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Abstract

Dynamic Causal Modelling (DCM) and the theory oftcgoietic systems are two important
conceptual frameworks. In this review, we suggleat they can be combined to answer important
guestions about self-organising systems like tt@nbrDCM has been developed recently by the
neuroimaging community to explain, using biophykicaodels, how the non-invasive brain
imaging data are caused by neural processesoWsalbne to ask mechanistic questions about how
the implementation of cerebral processes. In DCM plarameters of biophysical models are
estimated from measured data and the evidenceébrmodel is evaluated. This enables one to test
different functional hypotheses (i.e., models) &ogiven data set. Autopoiesis and related formal
theories of biological systems as autonomous mashiapresent a body of concepts with many
successful applications. However, autopoiesis lamamned largely theoretical and has not
penetrated the empiricism of cognitive neurosciehté¢his review, we try to show the connections
that exist between DCM and autopoiesis. In paiicuive propose a simple modification to
standard formulations of DCM that includes autonom@rocesses. The idea is to exploit the
machinery of the system identification of DCMs iaunoimaging to test the face validity of the
autopoietic theory applied to neural subsystems.iMistrate the theoretical concepts and their
implications for interpreting electroencephalogriapdignals acquired during amygdala stimulation
in an epileptic patient. The results suggest th@Mrepresents a relevant biophysical approach to

brain functional organisation, with a potentialttisayet to be fully evaluated.



|. Introduction

Cognitive experiments in neuroimaging rely mainlyon two techniques: functional Magnetic
Resonance Imaging (fMRI) detects changes in cerblrad flow, volume and the ensuing changes
in concentration of deoxyhemoglobin (Attwell andidaola, 2002; Logothetis and Wandell, 2004).
These measurements are acquired in each voxeleobrdin volumej.e. every 3 mm or so, in
relation to a given stimulus or cognitive task. e other hand, electroencephalography (EEG)
(Nunez and Srinivasan, 2005) and magnetoenceplaglogr(MEG) (Hamalainen et al., 1993)
measure, on the scalp, fluctuations of the elepbiential and magnetic field, respectively, enditte
by underlying neuronal populations. In the recesdrg, research teams have developed approaches
for the fusion of fMRI/EEG/MEG data. Such effortseamotivated by the observation that
combining the high temporal resolution of MEG/EE@dahe high spatial resolution of fMRI
should lead to the optimal technique for functiome&uroimaging. For instance, the source
localisation of MEG/EEG signals can be constraingdMRI activation maps and profit from the
localisation power of fMRI (Dale et al., 2000). Adtugh most fusion methods are perfectly tenable
from a signal processing point of view, they ard goounded in a detailed analysis of the
biophysical mechanisms generating data; for examples still unclear how fMRI/EEG/MEG

signals are related to underlying neural networks.

To better understand the relationships betweenonaliensembles and neuroimaging data,
a research initiative has emerged recently. Itredigated on the development of biophysical, or
generative models, for neuroimaging data (Buxtomlgt1998; David et al., 2005; David et al.,
2006b; David and Friston, 2003; Friston et al.,@doznanski and Riera, 2006; Riera et al., 2004;
Riera et al., 2006b; Riera et al., 2006a; Robirstoal., 2001; Stephan et al., 2004; Vazquez et al.,
2006) (Figure 1). Basically, the idea is to relaguronal variables (synaptic time constants and
efficacies, inhibition/excitation, neural connediyy etc) to macroscopic data (local field potentials,
scalp MEG/EEG, fMRI). Here, researchers face twobjems: (i) a forward problem, which
corresponds to the mapping from biophysical phemante measured data (fMRI or MEG/EEG);
(i) and an inverse problem which corresponds #itiversion of the forward model; in other words

to the estimation of forward model parameters, migedata set and some known stimuli. Because



they are biophysically grounded, generative morkgsesent a principled and mechanistic basis for
fMRI/EEG/MEG data fusion. Inferences are made ouroeal parameters estimated from fMRI
and/or MEG/EEG, or on unobserved neuronal statésesd quantities are the true common

denominator of any neuroimaging data and transosodhlity-specific aspects.

Forward problem
Given the generative model, one can predict the measured data

m

= Neuronal variables: m Macroscopic data at the
= Synaptic time constant brain level:
= Synaptic efficacy = Local field potentials
» Inhibition/Excitation = Scalp EEG/MEG
= Connectivity (networks) = Functional MRI

w

Inverse problem
Given the measured data, one can estimate the generative model

Figure 1. Generative models are biophysical models, whighdrexplain neuroimaging data (forward problemheT
inverse problem consists of identifying the biopgbgkparameters of these models from the measwtal ®ynamic

Causal Modelling estimates the parameters of angiemerative model (fMRI or MEG/EEG) using a Bagesscheme.

In this review, the focus is on the formalism depeld for Dynamic Causal Modelling
(DCM) (David et al., 2006a; Friston et al., 2003&rdo et al., 2007; Kiebel et al., 2006; Penny et
al., 2004; Stephan et al., 2005). DCM is a gerapjoroach for analysing for fMRI and EEG/MEG
data using generative models. It imposes consgraintthe mathematical structure of generative
models so that they can be inverted easily usinge8ian estimation procedures. In brief, these
models are usually deterministic input-output systewhich can be decomposed into a differential
state equation and a nonlinear output or obseunrastion. Following discussions which animated a
workshop “Networks in Cognitive Systems / Trendd @Mhallenges in Biomedicine: From Cerebral

Process to Mathematical Tools Design” held at tladp&raiso Institute of Complex Systems in



December 2006, | show here how this first genematb DCMs can be adapted to embed more
autonomous modulatory mechanisms. The goal is @aav ghat these models can be adapted to get
closer to the self-organised and dissipative dyoanaf living systems, as covered by formal
theories used in biology such as autopoiesis (dagelal., 1974). As an illustration, intracerebral
EEG data, recorded in an epileptic patient duriegrastimulation, will be used to illustrate how
important questions about autonomous dynamicsealketlel of neuronal connections can be posed

and addressed.

II. Dynamic Causal Modelling (DCM)

1.1 Concept

The main idea behind DCM (David et al., 2006a;tBriset al., 2003; Kiebel et al., 2006) is to treat
the brain as a deterministic nonlinear dynamicaltesy that is subject to inputs, and produces
outputs. Effective connectivity,e. the influence that one region exerts on anotkgrarameterized

in terms of coupling among unobserved brain statesneuronal activity in different regions.
Coupling is estimated by perturbing the system mms@dsuring the response. In other words, the
principal aim of DCM is to explain evoked brain pesses as deterministic responses to some
perturbationsij.e. stimuli, in terms of context-dependent couplindpich allows for differences in
the shape of responses. These perturbationsahiitges in unobserved neuronal activity simulated
in neural networks, which is transformed into okiedr macroscopic neuroimaging data using a

modality-specific forward model (Figure 2).
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Figure 2: General concept of DCM. Brain activity is modelleith neural networks using a model of interactions
(connectivity between different brain regions andfeuronal populations). The neural states genemat¥oscopic data
through a hemodynamic model for fMRI or an eleetrimodel for MEG/EEG. The estimation of the pararebf the
models allows one to estimate neuronal interacti@ither from fMRI or from MEG/EEG. The fusion beten

fMRI/MEG/EEG data is implemented via the generativedels at the level of neural networks.

DCM was developed first for fMRI (Friston et al.0@8) and can be used for any type of
experimental design, as long as the data are achsequentially (DCM being a dynamical model,
it necessitates continuous time-series). Herengueonal activity of each brain region participgtin
in a DCM is summarised by one state variable, abifsynaptic activity”. Interactions between
regions are modelled simply using a bilinear mdtat allows for input-dependent modulation of
connectivity over time. This means that the nedsalamics generated are very simple (basically
mono-exponential responses) and the relationshgpseen real neuronal activity and modelled
“synaptic activity” are quite obscure. However,dtnot possible to estimate complicated neural
dynamics from fMRI signals because they have isicaly slow time constants (they can be
considered as the output of a low-pass filter endzbdy hemodynamic processes) and are sampled
sparsely (every second or $@. much slower than neural processes). The roleeoh#ural model
in DCM for fMRI is simply to estimate a summary péural interactionsi.e. the strength of
directed neuronal connections. The synaptic agtigiestimated from the Blood Oxygenated Level

Dependent (BOLD) signals by the means of a hemadimeodel (Friston et al., 2000) (Figure 3).



The parameters of the hemodynamic model are estthiateach region to take into account spatial
variability of hemodynamic responses. Invertingsthiodel to estimate causal interactions at the

neuronal level means the estimates are, in theotysensitive to this hemodynamic variability.

DCM for EEG relies on a neuronal model of interacs that is more plausible than the one
used for fMRI. EEG signals are the macroscopicltesfuthe activity of millions of neurons and
DCMs for EEG use neural-mass models, which assuynandics can be modelled by random
fluctuations around population dynamics with a pamass (David and Friston, 2003). DCM for
EEG has been developed as a generic tool to anelydesd potentials obtained at the scalp level
for any kind of neuropsychological or cognitive ekment. The generative model of DCM for
EEG (David et al., 2005) is based on the Janserehfddnsen and Rit, 1995), a neural-mass model
developed originally for explaining visual respasnsk is combined with rules of cortical-cortical
connectivity derived from the analysis of conneasidetween the different cortical layers in the
visual cortex of the monkey (Crick and Koch, 1998).the Jansen model, a cortical area,
understood here as an ensemble of strongly integagtacro-columns, is modelled by a population
of excitatory pyramidal cells, receiving (i) inhibry and excitatory feedback from locale(
intrinsic) interneurons and (ii) excitatory inpubm neighbouring or remote€. extrinsic) areas. It
is composed of three subpopulations: a populatioexoitatory pyramidal (output) cells receives
inputs from inhibitory and excitatory populationsimerneurons, via intrinsic connections (intrimsi
connections are confined to the cortical sheetthWithis model, excitatory interneurons can be
regarded as spiny stellate cells found predomipaint! layer four and in receipt of forward
connections (Miller, 2003). Excitatory pyramidallseind inhibitory interneurons are considered to
occupy agranular layers and receive backward aedalanputs. The resulting model (David et al.,
2005) including intrinsic and extrinsic corticalrioal connections, is a set of differential eqoas
describing interactions between different inhibtand excitatory neuronal populations (Figure 3).
It can be specified easily to embed any hierar¢thocatical-cortical network using forward,
backward and lateral connections. The large cyloctonic variability of the neocortex and of
other brain structures such as the hippocampusaanddala makes the plausibility of a generic
model questionable. However, the crucial point hetbat the main purpose of a forward model, in

the context of DCM, is to constrain dynamics in euronally plausible way (time constants,



propagation delay, directionality of the informatitransfer,etc). This is exactly what a generic

model can do, maintaining an appropriate balant@dsn complexity, plausibility and modularity.

[I.2 Theory

Because DCMs are not restricted to linear or irtategous systems, they generally depend on a
large number of free parameters. However, becdusg d@re biologically grounded, parameter
estimation is constrained. A natural way to embddgse constraints is within a Bayesian
framework. Consequently, DCMs are estimated usiageBian inversion and inferences about
particular connections are made using their pasteor conditional density. The full set of
equations for DCM specification and Bayesian patamestimation can be found in the original
papers (David et al., 2005; David et al., 2006&tén et al., 2003; Kiebel et al., 2006; Pennylgt a

2004). The key steps are summarised below.
[1.2.1 Model specification

A DCM is a dynamical system. It is specified innberof a state equation and an output equation.

The state equation can be written as
x = f(x,u,6) (1)

wherex are the neuronal statas,are the extrinsic inputs anfl are the model parameters. The
output equation links the unobserved neuronal stat® the measured datausing a nonlinear

instantaneous functiog
y=g(x.6). (2)

The equations (1) and (2) completely specify threvéomd model, that is how to link neuronal states
x and their extrinsic perturbationsto the macroscopic daya In other words, the functiorisandg
are specific to the modality used. In fMRIs fairly simple (because there is no informatadrout
detailed neural dynamics in BOLD signals) and apipnates neuronal interactions with a bilinear

model. The functiog is much more complex, because it models the e@iffiebiophysical processes



at the origins of the BOLD effect: (i) the synap#ctivity triggers a vasodilatory signal which
induces changes in blood flow; (ii) according te Balloon model (Buxton et al., 1998), changes in
blood flow lead to changes in blood volume andenxy/hemoglobin concentration. In comparison,
in EEG, thef function is rather complex (nonlinear differentdg¢layed equations) because one
examine much richer neural dynamics than in fMRIcdntrast, thg function is extremely simple.

It is the standard forward head model used for@localisation, namely a linear product of the
pyramidal cell depolarisation (part of the hiddeural states, which are estimatedfyiny the lead
field of each region of the DCM. Figure 3 summasighe different equations. In fMRI, the
parametersgé are the coupling parameters (connectivity) and ddgmamic parameters which
control the dynamics of changes in blood flow, blomlume and deoxyhemoglobin content. For
MEG/EEG, they are inhibitory and excitatory synegtme constants and efficacies, intrinsic and

extrinsic connectivity, and propagation delay.

fMRI MEG/EEG

Bilinear model Neural mass model
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Figure 3: Schematic of the state equatidr{&q. 1) and output equations(Eq. 2) used in fMRI and MEG/EEG. The
state equation is more complex in MEG/EEG tharMRF, whereas the output equation is simpler in MEBG than

in fMRI.
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[1.2.2 Estimation of model parameters

DCM uses a Bayesian scheme for estimating modahpaters based on Expectation-Maximisation

(Friston et al., 2002). The outputs of the paramestimation procedure are posterior probabilities
of model parameter$>(€|y) which are a combination of the likelihood (or ddehce in the data)

p(y|6) and prior expectations about the parameters (fam@le, synaptic time constants are

expected to be around 5-10 ms{)
p(ely) 0 plx6)p(6). (3)

Hyperparameters tune the relative influence of da¢a and of prior expectations. They are
estimated from the data using a restricted Maxinukelihood. The most important aspect is that
inferences about the model parameters, and patigudbout connectivity parameters, can be
performed directly from the posterior distributiohthose parameters (under Gaussian assumptions,

one estimates and uses the conditional or poste@an and covariance of the parameters).
[1.2.3 Model comparison

The main advantage of DCM is that is allows ontesd competing functional hypotheses. For each
functional hypothesis, a modsel is specified in terms of anatomical connectionsveen regions
and possibly the modulation of some connection®xXperimental context. This is equivalent to
constructing a specific functidn(Eq. 1) for each model. After the estimation ofgmaeters of each
competing model, the models are compared to firel iost plausible model, or functional
hypothesis. This is done using Bayesian model sefeahere the evidence of each model is used

to quantify the model plausibility (Penny et aD02). The evidence of modelis given by

p(y|m)= J' p(y|t9, m)p(é?, m) O p(y|9)d9

log(p(yim)) = accuracym) - complexitgm) )
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The log-evidence can be decomposed into a differbetween two components: an accuracy term,
which quantifies the data fit, and a complexityrewhich penalizes models with a large number of
parameters. Therefore, the evidence embodies thectwnflicting requirements of a good model,
that it explains the data and is as simple as plessThe most likely model is the one with the
largest log-evidence. Conventionally, strong evadenn favour of one model requires the

difference in log-evidence to be three or more witter models.

Assuming each data set is independent of the fthiee best model at the group level is
obtained by multiplying the marginal likelihoods equivalently, by adding the log-evidences from

each subject (Garrido et al., 2007):

In p(yl,...,yn|m):iln p(yj|m) (5)

wheren is the number of subjects. Note that the evideraze only be approximated under some
assumptions. To obtain a consistent model comparisoe can use the Akaike Information
Criterion (AIC) or the Bayesian Information Critemni (BIC) (Penny et al., 2004) to get bounds on

the evidence and to select a model if the inferaeftained with AIC and BIC is concordant.

[11. Autopoietic systems

Autopoietic theory, or autopoiesis, is a formakatpt to describe living systems as physical open
(dissipative) systems, but with a degree of autondWarela, 1979). Autonomy is a general
framework to understand their fundamental orgamsatt is particularly useful when considering
the individuality of living systems at differentades. It relies on circular causality (Figure 4high

is the central aspect of an autopoietic systeme{leztet al., 2003; Maturana and Varela, 1980):

“an autopoietic system is organised as a boundedone of processes of production,
transformation and destruction of components wh{ghthrough their interactions and

transformations continuously regenerate and redhisenetwork of processes that produced
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them; (ii) constitute the system as a concretdyeintithe space in which the components exist

by specifying the topological realisation of thet®yn as such a network”.

In other words, an autopoietic system produces ity what is topographically and functionally
segregated from its background. The operationaluc (processes which produce components that
are reinserted in the original processes by thenswe&other processes) of autopoietic systems is a
general principle of organisation, which can beligdpin many contexts; such as ecosystems,
artificial intelligence and artificial life, sociaciences, linguistics, economics and so on. Ih fac
autopoietic systems are a special case of a latgss oforganisationally closedgystems (Varela,

1979). This class includes (M,R) systems (Letedieal., 2003; Rosen, 1958).

energy flow specifies

¥

¢onf iguration processes

determines

permits the bounded dynamics of

metabolic
network

" membrane
. boundaries

produces the metabolites that constitute

modulates the dynamics of

nervous
system

éensori-moto
. coupling

generates neuronal ensembles underlying

Figure 4: Partial representation of an autopoietic systemiifégrent scales: (A) Abstract level; (B) Cellulavel; (C)
Animal body level. The diagrams show the circulausality, or operational closure, which defines dlaéonomy of
living systems. The system configuration (membrdmaindaries/sensori-motor coupling) specifies a agtwof
processes (metabolic network/nervous system) wimic¢irn determines the system configuration or dgigamics of

similar processes. Modified from (Rudrauf et a03).
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It is clear that the formalisms of DCM and autonamsystems such as autopoietic systems
are not very different. The next section addreskes connections. This will lead to a simple
modification of the standard DCMs to allow deterisiilc autonomous activity to be generated from

perturbations, thus including autopoietic systemhe formalism of DCM.

V. DCM and autopoietic systems

In neurodynamics, there are two classes of effelytsamic effects and structural effects (David et
al., 2006b). The distinction arises from a simplwof neuronal responses, as the response of an
input-state-output system, such as a DCM define&dpy(1-2), to perturbations. From Eq. (1), it is
immediately clear that the statesand implicitly the system’s respongecan only be changed by
perturbing the extrinsic inputsor the parameters®y. We refer to these as dynamic and structural
effects respectively. This distinction arises innamber of different contexts. From a purely
dynamical point of view, transients elicited by dymc effects are the systems response to input
changes; for example, presentations of a stimulueni Event Related Potential (ERP) study. The
duration and form of the resulting dynamic effeepends on the dynamical stability of the system
to perturbations of its statese{ how the systems trajectories change with the )st&euctural
effects depend on structural stabilitye(how the systems trajectories change with the petens).
Systematic changes in the parameters can prodgtensgtic changes in the response, even in the
absence of input. For systems that show autonorfi@iperiodic or chaotic) dynamics, changing
the parameters is equivalent to changing the atrananifold, which induces a change in the
systems states (Breakspear et al., 2003; Fris@87)1 For systems with fixed points and Volterra
kernels, changing the parameters is equivalenhémging the kernels and transfer functions. This
changes the spectral density relationships betweemputs and outputs. As such, structural effects
are clearly important in the genesis of inducedllasions because they can produce frequency
modulation of ongoing activity that does not enpdiase-locking to any event. More generally, they

play a critical role in short-term plasticity medmms observed in neuroimaging, for instance
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subject’s habituation after repetitive stimulatidkctivity-dependent changes in synaptic activity
are an important example of a structural effect thanduced by dynamic effects. This coupling of
structural and dynamic mechanisms is closely reélatethe circular causality that characterises
autopoietic systems. In fact, we will focus in wityi or time-dependent changes in connectivity in

the empirical example later.

At the neurobiological level, the distinction beemedynamic and structural inputs speaks
immediately to the difference between drivers froradulators (Sherman and Guillery, 1998). In
sensory systems, a driver ensemble can be idehtiBehe transmitter of receptive field properties.
For instance, neurons in the lateral geniculatdenwrive primary visual area responses, in the
cortex, so that retinotopic mapping is conserveddiMatory effects are expressed as changes in
certain aspects of information transfer, by thengirvag responsiveness of neuronal ensembles in a
context-sensitive fashion. A common example isnéitteal gain. Other examples involve extra-
classical receptive field effects that are exprédseyond the classical receptive field. Generally,
these are thought to be mediated by backward atedalaconnections. In terms of synaptic
processes, it has been proposed that the postigyrdfects of drivers are fase.Q. ionotropic
receptors), whereas those of modulators are sloavelt more enduringe(g. metabotropic
receptors). The mechanisms of action of drivererréd classical neuronal transmission, either
biochemical or electrical, and are well understoGdnversely, modulatory effects can engage a
complex cascade of highly nonlinear cellular meddras (Turrigiano and Nelson, 2004).
Modulatory effects can be understood as transiemadures from homeostatic states, lasting
hundreds of milliseconds, due to synaptic changdable expression and function of receptors and
intracellular messaging systems. Classical exampiemodularity mechanisms involve voltage-
dependent receptors, such as NMDA receptors. Tiees@tors do not cause depolarisation directly

(i.e. a dynamic effect) but change the units sensititatgepolarisationi.@. a structural effect).

In short, the distinction between deterministiputtoutput systems, such as DCMs, and
autonomous systems as formulated in theories sachutopoiesis and (M,R) systems is how
dynamic and structural effects are instantiated ao@ they are coupled. In the standard

interpretation, an autopoietic system creates @onamous web of (molecular) processes that
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maintain autopoietic self-organisationf(, self-assembly in chemical systems). This mehasit

does not have structural inputs. In other wordsg, ¢émvironment does not define the internal
dynamics. The environment only perturbs the systedynamics. Here, there is no distinction
between DCMs and autopoietic systems: both recdiwamic inputs, which act as transient
perturbations. However, in autopoietic systems, diggamic inputs trigger internal changes, or
structural effects, which are defined by the vergamisation of the autopoietic system itself. In
contradistinction, the current formulation of DCMa$ not specify such operational closure.
Instead, structural changes are specified as éxphd direct consequences of particular dynamic
inputs. For instance, the changes in the dynanfies@CM are usually defined by the modulation
of interregional effective connectivity by an extak modulatory inputife. the bilinear term in

fMRI or the distinction between experimental comdis in MEG/EEG). Therefore, there is no

operational closure; in the sense that an extrinpigt has to be added to initiate structural effec

However, the operational closure of autopoietistays is simple to specify in the context
of DCM. In abstract form, the internal processescivhrealise transient structural modifications,

triggered by dynamic input, can be defined as a&gdised convolution
6=nh(z,6) (6)

where h can be any function and and g are the past history of the neuronal stakegin
autopoietic terms: network of processes) and paemneéd (in autopoietic terms: molecular
configuration). In summary, autopoietic systems bandefined operationally with a small set of

equations, which extend the analytical formalisnDGfM:

9=h%.8) . (7)
)

The two first equations embed operational clospesturbationsu initiate changes in the states
(processesy that depend on the parametérgconfiguration). In return, the system’s configioa,
or structure, is a function of the history of itnfiguration and of its processes. This is thedasi

an autonomous system, which generates intrinsictstral changes triggered by external inputs.
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The last equation is simply the output equatiorough which the states of the system are
transformed into measurable variabjedn neuroimaging, these are the BOLD signals aalps

MEG/EEG. Figure 5 places Eg. (7) into an autopoistheme.

U . > ng(x, 5)

specifies

processes
X

determines

Figure 5: Autopoietic interpretation of Eq. (7). The paraemstd play the role of the configuration. The processes
the neural stateg. They are specified by the state equatfoand their past history and the past history of the
parameters. In turn, these determine a new cordigur using the functiom. Perturbationau is the equivalent of
energy inflow. The macroscopic datare the output of an observer equatiphence they do not play an explicit role

in the intrinsic dynamics of the system.

Now that the formalism of a DCM for autopoietics®ms has been established, we will test
the face-validity of this approach using experinaérdata from deep brain stimulation in an
epileptic patient. We will then discuss the bemsedit including autonomous dynamics in the context

of DCM in comparison to its standard formulation.
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V. An illustration: short-term plasticity during pre-surgical neurostimulation

Epilepsy is a common chronic neurological disordbaracterised by recurrent spontaneous
epileptic seizures. A cortical imbalance betweeaitatory and inhibitory mechanisms is likely to
be the pathophysiological basis for human pargéepsy. In addition to long-lasting susceptibility
to epileptic discharges, transient modificationsmefiral networks properties, such as those induced
by electrical stimulation, can also lead to theuntence of epileptic events in patients (Chauvel et
al.,, 1993; Kahane et al.,, 1993; Kahane et al., 20@&itzin et al., 2005; Schulz et al., 1997;
Valentin et al., 2002; Wilson et al., 1998). In tparlar, several studies have noted that short-term
plasticity of evoked responses (Wilson et al., 1988zniak et al., 2007) or of oscillatory responses
(Kalitzin et al., 2005) is induced easily by repeé stimulations in the epileptic regions, without
causing a systematic seizure. Knowing whether tfeestechanges in evoked responses conform to
autonomous dynamics is an important issue whichbmaaddressed explicitly by the theoretical

considerations of the previous section.

The full description of the clinical and scientiftontext of pre-surgical neurostimulation
and of our data acquisition protocol and patiemtrabteristics can be found elsewhere (David et al.,
in preparation; Wozniak et al., in preparation).réedeve summarise those elements needed to
understand the DCM treatment. The patient includetlis study was suffering from temporal lobe
epilepsy. She had been selected for resective suaged had undergone standard pre-surgical
clinical evaluations, including 1 Hz intracerebetéctrical stimulation (Kahane et al., 1993; Kahane
et al., 2004). The patient was fully informed aralg her consent before being implanted and
stimulated. Intracerebral recordings were performsitig an audio-video-EEG monitoring system
(Micromed, Treviso, Italy) that recorded up to I@fhtacts simultaneously, so that a large range of
mesial and cortical areas were sampled. Stimulaéiod Hz (pulse width 3 milliseconds) was
applied to the amygdala between two contiguousamtsit The goals of the stimulation were the
reproduction of the aura, the induction of an etectinical seizure, and/or the localization of
eloquent cortical areas to be spared during surdg@pplar stimuli were delivered using a constant
current rectangular pulse generator designed &afa diagnostic stimulation of the human brain,
using parameters proved to produce no structurabde. The intensity used was 3mA. Stimulation

lasted 34 seconds (34 brief stimulations) and edalesponses were recorded in the amygdala,
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anterior hippocampus, temporal pole and fusifornnugy After stimulation 25, some irregular
spiking and fast oscillations were observed reiftgcthe electro-clinical signs of the forthcoming
seizure. The first clinical symptoms occurred awwstimulation 31 i(e., after 31 seconds). The
anterior hippocampus was the candidate for an mpmldocus and short-term plasticity was

expressed most in this structure (Figure 6).
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Figure 6: Evoked responses in the anterior hippocampus glddite stimulation of the amygdala. Note the inciregs
amplitude of responses up to stimulation 25 (24Afer stimulation 25, responses become irregulih fast activity

indicating a non-physiological (epileptic) behaviou

For simplicity, we isolated the anterior hippocampor a DCM study and modelled it with a
cortical macro-column composed of inhibitory andigatory neuronal populations (Jansen and Rit,
1995). The Jansen model is certainly not the optmearonal model for the anterior hippocampus
but the objective was not to detail the activitytiodé perforant pathway, dentate gyrus, CAl, CA2,
CA3 and so on. The Jansen model is simply a waymomarise the complex neuronal interactions
in a neural mass model that captures the basicniigsaof observed macroscopic EEG. Isolating
the hippocampus from the rest of the brain impdeewal topological constrains which do not
necessarily exist (the hippocampus is embeddedare raxtended neural networks). However, it
allows us to deal with a simple neural model, inickhall inputs from other stimulated regions
(direct connections with the amygdala but also i relay with other structures, see (David et
al., in preparation) for a more complete analyarg) pooled under a single exogenous input. This

means we made the implicit assumption that therianteippocampus is an autonomous system,
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itself nested in a bigger system (the brain, oritbman body, or society, or the universe). This is

justified by the fact that neural activity can leeorded in hippocampal slicesvitro.

To explain the changes of hippocampal respogs&isown in Figure 6, we considered the

following competing models or hypotheses (Figure 7)

a. Model a Changes iry (responses) are a direct consequence of changeginput). In
other words, plasticity has been expressed outbieénippocampus by neural networks
linking the amygdala to the hippocampus (monosyoaptpolysynaptic connections). In

this model we modelled a different input strengthdach stimulation.

b. Model b Input u is stable over stimulations and short-term plégtiobserved iny
corresponds to a modulation of the excitatory afficof intrinsic connections within the
hippocampus, the dynamics of which are set by agexous modulatory input. This is a
structural mechanism explained within the standanchulation of DCM (Eq. 1-2). In this
model there are two inputs; a dynamic input, whichow fixed for each stimulation and

a structural input that changed the connectivity @rspecific to each stimulation.

c. Model c Input u is stable over stimulations and short-term plégtiobserved iny
corresponds to an autonomaugdulation of excitatory efficacy of intrinsic cagctions
within the hippocampus. This corresponds to anreartmus DCM (Eq. 7). Here, we
consider a simple linear autoregressive model lier structural dynamics concerning
excitatory synaptic efficacies. Thus the structumput of model b is replaced by Eq. (6)

which reduces to:

HO =Y aH! (8)

where Hé”) is the excitatory synaptic efficacy at stimulatioandl is the model order; in

other words, the horizon below which past activigs an effect on the current structure.
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This model has fewer parameters than the preceniodels because the number of
autoregression coefficients is less than the nurmbetimulations. However, as we will
see below it can model equally, if not more, compmgnamics. Besides knowing whether
model ¢ can explain the stimulation-induced dynaixtice size of the memory effect in the
autonomous dynamics is itself interesting, what is the most plausible To assess this,
we performed a Bayesian model comparison amongthgels constructed for each value

of | between 1 antll-1 (N=25 is the maximal number of stimulations before Ibleginning

of epileptic activity). Each model is noted model ¢

model a model b model

Figure 7: The different DCMs of the hippocampus tested tplanr the data shown in Figure 6. The bold arrows
correspond to the modulated connections. Modeladalaare standard DCMs. Modelsiecorporates autonomous
dynamics on the parameters. Note that the loopdmvexcitation and inhibition captures the conadphteractions
between excitatory and inhibitory neuronal popolagi but does not exactly reflect the architectdith® Jansen model

(see Fig. 3).

The parameters for each model were estimated flendatay shown in Figure 6. Pre-
processing comprised: (i) band-pass filtering betw® and 40 Hz and (ii) concatenation of the first
25 evoked responses between 0 and 150ms. Thesreselshown in Figure 8. On comparing the
log-evidences of the different models, it transpitbat model a is the most likely. Indeed, this
model reproduces the observed time series withmaniaable fidelity. This suggests that the time-
dependent responses, expressed in the antericodappus, are most probably due to changes in
its extrinsic inputs (or changes in sensitivity itgputs as mediated by the modulation of the

expression of NMDA receptors). One point is impotted stress when looking the time series of
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model b (and of c1 and c10): the changes in synafficacies are related directly to the maximum
amplitude of evoked responses, and are therefghdyhtcorrelated with the extrinsic input in model
a. However, model b fits the first positive componef the evoked responses well but not the
second negative component. In fact, the excitagfiigacy has an effect not only on the amplitude
of responses but also on their shape and, impiidiieir frequency content. Because model a,
which estimates an excitatory efficacy over stirtialss, is able to fit the data for any kind of
response amplitude, these results suggest thateffieacy of connections intrinsic to the
hippocampus is more or less constant. This is thia meason why model a is much more plausible
than the others. To conclude, the first interestisgect of this DCM analysis is that the short-term
changes in hippocampal responses to stimulatidheomygdala are more likely to be caused by
plasticity in effective connectivity between the@gbocampus and other brain regions, as opposed to
some modulation of intrinsic hippocampal suscelitybiThis calls for a DCM analysis extended to

other brain regions, which can be found in (Datidlge in preparation).

Nonetheless, let us continue the discussion ofréiselts by focusing on model b and its
autonomous formulation (models c). We will describe constraints and the advantages of using
an autonomous formulation of a DCM. For modelshe, Ibg-evidences indicate that modeg] is
the most plausible, given the data. This correspdach model order of ten, for the autoregressive
evolution of synaptic efficacy. For comparison, sf®w in Figure 8 the time series for this model
and also those for the simplest model (modglBoth models show a gradual increase in exciator
efficacy with the repetition of the stimulation. &hdynamics generated are very simple
(monotonous) for model;cand fairly more complex for modelg where a pattern lasting ten
stimulations is repeated approximately. In otherdspthere is a constraint on the model dynamics,
which is given by the structural equation (Eq. @prlf this is too strict the model will not adjus

the data in comparison to when there is no sucktcaint (model b).

Results obtained with models a and b were veryasteng because they showed it was
possible to track the evolution of the extrinsipuhto, or of the excitatory synaptic efficacy viuith
the hippocampus. Besides the ability to reproduate,ca good model is also characterised by its
ability to make predictions. For models a and s ik no prediction because these models have no

autopoietic memory. In contradistinction, predioBocan be made with an “autonomous DCM”
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because there is an explicit modelling of the @ftehanges of structural effects over time; this
generates autonomous structural dynamics, whichcbasequences for neural responses. The
visual inspection of the evolution for models &nd o shows the inertia of the autonomous
dynamics characterised by the autoregressive mdided. easy to imagine that the system will
continue to diverge if the stimulations were torbpeatedad vitam eternamThis is exactly what
we have simulated in Figure 9 for moded: ave added two stimulations (stimulations 26 anjl 27
and let the system predict the dynamics. Accordinthe parameters of the autoregressive model
estimated from previous stimulations, the DCM pregli an increase of excitatory efficacy as
expected from Figure 8. The corresponding timeesesire somewhat more interesting: they show a
catastrophic divergence, indicating that the Jansewlel is approaching a phase-transition or
bifurcation. More precisely, the system manifoleshslonger a mass point attractor centred on zero.
One might interpret this as the hippocampus ergeaimepileptic regime because of an increase of
excitatory efficacy, which is what actually happen&he fascinating aspect is that the autonomous
DCM has estimated, from the pre-ictal regime, ao$etxcitatory efficacies at the limit of the point
of bifurcation between a stable and divergent dynamThis indicates that physiological brain
dynamics could be at the limit of stability and tpardarly prone to generate oscillations and
complex nonlinear dynamical behaviours such as tchamerancy (Tsuda, 2001) and epileptic

seizures in pathological circuits.
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Figure 9: When adding (artificial) additional stimulatiorthe parameters of modelyredict an increase of excitatory
efficacy (white bars). This corresponds to diveggiasponses, which can be interpreted as the hagiofian induced
seizure. This is a prediction which is possibleydmtcause structural changes are specified autigadig within the

model.

V1. Conclusion

This review attempts a synthesis, in simple terofsiwo important conceptual frameworks:

Dynamic Causal Modelling (Friston et al., 2003) dhd theory of autopoietic systems (Varela et
al., 1974). DCM has been developed recently bynihigroimaging community to explain, using

biophysical models, how fMRI/MEG/EEG data are retatto neural processes. The classical
approach in neuroimaging is to explore a data skt the following question: Where is a given

processes implemented in the brain? Standard tatatisnaps are then constructed to reveal
regional effects and various statistical testslomaperformed to establish the regional specifioity

different experimental manipulations. DCM goes Hert by asking: How are they responses
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implemented in mechanistic terms? This questioressmts the opportunity to rethink the design of
cognitive experiments in functional neuroimagingdato appreciate the underlying neural
mechanisms. The parameters of biophysical modelsstrmated from the measured data. Different
functional hypotheses can therefore be tested @ttpliDCM represents a relevant biophysical

approach to exploring brain data with a potentiddich has yet to be fully evaluated.

Since the 1970s, autopoiesis and related formesdribés of living systems as autonomous
machines has had many successful applicationsriougaarenas outside biology (Letelier et al.,
2003). But autopoiesis, though acclaimed by themsmany disciplines (Mingers, 1995), has had
a limited practical impact because of the diffimdtapplying theoretical ideas, such as wholeness,
to experimental data. Here, we have tried to dssldhe connections between DCM and
autopoiesis. In particular, we have proposed a lsimpdification to the standard formulation of
DCM that accommodates a simple model of autononie iBlea was to exploit the inferential
machinery of the system identification with DCMsnauroimaging to test the face validity of the
autopoietic theory applied to neural subsystemss €kciting field of research is still essentially

unexplored and we hope to have advanced the fégsdsithis approach.
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