. 

 

Figure 5 about here 

 

 

III.2 Experimental recordings 

 

III.2.1 Alpha rhythm 

 

Figure 6 shows a good cross-correlation (r>0.8) between the block paradigm and the alpha 

power (8-12 Hz) after removing imaging artefacts with IAR or FASTR. The correlation is 

smaller when using the FT approach (r=0.689) or ICA (r=0.560). These results are not in line 

with those obtained from simulations, where ICA was found to be optimal for imaging 
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artefact correction. This suggests that instabilities of ICA results observed in simulations 

translate into a lack of robustness when applied to experimental data. We will come back to 

that point in the discussion. Without any correction, no correlation could be detected. Also, as 

anticipated on the basis of our simulations (BCG correction unnecessary for frequencies 

around 10 Hz), the BCG correction did not improve the correlation between the paradigm and 

the modulation of alpha power. 

 

Figure 6 about here 

 

III.2.2 Spike morphology 

 

Figure 7 shows the average of ten interictal spikes analysed (black curves), following 

application of different artefact correction approaches. The time series corresponding to one 

of the spikes is superimposed on the average spike (grey curves). After correction of the 

imaging artefacts (Figure 7, middle line), spikes can usually be easily detected between two 

cardiac events using each method. However, it remains difficult to differentiate them from 

cardiac artefacts. According to correlation coefficients (mean and standard deviation shown in 

Figure 7), averaged subtraction (IAR) and frequency based (FT) methods appears to 

outperform other approaches. The failure of ICA might again be related to robustness issues 

of the decomposition. The fact that FASTR is less powerful than when analysing a block-

design might be related to the fact that interictal spikes are not orthogonal to residual spikes of 

gradient. PCA is therefore likely to remove too much signal. The curves on the bottom line of 

Figure 7 illustrate the benefit obtained from correcting also the BCG, following removal of 

the imaging artefacts with the frequency based (FT) method (spikes are much more evident 
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than before BCG correction). Clearly, the AAS and PCA are better than ICA in removing the 

BCG. Besides, these methods do not induce additional distortion of the interictal spike. 

 

Figure 7 about here 

 

 

IV DISCUSSION 

 

Fusion of simultaneous EEG and fMRI recordings is an interesting imaging approach to study 

spontaneous brain activity. However, EEG measurements in a magnetic environment are 

accompanied with strong cardiac and imaging artefacts. Removal of these artefacts is a crucial 

step for further data analysis. A large number of correction methods have been proposed in 

the ten last years. Template subtraction methods were first proposed, both for pulse artefacts  

(Allen et al., 1998) and imaging artefacts (Allen et al., 2000). Other approaches were then 

developed to increase robustness.  They used (i) filtering in the frequency domain (Hoffmann 

et al., 2000), (ii) adaptive filtering (Bonmassar et al., 2002; Wan et al., 2006a), (iii) sets of 

basis functions based on principal components analysis (Niazy et al., 2005), (iv) independent 

component analysis (Bénar et al., 2003; Briselli et al., 2006; Nakamura et al., 2006; 

Srivastava et al., 2005), (v) nonlinear filtering (Wan et al., 2006b) . As suggested by the list of 

signal processing techniques, the development of new correction methods has been often 

performed by increasing the algorithm complexity, so as it is now difficult to evaluate what is 

necessary and what is not. 

In this study, we evaluated various imaging and cardiac artefacts removal algorithms, 

using simulated as well as experimental data. Assessing performance by the means of 

simulated data presents three main advantages: (i) one can operationally determine the effects 
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of the removal process on the EEG signal since it is known a priori; (ii) one can test the 

effects of different experimental or empirical parameters, such as EEG sampling rate, 

amplitude and stationarity of artefacts or imprecision in heartbeat detection; (iii) the 

discrepancies between the results obtained from simulations and from experimentations 

permit to get an insight into the invalidity of certain hypotheses on the signal properties. 

Besides, the main drawback of using simulated data is the limitation of the model, which can 

partially explain the differences observed between simulated and experimental data. 

 

IV.1 EEG forward modelling 

 

Ongoing EEG activity is thought to be mainly, but not only, generated by the 

depolarisation of apical dendrites of cortical principal cells (Nunez and Srinivasan, 

2005). Those cells belong to distributed thalamocortical neural networks. Biophysical 

models of the neural mass have been proposed to model EEG activity. They can be 

decomposed into two classes of models: (i) models which consider the cortex as a 

physical continuum in which travelling and standing waves of neural activity take place 

(Jirsa and Haken, 1996; Nunez, 2000; Nunez et al., 2001; Robinson et al., 2001; Wilson 

and Cowan, 1972); (ii) models which adopt a more local approach in which small 

neuronal clusters generating intrinsic dynamics in certain regions are coupled together 

(David et al., 2007; David and Friston, 2003; Jansen and Rit, 1995; Sotero et al., 2007; 

Suffczynski et al., 2001). Once the cortical dynamics has been modelled, it is transferred 

on the scalp by the means of a head model (Jirsa et al., 2002; Mosher et al., 1999). Such 

head model is simply a linear combination of the activity of the different neural 

ensembles, weighted by the properties of propagation of the electric potential in the 

head. Because true neural networks generating the EEG are extremely complex, and not 
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well understood, biophysical models do not generally capture easily all possible EEG 

dynamics. Alternatively, one might be interested in modelling the EEG dynamical 

properties only, with a higher precision than what biophysical models can generally do. 

This third class of models is the most common. The simplest model is to suppose that 

ongoing EEG activity is a random process which generates time series with more power 

in low frequencies (power spectrum in 1/f
2
). According to those assumptions, a random 

number generator associated to a low-pass filter is then perfectly sufficient to model 

EEG. Also, one might go further and generate EEG according to some chaotic 

assumptions on EEG time series (Perea et al., 2006). All these models are usually 

evaluated according to spatial-temporal similarities between simulated signals and 

recorded signals. To do so, visual similarity in the time domain and comparison of 

power spectra obtained from isolated time series are often used. More rarely, spatial 

correlation in terms of spatial power spectral density (Freeman et al., 2003) and of 

synchronisation (Astolfi et al., 2005; David et al., 2004) are also investigated. 

Because we were mainly interested in EEG dynamical properties, and not so 

much in the biophysical origins of EEG, we have chosen to reproduce the spectrum of 

ongoing EEG activity. To that end, we used a linear mixture of seven Gaussian 

distributions which were bandpass filtered in different frequency bands. 

 

IV.2 Simulation results 

 

For imaging artefacts, the simulations indicate that an EEG sampling rate of 1 or 2 kHz is 

sufficient for most methods, except for ICA in which a sampling rate of at least 4 kHz is 

required to obtain optimal results. Experimentally, the most efficient solution to reduce the 

confounding effects of sampling rate is to synchronise EEG and fMRI clocks 
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(Mandelkow et al., 2006). Using such synchronisation, it is possible to reduce further the 

EEG sampling rate without causing significant deterioration of EEG correction quality. 

Slow variation of the imaging artefact amplitude during the scan decreases the performance of 

the algorithms. The frequency-based approach (FT) (Hoffmann et al., 2000) was the less 

sensitive to this confound. Simulations also suggest that the particular imaging artefact 

removal algorithm to be used should be chosen according to the frequency band of interest. If 

one is interested in alpha rhythms, for instance, ICA (Nakamura et al., 2006) or IAR (Allen et 

al., 2000) appear more suited than FT (Hoffmann et al., 2000) or FASTR (Niazy et al., 2005). 

For high frequencies (>50 Hz), however, FASTR appears to be the most robust approach. 

For cardiac artefact correction, algorithm performances decrease when artefact 

amplitude increases, except for PCA. PCA thus appears to be the optimal choice when BCG 

is strongly contaminates recordings (>100 µV), e.g. usually when recording at high field 

strength (3T or more). Template artefact subtraction (AAS) (Allen et al., 1998) is highly 

sensitive to the QRS detection jitter (temporal imprecision in detecting heart beat by 

automatic signal analysis). However, when QRS detection is perfect (ECG is of high quality), 

then AAS outperforms all other approaches. Adaptive filtering (Bonmassar et al., 2002) and 

ICA (Nakamura et al., 2006) are not affected by the heartbeat detection because these method 

do not use this kind of information. Simulations also demonstrated that for frequencies higher 

than 10 Hz, any correction algorithm deteriorates the neuronal component of the EEG. This 

suggests not trying to remove BCG for experiments aimed at detecting ongoing activity in 

upper alpha, beta and gamma bands. 
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IV.3 Experimental results 

 

Experimental results obtained when studying alpha rhythms modulation in a healthy subject 

(Figure 6) confirmed that IAR was particularly robust to detect alpha oscillations after 

correction of imaging artefacts. Indeed, the correlation between estimated alpha power and 

the experimental design was best for IAR. Similar results were obtained using FASTR. As 

anticipated from simulations, further correction of the BCG did not improve significantly 

estimated alpha power. 

Interictal spike identification was successful with all methods used (Figure 7). IAR 

(Allen et al., 2000) and FT (modified version of (Hoffmann et al., 2000)) approaches showed 

the best correlation between spikes recorded outside and inside the MR scanner after imaging 

artefacts correction. This suggests that both methods were the most efficient to suppress 

artificial spikes due to remaining gradient artefacts. Note that we noticed that the FT 

method may tend to remove more signal of interest than IAR does. For that reason, we 

suggest to use IAR instead of FT to maximise the chance of detecting events of small 

amplitude, as already shown in (Bénar et al., 2003). Further processing of the BCG was 

best performed by AAS (Allen et al., 1998). According to simulations, this indicates that QRS 

events were accurately defined. 

Overall, these experimental results agree with simulations except on the fact that ICA, 

which appeared very efficient on average in simulations (but with a large variability), did 

show the less satisfactory experimental results, both for imaging and cardiac artefacts. We 

will come back to that issue in Section IV.4. 
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IV.4 Summary of algorithm properties 

 

Among imaging artefact methods, artefact template subtraction (IAR) (Allen et al., 2000) 

shows excellent results in experimental data but seems to be very sensitive to distortions 

according to simulations. FASTR (Niazy et al., 2005), which is based on IAR with the 

addition of a PCA decomposition for residual artefacts, showed similar results to those of IAR 

(significant improvement for low sampling rate only). Experimentally, FASTR results were 

significantly less satisfactory than when IAR was used, in particular for spike reconstruction. 

This suggests that the assumption of orthogonality between residual artefacts and EEG events 

was not valid in the case of interictal spikes. In other words, interictal spikes and gradient 

spikes look the same, and therefore FASTR should not be applied when trying to detect 

interictal spikes. We found that the frequency-based approach (FT) (Hoffmann et al., 2000) 

was efficient in experimental data. This would confirm the result obtained from simulation 

that this method is the less sensitive to modulation of gradient artefact amplitude, which is 

closely related to subject’s motion. However, in the presence of gaps in between EPI 

acquisition volumes, this method may introduce ringing artefacts due to discontinuities 

in signals to be corrected (Bénar et al., 2003). Although very seducing in simulations, ICA 

(Nakamura et al., 2006) behaved badly in experimental data. 

For cardiac artefact correction, average artefact template subtraction (AAS) (Allen et 

al., 1998) showed very interesting results for experimental data. In simulations however, 

results indicated that it is very sensitive to a bad QRS detection. PCA following AAS (Niazy 

et al., 2005) allowed getting better results, in the case of poor QRS detection only. ICA 

(Nakamura et al., 2006) showed poor results in removing cardiac artefacts both in 

experimental and simulated data, probably due to the same reasons as for imaging artefacts 

(see below). Adaptive filtering (Bonmassar et al., 2002) showed interesting results in 
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removing artefact in simulated data and may constitute a very efficient approach. However, 

we could not use this method experimentally because we did not have the necessary motion 

sensor. Bad points about this approach are: (i) optimal parameters of Kalman filter may be 

difficult to determine empirically; (ii) important computational time in comparison to other 

approaches. 

 

 

IV.5 Possible improvements of the forward model 

 

The discrepancies in ICA results between simulation and experimentation highly suggest that 

the forward EEG model we used is lacking an important property of physiological signals. 

The most obvious limitation of our EEG model is non-stationarity. Although we introduced 

some degrees of non-stationarity in the model, we did so mainly at the level of artefacts (a 

modulation of alpha power was used). It is highly plausible, however, that neural signals are 

highly non-stationary and, thus, violate underlying assumptions of ICA decomposition. 

The notion of statistical independency between imaging/cardiac artefacts and EEG is 

very compelling and applied well to our forward model for simulated data. Practically, 

however, it appeared difficult to distinguish the components representing artefacts from those 

representing the EEG in the experimental data. First, given the much greater variability of 

ICA results in simulations compared to those obtained with other approaches, this confirms 

the impression, that ICA decomposition with the algorithm we used (runica.m from 

EEGLAB) show a certain degree of instability. Second, this suggests that the linear mixture 

model underlying temporal ICA may not be applicable to estimate efficiently independent 

components in long time series such as those acquired in EEG/fMRI. A theoretical reason for 

that may be the following. When applying temporal ICA on a time segment, the implicit 
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assumption is that underlying sources are stationary in space. However, we have mentioned 

above that some biophysical models (Jirsa and Haken, 1996; Nunez, 2000; Nunez et al., 2001; 

Robinson et al., 2001; Wilson and Cowan, 1972) explain EEG data by the means of travelling 

waves, the modes of propagation of which are likely to be modified endogenously by fast 

plastic mechanisms constantly occurring (Turrigiano and Nelson, 2004). Clearly, ICA 

assumptions do not conform to these biophysical properties. Because ICA was not successful 

with BCG correction either, a forward model of BCG based on non-stationary propagating 

waves would probably constitute a significant improvement in forward modelling. To our 

knowledge, such model does not exist yet. 

Therefore, using biophysical models assuming EEG and artefact sources non-

stationary in space would be a possibility to increase the similarity between simulated and 

experimental results.  

 

 

V CONCLUSION 

 

When data are acquired in ideal conditions, methods based on an average template subtraction 

(Allen et al., 1998; Allen et al., 2000) are extremely efficient in removing the artefact without 

deteriorating too much the EEG neuronal component. When one suspects subject’s motion or 

when cardiac events are difficult to detect, more sophisticated approaches are necessary. We 

found that sampling the EEG at frequencies higher than 1 kHz or 2 kHz does not improve 

significantly the EEG estimation and increases unnecessarily the size of the data and the 

computational burden. We also found that it is unnecessary to correct cardiac artefacts for the 

detection of alpha or higher rhythms, while it is critical when estimating focal events such 

interictal spikes or evoked potentials. In other words, there is no correction algorithm that is 
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generally optimal. Depending on the type of data analysis pursued, certain algorithms may be 

preferred. 
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FIGURE CAPTIONS 

 

Figure 1: 

Generative model of EEG. (A) Addition of the 7 Gaussian distributions in various frequency 

bands to emulate a realistic EEG spectrum. (B) Comparison of the log-spectrum between 

simulated (dotted line) and experimental EEG (plain line). (C) Example of EEG time series 

recorded outside the MR scanner (upper recording) and a realisation of synthetic EEG time 

series (lower recording). 

 

Figure 2: 

Construction of the model of imaging artefact. (A) Imaging artefact template for a volume 

sampled at 50 kHz (TR= 3 s, 40 slices per volume). (B) Left: Zoom on 6 slices of the imaging 

artefact template (50 kHz as in A). Middle: Imaging artefact template after down-sampling at 

1024 Hz. The down-sampling introduces some irregularity on the shape of the artefact, which 

violates the assumptions of most correction methods. Right: Imaging artefact template after 

down-sampling at 1024 Hz and modelling of the artefact amplitude modulation. (C) Spectrum 

of the imaging artefact between 0 and 70 Hz sampled at 1024 kHz. It shows aliasing, which 

can be important when the EEG sampling rate is too short. 

 

Figure 3: 

The different parts of the cardiac artefact model. (A) Slow variations of the heart rate between 

65 and 85 heartbeats per minute during the recording. (B) Variation of the cardiac artefact 

mean amplitude between the different channels. (C) Variation of the amplitude of the cardiac 

artefact between successive heartbeats. (D) Modelling of the displacement of the blood flow 

around the head producing a constant delay of few milliseconds between channels. (E) QRS 
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detection jitter of few tens of milliseconds due to imprecision in detecting precisely QRS 

event in the cardiac recording channel. (F) Spectrum of the cardiac artefacts between 0 and 70 

Hz. Most BCG power is distributed under 12 Hz. 

 

Figure 4: 

Plots of the SNR obtained from simulations of the imaging artefact removal. (A) SNR as a 

function of the EEG acquisition sampling rate (from 256 Hz to 8 kHz). (B) SNR as a function 

of the artefact amplitude slow modulation (from 0 to 25% of the mean amplitude). (C) 

Distribution of the SNR as a function of the EEG frequency. Simulation parameters (unless 

otherwise specified): 20 channels; EEG sampling rate: 1024 Hz; time series duration: 180 s; 

slow modulation of artefact amplitude: 10% of the mean amplitude.  

 

Figure 5: 

Plots of the SNR obtained from simulations of the cardiac artefact removal. (A) SNR as a 

function of the cardiac artefact mean amplitude (from 10 to 200 µV). A rough indication of 

the corresponding magnetic field strength (1.5T and 3T) is provided as a reference. (B) SNR 

as a function of the QRS detection jitter (from 0 to 50 ms). (C) Distribution of the SNR as a 

function of the EEG frequency. Simulation parameters (unless otherwise specified): 20 

channels; EEG sampling rate: 1024 Hz; time series duration: 180 s; jitter standard deviation: 

25 ms.  

 

Figure 6: 

Alpha rhythm imaging. (A) Comparison between the experimental block-paradigm (eyes 

closed/eyes open) and the normalised power in the alpha band. Top line: no artefact 

correction. Middle line: imaging artefact correction. Bottom line: cardiac artefact correction 
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after using IAR imaging artefact removal. To get a picture of the accuracy of the estimated 

EEG, the cross-correlation coefficient r between the paradigm and the alpha power is 

indicated below each plot. (B) Glass brains obtained using the power in the alpha band as a 

regressor convolved with the hemodynamic response (p = 0.005, uncorrected). Left: without 

any artefact correction. Middle: using IAR imaging artefact removal. Right: using IAR 

imaging artefact removal and AAS cardiac artefact removal. As an indication, the number of 

voxels activated (top line) or deactivated (bottom line) is indicated for each glass brain. 

 

Figure 7: 

Spike morphology. Top line: One interictal spike (in grey) and the average over ten interictal 

spikes (in black) recorded outside the scanner. On the middle and the bottom lines, the same 

interictal spike (in grey) and the average over the same ten spikes (in grey) are plotted after 

imaging artefact correction and after cardiac artefact correction (following FT imaging 

artefact correction), respectively. The mean and standard deviation of the cross-correlation 

coefficient r between the 10 spikes recorded outside the scanner and the 10 spikes estimated 

after correction are indicated for each correction method. 

 

 



 38 

REFERENCES 

 

Abacherli, R., Pasquier, C., Odille, F., Kraemer, M., Schmid, J.-J., Felblinger, J., 2005. 

Suppression of MR gradient artefacts on electrophysiological signals based on an 

adaptive real-time filter with LMS coefficient updates. MAGMA 18, 41-50. 

Allen, P.J., Josephs, O., Turner, R., 2000. A method for removing imaging artifact from 

continuous EEG recorded during functional MRI. Neuroimage. 12, 230-239. 

Allen, P.J., Polizzi, G., Krakow, K., Fish, D.R., Lemieux, L., 1998. Identification of EEG 

events in the MR scanner: the problem of pulse artifact and a method for its 

subtraction. Neuroimage. 8, 229-239. 

Anami, K., Mori, T., Tanaka, F., Kawagoe, Y., Okamoto, J., Yarita, M., Ohnishi, T., Yumoto, 

M., Matsuda, H., Saitoh, O., 2003. Stepping stone sampling for retrieving artifact-free 

electroencephalogram during functional magnetic resonance imaging. Neuroimage 19, 

281-95. 

Astolfi, L., Cincotti, F., Mattia, D., de Vico, F.F., Lai, M., Baccala, L., Salinari, S., Ursino, 

M., Zavaglia, M., Babiloni, F., 2005. Comparison of different multivariate methods 

for the estimation of cortical connectivity: simulations and applications to EEG data. 

Conf.Proc.IEEE Eng Med.Biol.Soc. 5, 4484-4487. 

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind separation 

and blind deconvolution. Neural Comput 7, 1129-59. 

Bénar, C., Aghakhani, Y., Wang, Y., Izenberg, A., Al Asmi, A., Dubeau, F., Gotman, J., 

2003. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin.Neurophysiol. 

114, 569-580. 

Bonmassar, G., Purdon, P.L., Jaaskelainen, I.P., Chiappa, K., Solo, V., Brown, E.N., 

Belliveau, J.W., 2002. Motion and ballistocardiogram artifact removal for interleaved 

recording of EEG and EPs during MRI. Neuroimage 16, 1127-41. 

Briselli, E., Garreffa, G., Bianchi, L., Bianciardi, M., Macaluso, E., Abbafati, M., Grazia 

Marciani, M., Maraviglia, B., 2006. An independent component analysis-based 

approach on ballistocardiogram artifact removing. Magn Reson Imaging 24, 393-400. 

Czisch, M., Wetter, T.C., Kaufmann, C., Pollmacher, T., Holsboer, F., Auer, D.P., 2002. 

Altered processing of acoustic stimuli during sleep: reduced auditory activation and 

visual deactivation detected by a combined fMRI/EEG study. Neuroimage 16, 251-8. 

David, O., Cosmelli, D., Friston, K.J., 2004. Evaluation of different measures of functional 

connectivity using a neural mass model. Neuroimage. 21, 659-673. 

David, O., Friston, K.J., 2003. A neural mass model for MEG/EEG: coupling and neuronal 

dynamics. Neuroimage 20, 1743-1755. 

David, O., Harrison, L., Friston, K.J., 2007. Neuronal models of EEG and MEG. In: Friston, 

K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical 



 39 

Parametric Mapping: The analysis of functional brain images, 1 ed. Elsevier, London, 

pp. 414-440. 

Ellingson, M.L., Liebenthal, E., Spanaki, M.V., Prieto, T.E., Binder, J.R., Ropella, K.M., 

2004. Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory 

ERPS and fMRI. Neuroimage 22, 1534-42. 

Felblinger, J., Slotboom, J., Kreis, R., Jung, B., Boesch, C., 1999. Restoration of 

electrophysiological signals distorted by inductive effects of magnetic field gradients 

during MR sequences. Magn Reson Med 41, 715-21. 

Freeman, W.J., Burke, B.C., Holmes, M.D., 2003. Aperiodic phase re-setting in scalp EEG of 

beta-gamma oscillations by state transitions at alpha-theta rates. Hum.Brain Mapp. 19, 

248-272. 

Garreffa, G., Carni, M., Gualniera, G., Ricci, G.B., Bozzao, L., De Carli, D., Morasso, P., 

Pantano, P., Colonnese, C., Roma, V., Maraviglia, B., 2003. Real-time MR artifacts 

filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 21, 1175-89. 

Goldman, R.I., Stern, J.M., Engel, J., Jr., Cohen, M.S., 2002. Simultaneous EEG and fMRI of 

the alpha rhythm. Neuroreport 13, 2487-2492. 

Goldman, R.I., Stern, J.M., Engel, J.J., Cohen, M.S., 2000. Acquiring simultaneous EEG and 

functional MRI. Clin Neurophysiol 111, 1974-80. 

Gotman, J., Benar, C.G., Dubeau, F., 2004. Combining EEG and FMRI in epilepsy: 

methodological challenges and clinical results. J.Clin.Neurophysiol. 21, 229-240. 

Hamandi, K., Salek-Haddadi, A., Fish, D.R., Lemieux, L., 2004. EEG/functional MRI in 

epilepsy: The Queen Square Experience. J.Clin.Neurophysiol. 21, 241-248. 

Hoffmann, A., Jager, L., Werhahn, K.J., Jaschke, M., Noachtar, S., Reiser, M., 2000. 

Electroencephalography during functional echo-planar imaging: detection of epileptic 

spikes using post-processing methods. Magn Reson.Med. 44, 791-798. 

Ives, J.R., Warach, S., Schmitt, F., Edelman, R.R., Schomer, D.L., 1993. Monitoring the 

patient's EEG during echo planar MRI. Electroencephalogr.Clin.Neurophysiol. 87, 

417-420. 

Jansen, B.H., Rit, V.G., 1995. Electroencephalogram and visual evoked potential generation 

in a mathematical model of coupled cortical columns. Biol.Cybern. 73, 357-366. 

Jirsa, V.K., Haken, H., 1996. Field Theory of Electromagnetic Brain Activity. 

PHYSICAL.REVIEW LETTERS. 77, 960-963. 

Jirsa, V.K., Jantzen, K.J., Fuchs, A., Kelso, J.A., 2002. Spatiotemporal forward solution of the 

EEG and MEG using network modeling. IEEE Trans.Med.Imaging 21, 493-504. 

Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, 

T.J., 2000. Removing electroencephalographic artifacts by blind source separation. 

Psychophysiology 37, 163-78. 



 40 

Kim, K.H., Yoon, H.W., Park, H.W., 2004. Improved ballistocardiac artifact removal from 

the electroencephalogram recorded in fMRI. J Neurosci Methods 135, 193-203. 

Krakow, K., Messina, D., Lemieux, L., Duncan, J.S., Fish, D.R., 2001. Functional MRI 

activation of individual interictal epileptiform spikes. Neuroimage 13, 502-5. 

Krakow, K., Woermann, F.G., Symms, M.R., Allen, P.J., Lemieux, L., Barker, G.J., Duncan, 

J.S., Fish, D.R., 1999. EEG-triggered functional MRI of interictal epileptiform activity 

in patients with partial seizures. Brain 122 ( Pt 9), 1679-1688. 

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., Krakow, 

K., 2003. EEG-correlated fMRI of human alpha activity. Neuroimage. 19, 1463-1476. 

Lemieux, L., Salek-Haddadi, A., Josephs, O., Allen, P., Toms, N., Scott, C., Krakow, K., 

Turner, R., Fish, D.R., 2001. Event-related fMRI with simultaneous and continuous 

EEG: description of the method and initial case report. Neuroimage. 14, 780-787. 

Mandelkow, H., Halder, P., Boesiger, P., Brandeis, D., 2006. Synchronization facilitates 

removal of MRI artefacts from concurrent EEG recordings and increases usable 

bandwidth. Neuroimage 32, 1120-1126. 

Mosher, J.C., Leahy, R.M., Lewis, P.S., 1999. EEG and MEG: forward solutions for inverse 

methods. IEEE Trans.Biomed.Eng 46, 245-259. 

Nakamura, W., Anami, K., Mori, T., Saitoh, O., Cichocki, A., Amari, S., 2006. Removal of 

ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using 

independent component analysis. IEEE Trans Biomed Eng 53, 1294-308. 

Negishi, M., Abildgaard, M., Nixon, T., Constable, R.T., 2004. Removal of time-varying 

gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 

115, 2181-92. 

Niazy, R.K., Beckmann, C.F., Iannetti, G.D., Brady, J.M., Smith, S.M., 2005. Removal of 

FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28, 

720-737. 

Nunez, P.L., 2000. Toward a quantitative description of large-scale neocortical dynamic 

function and EEG. Behav.Brain Sci. 23, 371-398. 

Nunez, P.L., Srinivasan, R., 2005. Electric fields of the brain, 2 ed. Oxford University Press, 

New York. 

Nunez, P.L., Wingeier, B.M., Silberstein, R.B., 2001. Spatial-temporal structures of human 

alpha rhythms: theory, microcurrent sources, multiscale measurements, and global 

binding of local networks. Hum.Brain Mapp. 13, 125-164. 

Perea, G., Marquez-Gamino, S., Rodriguez, S., Moreno, G., 2006. EEG-like signals generated 

by a simple chaotic model based on the logistic equation. J.Neural Eng 3, 245-249. 

Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L., 2001. 

Prediction of electroencephalographic spectra from neurophysiology. Phys.Rev.E 63, 

021903. 



 41 

Salek-Haddadi, A., Friston, K.J., Lemieux, L., Fish, D.R., 2003. Studying spontaneous EEG 

activity with fMRI. Brain Res.Brain Res.Rev. 43, 110-133. 

Sijbers, J., Michiels, I., Verhoye, M., Van Audekerke, J., Van der Linden, A., Van Dyck, D., 

1999. Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. 

Magn Reson Imaging 17, 1383-91. 

Sijbers, J., Van Audekerke, J., Verhoye, M., Van der Linden, A., Van Dyck, D., 2000. 

Reduction of ECG and gradient related artifacts in simultaneously recorded human 

EEG/MRI data. Magn Reson Imaging 18, 881-6. 

Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C., 2007. 

Realistically coupled neural mass models can generate EEG rhythms. Neural Comput. 

19, 478-512. 

Srivastava, G., Crottaz-Herbette, S., Lau, K.M., Glover, G.H., Menon, V., 2005. ICA-based 

procedures for removing ballistocardiogram artifacts from EEG data acquired in the 

MRI scanner. Neuroimage 24, 50-60. 

Suffczynski, P., Kalitzin, S., Pfurtscheller, G., Lopes da Silva, F.H., 2001. Computational 

model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to 

focal attention. Int.J.Psychophysiol. 43, 25-40. 

Turrigiano, G.G., Nelson, S.B., 2004. Homeostatic plasticity in the developing nervous 

system. Nat.Rev.Neurosci. 5, 97-107. 

Wan, X., Iwata, K., Riera, J., Kitamura, M., Kawashima, R., 2006a. Artifact reduction for 

simultaneous EEG/fMRI recording: Adaptive FIR reduction of imaging artifacts. Clin 

Neurophysiol 117, 681-92. 

Wan, X., Iwata, K., Riera, J., Ozaki, T., Kitamura, M., Kawashima, R., 2006b. Artifact 

reduction for EEG/fMRI recording: nonlinear reduction of ballistocardiogram 

artifacts. Clin Neurophysiol 117, 668-80. 

Wilson, H.R., Cowan, J.D., 1972. Excitatory and inhibitory interactions in localized 

populations of model neurons. Biophys.J. 12, 1-24. 

 

 


