
HAL Id: inserm-00380059
https://inserm.hal.science/inserm-00380059

Submitted on 4 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BENA435, a new cell-permeant photoactivated green
fluorescent DNA probe.

Alexandra Erve, Yasmina Saoudi, Sylvie Thirot, Corinne Guetta-Landras,
Jean-Claude Florent, Chi-Hung Nguyen, David S. Grierson, Andrei V. Popov

To cite this version:
Alexandra Erve, Yasmina Saoudi, Sylvie Thirot, Corinne Guetta-Landras, Jean-Claude Florent, et
al.. BENA435, a new cell-permeant photoactivated green fluorescent DNA probe.. Nucleic Acids
Research, 2006, 34 (5), pp.e43. �10.1093/nar/gkl011�. �inserm-00380059�

https://inserm.hal.science/inserm-00380059
https://hal.archives-ouvertes.fr


BENA435, a new cell-permeant photoactivated
green fluorescent DNA probe
Alexandra Erve, Yasmina Saoudi, Sylvie Thirot1, Corinne Guetta-Landras1,

Jean-Claude Florent1, Chi-Hung Nguyen1, David S. Grierson1

and Andrei V. Popov*

Inserm, U366, DRDC/CS, CEA-Grenoble, 17, rue des Martyrs, F-38054, Grenoble, cedex 9 France and
1Laboratoire de Pharmacochimie, UMR176 CNRS-Institut Curie, Institut Curie Section de Recherche,
Batiment 110, Centre Universitaire, 91405 Orsay, France

Received October 12, 2005; Revised January 27, 2006; Accepted February 12, 2006

ABSTRACT

N 0-(2,8-Dimethoxy-12-methyl-dibenzo [c,h] [1,5]
naphthyridin-6-yl)-N,N-dimethyl-propane-1,3-diamine
(BENA435) isa new cell-membranepermeant DNA dye
with absorption/emission maxima in complex with
DNA at 435 and 484 nm. This new reagent is unrelated
to known DNA dyes, and shows a distinct prefer-
ence to bind double-stranded DNA over RNA.
Hydrodynamic studies suggest that BENA435 inter-
calates between the opposite DNA strands. BENA435
fluoresces much stronger when bound to dA/dT
rather than dG/dC homopolymers. We evaluated 14
related dibenzonaphthyridine derivatives and found
BENA435 to be superior in its in vivo DNA-binding
properties. Molecular modelling was used to develop
a model of BENA435 intercalation between base pairs
of a DNA helix. BENA435 fluorescence in the nuclei of
cells increases upon illumination, suggesting photo-
activation. BENA435 represents thus the first known
cell-permeant photoactivated DNA-binding dye.

INTRODUCTION

Nucleic acid-binding fluorescent compounds are widely used
for DNA visualization, purification and quantification (1).
Since the 1950s a variety of DNA and RNA non-covalently
binding probes have been discovered. They can be classified
according to their molecular structure, the class of nucleic
acids they bind to, and their mode of binding. The most fre-
quently used fluorescent dyes (Hoechst, DAPI and ethidium
bromide) bind strongly and preferentially to double-stranded

DNA (dsDNA), while others (such as the SYTO dyes) stain all
types of nucleic acids depending on the conditions (1). These
properties correlate well with the molecular structures of these
reagents. For example, ethidium bromide and propidium iod-
ide intercalate into dsDNA (2), whereas the cationic dyes
Hoechst and DAPI interact with the minor groove of
dsDNA, showing a net preference for dA/dT rich sequences
(3,4). Interestingly, certain DNA markers show both types of
binding, depending on their concentration relative to nucleic
acids (5).

Experimentation with live cells is dependent on the possib-
ility to illuminate cells for relatively long periods of time
without inflicting damage. However, most of the traditional
cell-permeant DNA-binding dyes used in cell biology (DAPI,
Hoechst 33342 or 33258) require illumination with light in the
ultraviolet (UV, 200–400 nm) part of the spectrum. At these
wavelengths extensive photodamage occurs, due, amongst
other things, to formation of free radicals, and to cross-
links in DNA and/or DNA-associated proteins (6,7). These
events are followed by failure to replicate DNA and/or failure
to enter (8) and accomplish mitosis. This ultimately leads to
cell cycle arrest and death (9). Both ethidium bromide and
propidium iodide can be excited at longer than UV wave-
lengths. However, propidium bromide does not penetrate
into cells, and ethidium bromide intercalates into the DNA
of living mammalian cells to only a very limited extent (10).
There is thus a need to develop new fluorescent DNA probes
for live-cell video microscopy and cell sorting which are (i)
cell membrane-permeant and non-toxic; (ii) excited at longer
than UV wavelengths; and (iii) stable over long periods of
illumination.

In this work we describe the discovery of N0-(2,8-
dimethoxy-12-methyl-dibenzo [c,h][1,5]naphthyridin-6-yl)-
N, N-dimethyl-propane-1,3-diamine (BENA435) (Figure 1A),
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a new dsDNA-binding cell-permeant fluorescent dye. As its
name suggests, this compound in complex with dsDNA shows
an absorption maximum at 435 nm, while its emission peaks
are at 484 nm making it possible to visualize DNA using a

standard Alexa488/FITC filter set. BENA435 can interact with
DNA through intercalation and it fluoresces preferentially
when bound to dA/dT rather than to dG/dC nucleic acids poly-
mers. Evaluation of fourteen BENA435-related compounds

Figure 1. BENA435 is a new fluorescent DNA dye. (A) Molecular structure and the name of BENA435. (B) The 3D model of BENA435 showing a flat structure in
perspective and orthogonal projections. (C) Nuclei of interphase cells stained in vivo with BENA435. Xenopus XL 177 cells were incubated in the presence of 5 mM
BENA435 and illuminated using a standard Alexa488/FITC filter set. (D) Mitotic chromosomes (anaphase) stained in vivo with BENA435. (E) Absorption spectra of
free and DNA-bound BENA435 at 25 mM mixed with plasmid DNA at bp/dye ratio 8. (F) Emission spectra of free and DNA-bound 1 mM BENA435. Note that upon
DNA binding the peak of free BENA435 at 438 nm decreases and shifts to 426 nm, while a new peak evolves around 472–484 nm. Plasmid DNA and dA/dT
homopolymer were used at bp/dye ratio 20. In both cases BENA435 was excited at 373 nm to allow the visualization of the free BENA435 fluorescence. Size bar in
(C) and (D), 10 mm.
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allowed us to correlate their structures with their fluorescent
properties. Using BENA435 for DNA quantification in cells it
was determined that the total fluorescence of BENA435-
stained nuclei is proportional to their DNA content, a feature
useful for cell-cycle monitoring both in vivo and for fixed cells.
To our knowledge, BENA435 is the first long wavelength non-
toxic photoactivated fluorescent DNA dye reported for use as a
DNA probe in cell biology.

MATERIALS AND METHODS

Curie-CNRS compound library and BENA435 synthesis

A highly diverse proprietary library of 4080 compounds, cor-
responding to molecules synthesized by the Pharmacochem-
istry Laboratory at Institut Curie (UMR 176 CNRS-IC) was
used as the compound set in the screening assays (‘Chimiothè-
que Nationale’, http://chimiotheque-nationale.enscm.fr). Lib-
rary components were formated in 96-well microplates in
anhydrous DMSO at 10 mM and stored at +4�C in the
dark. All manipulations were carried out taking care to protect
the compounds from excessive light. The synthesis of
BENA435 and the related 6-amino substituted dibenzonaph-
thyridines 4, 12, 13 have been already described in Ref. (11).
Additional information on BENA435 and related molecules 1,
2, 3, 5, 6, 7, 8, 9, 10, 11 and 14 is presented in the
Supplementary Data.

Cell culture and screening

In this study three different types of cells were used: Xenopus
epithelial cell line XL177 (12), mouse fibroblasts and primary
human skin fibroblasts. XL177 cells were grown at 20�C in
60% Leibowitz-15 medium, supplemented with antibiotics,
10% fetal calf serum (FCS) and 10 mM HEPES, pH 7.2
with addition of 0.7 mg/ml G418. Cells were plated into
glass-bottom 96-well plates (Greiner, Germany) and left to
spread for 24 h before being incubated in the presence of
the test compounds (at 25 or 50 mM final concentration) for
another 20–24 h. Mouse and human fibroblasts were grown in
DMEM with antibiotics and 10% FCS at 37�C in the presence
of 5% CO2. We observed the cells using a Zeiss Axiovert
200M microscope with a 40· oil immersion objective and a
standard Alexa488/FITC filter (XF100–2; Ex475AF40/
Em535AF45/Dichroic505; Omega). For the in vivo tests of
BENA435-like compounds, the molecules were added to
cell culture medium at 10 mM final concentration and incub-
ated with cells 10–60 min (up to 24 h) prior to scoring.

Reagents

Plasmid dsDNA was purified using a Qiagen Maxiprep kit and
used in the supercoiled form for absorption and fluorescence
studies. Escherichia coli total RNA was bought from Ambion,
dA/dT and dG/dC homopolymers were purchased from Amer-
sham Biosciences. Calf thymus (CT) high-molecular weight
DNA and Hoechst 33258 were obtained from Sigma-Aldrich.
Ethidium bromide was purchased from Amresco.

Spectrometry and fluorimetry

Spectrometry and fluorimetry were performed using a
SpectraMax384 (Molecular Devices) and a Luminescence

Spectrometer LS50B (Perkin Elmer). Fluorescence emission
of BENA435 in complex with DNA and RNA was measured
in 50 mM Na phosphate buffer, pH 7.2 at room temperature.
Before use, total E.coli RNA was heated to 100�C for 1 min
and immediately transferred on ice for 5 min before mixing
with BENA435 solution. All measurements were carried out at
room temperature (20–23�C) in solutions protected from light
and incubated for �10–15 min after dilution. The units of b/
dye and bp/dye are defined as moles of RNA bases or DNA
base pairs per mole of dye. Quantum yield was measured using
quinine sulphate as standard as described in Ref. (13) using
FLUOROMAX-3 Spex Spectrofluorometer (HORIBA) and
UVIKON XL Spectrophotometer (SECOMAM).

Viscometry

CT DNA was dissolved in 50 mM Na-phosphate buffer, pH
7.2, to a concentration of 0.1 or 0.5 mM relative to base pairs
as described in the legend for Figure 3A and B. DNA solution
was allowed to run through a custom-made capillary visco-
meter and the time necessary for the meniscus to pass a certain
distance was measured using a stopwatch. All experiments
were performed at 23�C. Viscosity values were calculated
using the equation h ¼ (t � t0)/t0, where t is the flow time
of DNA solution (with or without dye), and t0 is the flow time
of Na-phosphate buffer alone. For each sample flow times
were measured three to five times. Viscosity of DNA solutions
with dyes were calculated as (h/h0)1/3, where h0 and h are
relative viscosities of the CT DNA solution in the absence and
presence of the dye, respectively (14). Average viscosity val-
ues and SEM were determined using (h/h0)1/3 values calcu-
lated for each time flow measurement.

Measuring nuclear fluorescence in live cells
stained with BENA435

BENA435 at 5 mM was added directly into the cell medium 10
min before observation in an inverted microscope Zeiss
Axiovert 200M with a 100 W mercury lamp. Time-lapse
images were acquired using CoolSnap HQ (Photometrics,
Inc.) black and white camera driven by the Metamorph soft-
ware (Universal Imaging). All experiments were carried out
using 40· or 63· (Figure 1C and D) oil immersion Apochro-
mat Zeiss objectives. To measure the fluorescence intensities
an oval region was drawn inside of each nucleus using Meta-
morph software and integrated intensities (nuclear surface
multiplied by the average pixel value) were logged for each
image.

Measuring nuclear fluorescence in fixed
cells stained with BENA435

Primary human skin fibroblasts were grown on poly-D-lysine-
coated glass coverslips and fixed in cold (�20�C) anhydrous
methanol for 15 min. Samples were re-hydrated in phosphate-
buffered saline (PBS) (150 mM NaCl, 20 mM Na-phosphate,
pH 7.2), rinsed with 10% PBS (diluted with water) and stained
with 120 mM BENA435 in 10% PBS for 15 min at room
temperature in the dark. Samples were mounted, without
washing, using the FluorSaveTM mounting medium (Calbio-
chem) or Mowiol and analysed within 3 h. For image acquisi-
tion (Figure 5B and D) cells were illuminated continuously
(open shutter) for 30 min using an Omega filter set XF100-2
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(see above). Images were acquired at 10 s intervals and stored
in a 16-bit format as a stack. Integrated intensities of nuclear
fluorescence were measured as described above and logged for
each of the 180 images. Fluorescence of each region at the last
time point was taken as 100% and fluorescence intensities at
the same region at previous time points (frames) were calcu-
lated using Microsoft Excel software.

Spectral analysis of BENA435 fluorescence in live cells

BENA435 at 5 mM final concentration was added to live 3T3
mouse cells in DMEM just before observation using a Leica
TCS-SP2 laser-scanning confocal microscope. Cellular fluor-
escence was observed for 20 min under continuous excitation
at 405 or 458 nm using the ‘Lambda scanning’ mode to record
the emission spectra of BENA435.

Molecular modelling

The 3D atomic coordinates of BENA435 in pdb format were
obtained using web-based CORINA software (http://www2.
chemie.uni-erlangen.de/software/corina/corina.html) (15). For
computer-assisted molecular modelling we employed the
ArgusLab software (16) which makes use of either AScore
or the Lamarckian genetic algorithm (17) scoring functions to
find the low-energy binding modes. For docking of BENA435
into dsDNA we used 3D molecular coordinates of a DNA
dodecamer 50-D(CpGpCpGpApApTpTpCpGpCpG)-30 crys-
tallized with an Acridine-Peptide drug intercalated in an
Aa/Tt Base Step [protein data bank PDB ID—1G3X (18)].
Prior to docking of BENA435, N(a)-(9-Acridinoyl)-Tetraar-
ginine-Amide was removed from the complex with DNA and
hydrogens were added to both BENA435 and DNA. Molecular
graphics images were produced using the UCSF Chimera pack-
age from the Resource for Biocomputing, Visualization and
Informatics at the University of California, San Francisco (19).

RESULTS

BENA435 stains interphase nuclei in live cells

During a visual phenotypic screen of the Curie-CNRS com-
pound library on live Xenopus cells XL177 (using an
Alexa488/FITC filter) it was found that BENA435 produced
a bright green nuclear signal (Figure 1C). The signal appeared
after 10–20 s illumination and was stable for many minutes
thereafter (see below). The observed nuclear staining in cul-
tured cells indicates that (i) the drug is cell-membrane per-
meant; (ii) non-toxic under standard cell culture conditions (up
to 6 days in culture, data not shown); and (iii) stains DNA or
chromatin proteins or is simply accumulated in the nucleus.

Spectral characteristics of BENA435 change upon DNA
binding

Nuclear staining per se does not prove that a dye binds to
DNA, as it could simply accumulate in the nucleus. Although
BENA435 also stains mitotic chromosomes (Figure 1D), the-
oretically it was possible that it binds specifically to DNA-
associated proteins (e.g. histones) rather than to nucleic acids.
To resolve this issue, the absorption and emission spectra of
free BENA435 before and after addition of dsDNA were
recorded. Free BENA435 shows a complex absorption profile

with maxima at 224, 245, 283, 326, 373 and 391 nm (Figure 1E
shows the part of spectrum from 300 to 550 nm). Molar extinc-
tion coefficient of free BENA435 at 391 nm was measured at
10 800 cm�1 M�1. In the presence of ds plasmid DNA the
absorption peaks of BENA435 at 373 and 391 nm decreased,
and a new peak appeared with a maximum at 435 nm
(Figure 1E). An overlay of the absorption spectra in complex
with dsDNA at different base pairs per dye ratios gives a single
isosbestic point at 398 nm (Supplementary Data). Free
BENA435 fluoresces around 438 nm (the exact position of
the peak depends on the excitation wavelength). Upon DNA
binding the emission peak at 438 nm decreases and shows a
hypsochromic shift to 426 nm. At the same time a new peak
evolves with a maximum around 484 nm (Figure 1F). The
exact maximum of fluorescence of BENA435/DNA com-
plexes varies insignificantly as a function of the dye/bp
ratio and/or base pairs composition of the nucleic acids. For
example, as shown in Figure 1F, plasmid DNA at bp/dye ratio
40 gives a maximum at 472 nm, while in the presence of dA/
dT homopolymers at the same bp/dye ratio BENA435 shows a
maximum at 484 nm (see also below). When BENA435/
dsDNA solutions are excited at different wavelengths ranging
from 300 to 500 nm, we found that although the fluorescence
intensity varies considerably (with maximum found when
excited at 435 nm), the emission always shows a major
peak of fluorescence around 484 nm and (for shorter excitation
wavelengths 323, 348, 373 and 391) a shoulder at 420 nm
(Supplementary Data). The quantum yield for BENA435
(excited at 435 nm) at 5 mM in 50 mM Na-phosphate, pH 7.2,
was determined to be 2.7% for free dye and 13.8% in admix-
ture with 50 mM CT DNA. These results show that BENA435
is a new DNA-binding fluorescent probe with excitation and
emission in the blue/green part of the visible light spectrum.

BENA435 binds preferentially to dsDNA
compared with RNA

A number of known fluorescent dyes bind preferentially to
dsDNA, while others, like the SYTO dyes bind similarly well
to dsDNA, single-stranded DNA (ssDNA) and RNA (1).
Knowing these properties is important to the design of experi-
ments where one or another (or several) type(s) of nucleic
acids may be present. To investigate the selectivity of
BENA435 we compared fluorescence intensities at 484 nm
of the dye incubated with ds plasmid DNA or heat-denatured
E.coli RNA. For this, DNA or RNA at 50 mM (relative to base
or base pairs) was titrated with different amounts of
BENA435. As shown in Figure 2A, at low dye/bp and dye/
b ratios the emission strength of BENA435 was significantly
higher (6-fold) when mixed with DNA rather than RNA. At
higher dye/b or dye/bp ratio the difference was smaller [1.8-
fold at dye/b(bp) ratio 0.2], meaning that elevated amounts of
dye could saturate both types of nucleic acids. We then per-
formed the experiment in the opposite sense, i.e. titrating a
fixed amount of BENA435 at 1 mM with increasing amounts of
DNA and RNA. As demonstrated in Figure 2B, the fluores-
cence of BENA435 mixed with dsDNA was, once again,
significantly (2.5–3.6) higher compared with RNA at the
same b(bp)/dye ratios. Moreover, fixed amounts of
BENA435 could be saturated by increasing amounts of
dsDNA at �30 bp/dye ratio, but not with increasing quantities
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of RNA (up to 250 b/dye ratio; Supplementary Data). Taken
together, these results show that BENA435 has a high select-
ivity for dsDNA over RNA explaining the exclusive nuclear
staining observed in cells (Figure 1C).

Hydrodynamic studies of BENA435 show that it can
intercalate between DNA strands.

DNA-binding dyes interact with dsDNA by intercalation
or external binding, or both. In order to determine the mech-
anism of BENA435 binding to dsDNA we performed hydro-
dynamic studies. This approach is based on the observation
that intercalating molecules increase the length of DNA frag-
ments and, consequently, enhance the viscosity of DNA
solutions (14,20). For this experiment we compared
BENA435 with the known DNA intercalator ethidium brom-
ide and with the external minor groove binder Hoechst 33258.
CT DNA at 0.5 mM was mixed with drugs at 0.1 mM con-
centration (0.2 dye/bp ratio) and used for viscometry
measurements. As shown in Figure 3A, BENA435 behaves
in the same way as ethidium bromide, increasing the
viscosity of the DNA solution. In contrast, as described pre-
viously (5), the viscosity was found to decrease slightly for
Hoechst 33258.

We then asked ourselves whether the increase in viscosity is
equally matched by the increase in fluorescence intensity. To
answer this question CT DNA at 0.1 mM (bp) was mixed with
increasing amounts of BENA435 and viscosity measurements
were performed as above. The viscosity of the DNA/
BENA435 solutions increased up to a dye/bp ratio 1
(Figure 3B). To correlate the increase in viscosity with fluor-
escence we measured fluorescence intensities at 484 nm of the
BENA435/DNA solutions used for the viscosity measure-
ments. The maximal fluorescence intensity was reached at
dye/bp ratio 0.2, after which it quickly diminished
(Figure 3B). Since the viscosity of the DNA/BENA435 solu-
tions continues to increase up to the dye/bp ratio 1, the latter
result suggests a ‘quenching’ effect (21). In conclusion, hydro-
dynamic studies show that BENA435 can intercalate into
dsDNA.

BENA435 fluoresces preferentially when bound
to dA/dT rather than dG/dC DNA tracts

Many intercalating dyes and minor groove-binding DNA dyes
can interact differently with dA/dT or dG/dC DNA tracts.
More interestingly, even for those dyes that bind similarly
well to dA/dT and dG/dC sequences, the nature of the nucle-
otides can affect the intensity of fluorescence (22). To invest-
igate the properties of BENA435 when bound to different
DNA tracts, we examined its fluorescence in admixture
with an excess of plasmid DNA and either dA/dT or dG/dC
homopolymers. Figure 3C shows that upon plasmid DNA
binding BENA435 develops a peak at 484 nm, while the
peak at 438 nm decreases significantly. The peak at 484 nm
was much more pronounced when plasmid DNA was replaced
by the dA/dT homopolymers (see also Figure 1F). Surpris-
ingly, in admixture with dG/dC homopolymer, the intensity of
BENA435 fluorescence at 484 nm was 9.5-fold lower com-
pared with BENA435-dA/dT. This effect cannot be explained
by the lack of binding to DNA, because the peak of fluores-
cence at 438 nm is sharply diminished (12.7-fold reduction;
the peak also shifts to 426 nm). In Figure 3C the graphs
show emission spectra upon excitation at 371 nm to allow
plotting the emission of free BENA435. Similar results
were obtained when exciting DNA/BENA435 complexes at
391 and 435 nm (data not shown). We quantified the difference
in fluorescence of BENA435 when bound to dA/dT and dG/dC
homopolymers at different dye per base pairs ratios and found
that the difference was 23-fold at dye/bp ratio 8 (Figure 3D).
Interestingly, the absorbance spectra of BENA435 bound to
dG/dC and dA/dT homopolymers are very similar up to a
dye/bp ratio 1. At higher bp/dye ratios BENA435-dG/dC
absorption at 435 nm is �30% superior than that of
BENA435-dA/dT (Supplementary Data), suggesting that
BENA435 binds similarly well to both DNAs and the differ-
ence in fluorescence intensity does not reflect the lack of
binding to dG/dC tracts. Taken together, these results suggest
that BENA435 binds similarly well to both dA/dT and dG/dC
tracts but fluoresce preferentially when complexed with dA/dT
sequences.

Figure 2. BENA435 binds preferentially to dsDNA rather than to RNA. (A) Fluorescence emission values of different amounts of BENA435 mixed with 50 mM
dsDNA or RNA. (B) Fluorescence emission values of 1 mM BENA435 titrated with dsDNA and RNA.
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Structure-activity relationship in the BENA435 series

To get a further insight into how the structural properties of
BENA435 contribute to its binding to DNA, we analysed 14
structural analogues present in the compound library.
Although several of these compounds are fluorescent in
vivo, this property went undetected in the initial screen
most likely due to the latency period before the appearance
of the signal (see below). To evaluate the activity of
BENA435-like molecules three tests were used (i) in vivo,
we incubated human fibroblasts in the presence of the
molecules and scored nuclear fluorescence in the microscope;
(ii and iii) in vitro we looked at the absorption and fluorescence
of free molecules before and after addition of plasmid DNA.
Table 1 summarizes the results. Cells were observed in
inverted epifluorescence microscope using an oil immersion
objective and Alexa488/FITC filter. With the exception of
BENA435 and analogues 8 and 12, accurate in vitro measure-
ment of the fluorescence intensities was impossible because
the emission peaks for the free molecules were too close to that

for the DNA-bound dye. This affected the height of the dye/
DNA peaks.

Compounds 1–8 are negative in in vivo tests. Compound 1 is
also negative in in vitro tests. Compounds 2–7 show excita-
tion/emission maxima at wavelengths much lower than those
of BENA435. We found that the presence of the methoxy
group at the 8-position in the BENA core structure
(Figure 1A and Table 1) is necessary for in vivo activity of
BENA435-like compounds. For instance, compound 8, which
does not stain nuclei in vivo, differs from BENA435 solely by
the absence of this functionality. Interestingly, however, this
compound was fluorescent with DNA in vitro, although its
fluorescence strength at 468 nm was only 40% of that for
BENA435 (Supplementary Data). This suggests that in vivo
other factors, such as cell-membrane permeability, may be
important. It was also observed that molecules containing
the 6-N,N-dimethyl-propane-1,3-diamino side chain(s)
(BENA435, and compounds 10 and 11) rather than the
corresponding 6-N,N-dimethyl-ethane-1,2-diamino motif
found in compounds 9, 12, 13 and 14 displayed a higher

Figure 3. BENA435 increases the viscosity of DNA solutions and fluoresces preferentially when bound to dA/dT rather than dG/dC DNA tracts. (A) Relative
viscosities [(h/h0)1/3] of 0.5 mM CT DNA in the absence (Ctrl) or presence of different dyes at 0.1 mM concentration: ethidium bromide (EB), Hoechst 33258 (Ho)
and BENA435. (B) Relative viscosities of CT DNA solutions in the presence of different amounts of BENA435 (red curve; y-axis on the right-hand side). Blue curve
shows fluorescence intensity of the same DNA/BENA435 solutions used for viscosity measurements (y-axis on the left-hand side). (C) Fluorescence spectra of 1 mM
BENA435 and 1 mM BENA435 mixed with plasmid DNA, dA/dT and dG/dC homopolymers taken at 40 mM. Excitation was at 373 nm to show the peak of free
BENA435. (D) Fluorescence emission values of 5 mM BENA435 titrated with dA/dT and dG/dC homopolymers. Graphs show emission values at 484 nm after
excitation at 435 nm. Error bars in (A) and (B) show SEM.
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Table 1. Summary of properties of 14 BENA435-related molecules

Molecule Formula MW Structure Absorption maxima
free/DNA bound dye

Fluorescence maxima
free/DNA bound dye

Images of the in vivo
nuclear staininga

BENA 435 C24H28N4O2

404.5

3

2

1

4

12
N11

6

N
5

10
9

8
7

O

O

N

N
394/435 438/484

Strong

1 C17H12N2

244.3

N

N
ND/ND ND/ND —

2 C24H28N4

372.5

N

N

N

N

360/365 ND/ND —

3 C20H20N4O
332.4

N

N

N

N

O
375/375 ND/ND —

4 C20H20N4

316.4

N

N

N

N

370/375 404/ND —

5 C21H22N4

330.4

N

N

N

N

365/ND 392/ND —

6 C22H24N4

344.5

N

N

N

N

360/365 385/ND —

7 C21H21N3O2

347.4

N

N

N

O

O

365/ND ND/ND —

8 C23H26N4O
374.5

N

N

N

N

O

385/425 427/468 —
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signal-to-background ratio in in vivo experiments. The pres-
ence of this longer chain may contribute to improved cell
permeability, as illustrated by the difference in in vivo nuclear
staining between molecules 9 and 10.

Finally, compound 13 which lacks the methyl group at
position 12, becomes fluorescent in cell nuclei using the
green (Alexa488/FITC) filter after it has been briefly pre-
flashed (10 s) using a UV filter (Omega XF03). These results
indicate that molecule 13 is excited at shorter wavelengths

than BENA435. Indeed, in vitro in the presence of dsDNA
its absorption and emission maxima were 394/407.

The above observations suggest that the structure of
BENA435 is, relatively speaking, already optimized, since
a number of minor modifications have a deleterious effect
on either its permeability, its interaction with DNA or its
fluorescent properties. In this context, although the C-12
methyl group is not crucial to ‘activity’, it is important for
the red shift in the emission of DNA-bound BENA435 type

Table 1. Continued

Molecule Formula MW Structure Absorption maxima
free/DNA bound dye

Fluorescence maxima
free/DNA bound dye

Images of the in vivo
nuclear staininga

9 C25H32N6O
432.6

N

N

N

N

N

N

O

375/395 468/472

Weak

10 C27H36N6O
460.6

N

N

N

N

N

N

O

380/402 478/485

Moderate/Strong

11 C28H38N6O2

490.7

N

N

N

N

N

N

O

O

390/405 484/500

Moderate/Strong

12 C23H26N4O2

390.5

N

N

N

N

O

O

390/435 435/475

Weak
13 C22H24N4O2

376.5

N

N

N

N

O

O

390/394 425/407

Moderateb

14 C26H34N6O2

462.6

N

N

N

N

N

N

O

O

400/400 468/482

Weak

illumination with UV light (DAPI/Hoechst filter; Omega XF03). ND, not determined (impossible to measure).

aStaining was defined as ‘weak’, ‘moderate’ or ‘strong’ based on the nuclear signal/background ratio.
bIn the presence of these molecules nuclei did not fluoresce initially when visualized in the Alexa488/FITC filter, but became noticeable after a short (10 s) pre-
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molecules. The cationic side chain(s) seem(s) to be important
for either permeability or binding to DNA.

Molecular modelling of BENA435 binding to DNA

Modelling of BENA435 structure predicts a flat rigid hetero-
cyclic core (Figure 1B) with a flexible positively charged side
chain. As hydrodynamic studies suggested that BENA435
intercalates between DNA strands, we propose a putative
model of BENA435 inserted into DNA structure. For this
we used the ArgusLab 4.0.1 software and the atomic coordin-
ates of a dsDNA dodecamer 50-D(CGCGAATTCGCG)-30

complexed with an Acridine-peptide drug. For docking we
used the ArgusLab scoring function AScore and a grid encom-
passing the whole dodecamer. The lowest energy conforma-
tion (�4.00 kcal/mol), shown in Figure 4, represents
BENA435 stacked between two pairs of nucleotides (AT/
AT). Similar results were obtained using a genetic algorithm
scoring function or two pairs of GC nucleotides (Supplement-
ary Data).

BENA435 is activated by light

Initial in vivo observations of BENA435-treated cells showed
that the green nuclear staining appeared after a latency period
of 10–20 s (depending on concentration), suggesting a pho-
toactivation phenomenon. To quantify this effect, live mouse
fibroblasts were incubated in the presence of 5 mM BENA435
and time-lapse video microscopy was used to film the cells.
Nuclear fluorescence develops slowly in the nuclei of cells
treated with BENA435 and illuminated continuously using a
standard Alexa488/FITC filter set (475AF40, 535AF45)
(Figure 5A). Fluorescence peaked after 8 min of illumination
and then started to fade (Figure 5C), most likely reflecting the
‘bleaching’ of BENA435. The photoactivation concerned only
the cells in the illuminated field, as nuclei of cells immediately
outside of the illuminated field remained imperceptible (non-
fluorescent, data not shown). Theoretically, it was possible that
photoactivation was due to a chemical modification of the
structure of BENA435 catalysed by living cells. To test this
possibility we stained nuclei of fixed cells with BENA435 and
measured nuclear fluorescence during a continuous 30 min
illumination. Figure 5B and D show that in fixed cells
BENA435/DNA fluorescence increase linearly over a long
period of time. Nuclei of cells located immediately outside
of the illuminated field remained dim (data not shown). Pho-
toactivation did not happen when BENA435 was mixed with
DNA at different dye/bp ratios and illuminated in the micro-
scope as described above (Supplementary Data). Hypothetic-
ally, it was possible that the increase in fluorescence as seen in
a band pass Alexa488/FITC filter represented a shift in the
wavelength of emission over time. To determine whether this
was occurring we recorded spectra of BENA435 emission in
the nuclei of live cells using a confocal microscope. Figure 5E
shows that the emission spectrum of DNA-bound BENA435
does not change considerably over time when excited at 405
nm. Similar results were obtained using excitation at 458 nm
(data not shown), meaning that the change in fluorescence
intensities does not result from a major change in the emission
wavelength.

As competition with chromatin proteins such as histones
and HGM1 has been shown to affect binding of both external
binders (23–25) and intercalating small molecules (26–28), we
asked ourselves whether BENA435/DNA fluorescence was
affected by the presence of histones. Titration of 1 mM plasmid
DNA with BENA435 in the absence or presence of 1 mM
human histone 1 (H1) showed that H1 significantly affected
the fluorescence of BENA435 (Figure 5F). At the same time
free BENA435 fluorescence (excited at 391 nm) was not
quenched by H1 (data not shown). We conclude therefore
that BENA435 fluorescence in cells is activated by light,
and this photoactivation most likely depends on DNA being
in complex with proteins which are not affected by methanol
fixation (Discussion).

BENA435 allows an easy DNA quantification in cells

Some of the BENA435-stained nuclei appeared brighter than
others (Figure 1C and Figure 5A and B) suggesting that fluor-
escence intensities may be proportional to their DNA content
and correspondingly reflect their cell cycle status, as was
shown for other DNA probes, e.g. for PicoGreen and
SYBR Green I. Probing directly DNA content in live cells

Figure 4. Putative model of BENA435 intercalated between two pairs of dA/dT
bases. (A) View from the major groove side. (B) Side view (major groove on the
left-hand side). (C) BENA435 stacked between two dA/dT pairs of bases.
Yellow lines represent H-bonds.
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Figure 5. Photoactivation of BENA435 in live and fixed cells. (A) Panel of images showing photoactivation of DNA-bound BENA435 in live cells. Fibroblasts
incubated with 5mM BENA435 and illuminated using an Alexa488/FITC develop a bright nuclear signal which reaches a plateau after 8 min. Numbers correspond to
time points (s). (B) Panel of images showing activation of BENA435 in fixed cells. Methanol-fixed primary human fibroblasts were stained with BENA435 as
described in Materials and Methods and images were taken at 10 s intervals during a continuous 30 min illumination using a 100 W mercury lamp. Numbers
correspond to time points. In a representative nucleus average pixel values were 512 in the plane (1) and 1434 in the plane (1800). (C) Quantification of the
fluorescence shown in (A). Graph shows average nuclear fluorescence over 26 min. (D) Quantification of the fluorescence shown in (B). Graph shows average nuclear
fluorescence over 30 min. All of the nuclei shown in (B) were used for quantification. (E) Representative emission spectra of the nucleus in a live 3T3 cell, incubated
in the presence of 5 mM BENA435 and excited at 405 nm. Curves correspond to scans performed at the shown time points. Insert in the upper right corner shows
activation of BENA435 measured in the nucleus in the course of experiment [similar to (C)]. (F) Fluorescence values of different amounts of BENA435 mixed with 1
mM plasmid DNA in the absence or presence of 1 mM histone 1. Emission at 484 nm after excitation at 435 nm. Lines were drawn through the points to guide the eye
and do not represent a fitting to any equation. Error bars in (C) and (D) correspond to SD.
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already stained by BENA435 would necessitate using another
dsDNA-binding dye. Such a double staining carried the risk of
a possible competition for binding sites and/or unpredictable
effects on fluorescence. Therefore we decided to compare the
integrated total fluorescence of BENA435-stained nuclei in
fixed cells with a known cell cycle protein marker. We
fixed primary human fibroblasts with methanol, performed
indirect immunofluorescence with anti-cyclin A antibodies,
followed by Alexa 568-labelled secondary antibodies and
counterstained nuclei with BENA435. Cyclin A accumulates
in cells beginning at the S phase and throughout the G2 cell
cycle phase, and unlike cyclin B, is practically all nuclear
[reviewed in (29)]. This fact facilitates the correlation of
BENA435/DNA fluorescence with that of cyclin A. Indeed,
we found that cells negative for cyclin A have significantly
lower BENA435 fluorescence in the nucleus (Figure 6A).
Moreover, we observed a direct correlation of the
BENA435 fluorescence with that of cyclin A in cyclin A-
positive cells (Figure 6B). Of note is that strongly cyclin
A-positive nuclei (Figure 6B, dots in the upper right corner
showed by oval) contain approximately twice as much
BENA435-fluorescence as cyclin A-negative nuclei. This cor-
relates well with 2N and 4N DNA content expected to be

found in G1 and G2 cells, respectively. These results show
that BENA435 allows an easy quantification of nuclear DNA
content, reflecting the cell cycle stage.

DISCUSSION

Fluorescent properties of BENA435

The absorption/emission characteristics displayed by
BENA435 make this compound highly attractive as a reagent
for fluorescence staining of DNA. The Acridine homodimer
and certain low-affinity DNA-binding SYTO dyes have sim-
ilar absorption/emission maxima. However, unlike BENA435,
the acridine dye is cell-membrane non-permeant (1,30), and
the SYTO dyes are known to be non-selective DNA staining
reagents, staining RNA in vivo, as well other structures includ-
ing mitochondria (1). This is not surprising, as practically all
DNA dyes also bind RNA and/or ssDNA to some extent. For
example, the thiazole orange homodimer (TOTO) and eth-
iduim bromide interact in vitro with dsDNA and ssDNA
with similar affinity (31). Our in vitro and in vivo results
suggest that BENA435 fluoresces preferentially when bound
to dsDNA rather than to RNA. The difference was most

Figure 6. BENA435 nuclear fluorescence reflects cell cycle stage. (A) Images show the same representative microscopic field with methanol-fixed fibroblasts
stained using anti-cyclin A antibodies and counterstained by BENA435. Images were acquired using a 20· objective. (B) Quantification of the nuclear fluorescence in
cells stained with BENA435 and anti-cyclin A antibodies [experiment shown in (A)]. Dots represent 81 nuclei measured in 6 different randomly chosen microscopic
fields. Region in the upper right corner surrounds strongly cyclin A-positive cells.
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pronounced at low dye/b(p) ratios, with BENA435/DNA fluor-
escence at least 6-fold higher than that for the BENA435/RNA
complex. Moreover, when we titrated 5 mM BENA435 with
increasing amounts of DNA and RNA we found that DNA was
saturated with dye at �30 bp/dye, while RNA could not be
saturated at even a 250 b/dye ratio (Supplementary Data). On
the other hand, the fact that at increasing dye/b(bp) ratios the
difference in BENA435 fluorescence bound to DNA or RNA
was smaller (Figure 2A) could mean that BENA435 may also
interact with nucleic acids through other than intercalation
mechanism.

Of note, when compared with an intercalating DNA probe
ethidium bromide, BENA435 shows surprisingly similar
selectivity toward DNA over RNA (Supplementary Data).
The quantum yield of BENA435 when bound to DNA
(13.8%) is also very close to that reported for ethidium brom-
ide, (15%) (32). In vivo, and on fixed cells, BENA435 stains
only nuclei and not the cytoplasm where the bulk of RNA is
localized. This suggests that the concentrations of BENA435
and the conditions used for staining are optimal for efficient
discrimination between dsDNA and RNA.

We found that BENA435 fluoresces preferentially when
bound to dA/dT rather than to dG/dC tracts. This differs
from YO, which, when complexed with DNA, behaves in
the opposite way, showing a net increase in quantum yield
when complexed with dG/dC homopolymers rather than with
dA/dT homopolymers (22). Some other intercalators like
SYBR Green I (5) and ciprofloxacin (33) display selectivity
which is similar to BENA435’s. However, the difference in the
fluorescence of these dyes bound to dA/dT and dG/dC homo-
polymers is much less pronounced than in the case of
BENA435. The extent of this difference cannot be explained
by the lack of binding to dG/dC tracts, as the peak of fluor-
escence of free BENA435 practically disappears as well. Also,
absorption experiments show that BENA435 binds similarly
well to dG/dC and dA/dT tracts (Supplementary Data). All this
suggests that BENA435 can bind to, but interacts differently
with, dA/dT and dG/dC pairs of nucleotides. The observed
quenching effect by dG/dC tracts could come from the low
oxidation potential reported for guanine or from the electron
transfer between BENA435 and guanine residues as was
reported for other fluorescent intercalating molecules
(22,33,34).

Structure function relationship

Depending on their structure, fused poly(hetero)aromatic
molecules can bind to DNA through intercalation (2), or
minor/major groove binding [reviewed in (35)]. BENA435
is a neutral aza analogue of the alkaloid fagaronine (15),
which is known to intercalate into DNA, but which was not
reported to be a fluorescent DNA marker. The binding of
BENA435 to DNA is probably helped by the presence of
the dialkylamine containing side chain which is positively
charged at physiological pH. As was shown for other cationic
dyes (5,36,37), in vitro salt significantly affected the fluores-
cence of BENA435/DNA (Supplementary Data). These data
support the idea that the cationic side chain participates in the
binding of dye to the ds helix. Hypothetically, the side chain
could interact with the negative chargers on the backbone
phosphate residues.

The proposed model of BENA435 bound to the dsDNA fits
experimental data suggesting that at low dye/bp ratio
BENA435 can intercalate between base pairs. We cannot how-
ever exclude that at higher concentrations of BENA435 the
dye may also show some external binding, as is the case for
some other DNA probes (5). Indeed, modelling with a DNA
structure without a space between base pairs (where BENA435
could intercalate) suggests that BENA435 could easily fit into
the minor groove (data not shown).

In our phenotypical screen we have only found BENA435
and none of six BENA-related compounds (9–14) listed in
Table 1 which were later shown to stain nuclei in vivo.
This is not surprising, because of these six molecules some
(like 9, 12, 14) show weak activity in vivo, and one more
fluoresces at wavelengths too short to be efficiently seen in
the Alexa488/FITC filter (13). Finally, the short observation
time during screening may not have allowed the staining to
develop (see below). With exception of molecules 8 (inactive
in vivo) and 12 (weakly active in vivo) all other BENA435-like
molecules have relatively close peaks of emission of the free
and DNA-bound dye, possibly contributing to higher back-
ground staining. Therefore, out of all molecules studied
BENA435 structure is most optimised for DNA detection in
cells using a standard green fluorescence filter.

Photoactivation

As we have shown, photoactivation of BENA435 does occur
in fixed cells, indicating that the molecule did not undergo any
structural modifications in vivo. Moreover, the spectra of emis-
sion of BENA435 in vitro and in cells are practically identical.
On the other hand, photoactivation is not observed with pure
plasmid DNA. It is thus likely that this phenomenon is depend-
ent on DNA being associated with proteins (chromatin).
Indeed, both minor groove-binding probes like DAPI or inter-
calating molecules such as ethidium bromide or chromomycin
A3 were shown to disrupt the nucleosome and/or prevent its
assembly. At least two different mechanisms may be respons-
ible for this effect. Externally binding dyes may compete for
the dA/dT rich binding sites with histones or other chromatin
proteins, or inhibit DNA movement/flexibility, which is fol-
lowed by reduced histone–DNA contacts within the minor
groove (23). Intercalators can unwind the DNA helix, lengthen
and stiffen it [(38) and references wherein]. Importantly, we
have shown that in vitro DNA-dependent fluorescence of
BENA435 is inhibited by H1. This suggests that the observed
in cells photoactivation of BENA435 may in fact reflect a slow
binding to DNA with concomitant displacing of histones and/
or other chromatin proteins from their association with DNA.
This hypothesis is corroborated by the fact that, unlike in live
cells, on fixed cells BENA435 was immediately fluorescent,
although its intensity further increased over the time. This can
be explained by the fact that fixation partially denatures chro-
matin proteins, leaving DNA more accessible to BENA435
than it is the case in live cells. Finally, it remains to show why
the binding of BENA435 to DNA is enhanced by light.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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