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Abstract 

 Stable tubule-only polypeptide (STOP) proteins are a family of microtubule associated 

proteins (MAPs) important in microtubule stabilization. Data indicating a role for 

microtubules in synaptic function has come from studies of the STOP null mouse, which 

exhibits synaptic deficits, in association with behavioural changes that are alleviated by 

antipsychotic treatment. These findings suggested that STOP mutant mice may be useful in 

studies of synaptic function, and could be especially relevant to schizophrenia, postulated to 

be a disorder of the synapse. Moreover, a genetic association between STOP and 

schizophrenia has been reported. This study aimed to further characterise synaptic alterations 

in STOP null and heterozygous mice. Using in situ hybridization histochemistry, the mRNA 

expression of three pre-synaptic (synaptophysin; growth associated protein-43: GAP-43; 

vesicular glutamate transporter-1: VGlut1) and two post-synaptic (spinophilin; MAP2) 

proteins, was quantified in female STOP null (n=7), heterozygous (n=5) and wild type (n=6) 

mice. For STOP null and heterozygous mice, synaptophysin, VGlut1, GAP-43 and 

spinophilin mRNAs were decreased in the hippocampus, whilst in addition in the null mice, 

synaptophysin, VGlut1 and spinophilin mRNAs were decreased in the cerebellum. Alterations 

in synaptic protein mRNA expression were also detected in the frontal and occipital cortex. 

MAP2 mRNA expression was unchanged in all brain regions. The profile of mRNA changes 

is broadly similar to that observed in schizophrenia. Together the data provide supporting 

evidence for a role for microtubules in synaptic function, and suggest that STOP, or other 

microtubule proteins, may contribute to the synaptic pathology of schizophrenia.  

 

Key words: in situ hybridization histochemistry; MAP6; microtubules; mRNA; 

schizophrenia; synapse. 
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Introduction 

STOP (stable tubule-only polypeptide) proteins are a family of calmodulin binding 

and regulated microtubule associated proteins (MAPs), encoded by a single gene (mouse: 

Mtap6, Denarier et al., 1998b; human: MAP6; Bosc et al., 2003), which play a role in 

microtubule stabilization in several cell types (Denarier et al., 1998a; Aguezzoul et al., 2003). 

The major STOP isoforms, N-STOP and E-STOP, are expressed by neurons (Bosc et al., 

1999; Guillaud et al., 1998), whereas fibroblasts express F-STOP (Denarier et al., 1998a) and 

astrocytes and oligodendrocytes express A-STOP and O-STOP respectively (Galiano et al., 

2004). In neurons, microtubule stabilization has been demonstrated to be important in 

neuronal migration (Schaar and McConnell, 2005; Tsai and Gleeson, 2005), morphology and 

function (Baas and Heidermann, 1986; Guillaud et al., 1998). Hence, like other MAPs (Mack 

et al., 2000; Takei et al., 2000; Feng and Walsh, 2001; Moores et al., 2004), STOP proteins 

are thought to play a role in normal brain development and synaptic connectivity. 

To evaluate the role of STOP proteins, gene targeting was used to create the STOP 

null mouse (Andrieux et al., 2002). In association with impaired synaptic plasticity and 

decreased size of synaptic vesicle pools, STOP null mice exhibit behavioural changes, 

including disorganized activity, social withdrawal and nurturing defects, the latter of which 

were alleviated with long term typical antipsychotic drug treatment. These initial findings 

suggested that STOP null mice may be useful in studies of synaptic function. They could be 

of particular interest with respect to schizophrenia, which is proposed to be a disorder of the 

synapse (see Mirnics et al., 2001; Moises et al., 2002; Frankle et al., 2003) and in which the 

expression of several synaptic proteins is decreased (see Honer et al., 2000), and perhaps with 

regard to mood disorders, in which microtubule dysfunction has been hypothesised (Bianchi 

et al., 2005). Subsequent studies of STOP null mice have demonstrated that both sexes exhibit 

behavioural changes relevant to schizophrenia, including sensorimotor gating deficits 
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(Fradley et al., 2005) and hyper-locomotor activity (Brun et al., 2005; Fradley et al., 2005), 

which is reversed by antipsychotic drugs (Brun et al., 2005; Fradley et al., 2005). In addition, 

dopaminergic changes are evident in STOP null mice. Amphetamine exacerbates the hyper-

locomotor activity (Brun et al., 2005), whilst evoked dopamine efflux is increased in the 

nucleus accumbens (Brun et al., 2005). Based in part upon post mortem findings of decreased 

hippocampal MAP2 protein in schizophrenia (Arnold et al., 1991), a role for microtubules in 

the pathophysiology of schizophrenia has been hypothesised (Kerwin, 1993). The finding of 

synaptic changes in STOP null mice (Andrieux et al., 2002) suggests that altered microtubule 

and synaptic function may be related, and contribute to the proposed pathogenic role of 

microtubules in schizophrenia. The aim of the current study was to further characterise 

synaptic alterations noted in the STOP null mouse in terms of the expression of pre- and post-

synaptic protein mRNAs, markers of synapses and synaptic function (see Discussion and 

Honer et al., 2000; Honer and Young, 2003; Law et al., 2004b; Eastwood and Harrison, 

2005), and to extend previous studies of STOP null mice by including heterozygous as well as 

wild type littermates. The pre-synaptic proteins, synaptophysin, growth-associated protein-43 

(GAP-43) and vesicular glutamate transporter-1 (VGlut1), and the post-synaptic protein 

spinophilin, were quantified as their expression has been reported to be altered in post mortem 

studies of schizophrenia (see Table 1). In addition, MAP2 mRNA was examined, firstly as a 

dendritic marker (see Discussion), and also to determine if deficits in STOP expression are 

compensated for by the increased expression of another MAP. We examined synaptic protein 

mRNAs, not only in the hippocampal CA1 subfield where synaptic vesicle pools in the STOP 

mice have been quantified, but extended it to include other hippocampal subfields, and 

additional brain regions, including the prefrontal cortex and cerebellum, all implicated in the 

pathophysiology of schizophrenia (Katsetos et al., 1997; Eastwood et al., 2001; Weinberger et 

al., 2001; Harrison, 2004).  
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Methods and Materials 

 Animals 

STOP mice were generated on a 50:50 BALBc/129 SvPas background as previously 

described (Andrieux et al., 2002), with gene targeting being used to replace exon 1 of the 

STOP gene with a non-functional construct. As the mRNAs of all of the STOP proteins 

characterised to date contain this exon (Denarier et al., 1998a, b), the expression of all STOP 

isoforms is suppressed in the null mice. Brains from 12 week old STOP null female mice 

(n=7), and their wild type (n=5) and heterozygote (n=6) littermates were snap frozen by 

immersion in isopentane chilled on dry ice, and stored at -80ºC until use. 

 

In situ hybridization histochemistry    

Frozen coronal sections (15 µm) were cut at the level of the dorsal hippocampus 

(approximately at Bregma -2.30 mm; Paxinos and Franklin, 2004), the caudate putamen 

(approximately at Bregma 0.86 mm), and cerebellum, and collected onto Superfrost Plus 

slides (VWR, Lutterworth, UK). Slides were pretreated for in situ hybridization 

histochemistry (ISHH) as described (Eastwood et al., 2000a), and stored at -20ºC. 

Oligonucleotide probes complementary to mouse STOP (bases 975-1009, Genbank accession 

number NM010837), synaptophysin (bases 846-884, NM009305), VGlut1 (bases 1562-1606, 

NM182993), GAP-43 (bases 599-628, NM008083), spinophilin (bases 1480-1519, 

AY508450), MAP2 (bases 698-739, BC052446) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH; bases 201-239, BC095932) mRNAs were 3’ end labelled with 

[35S]dATP (Perkin Elmer, UK) using terminal deoxynucleotidyl transferase (Promega, 

Southampton, UK) and established protocols (Eastwood et al., 2001). Sections were incubated 

overnight (GAP-43, spinophilin, MAP2 and GAPDH: 33ºC; STOP: 35ºC; synaptophysin: 

34ºC; VGlut1: 42ºC) in hybridization buffer (Eastwood et al., 2000a) containing 1 million 
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counts per minute labelled probe and dithiothreitol (STOP, spinophilin, MAP2: 50mM; 

synaptophysin, GAP-43 and GAPDH: 20mM). For all transcripts except VGlut1 and GAP-43, 

post-hybridization washes were carried out with 1 X standard sodium citrate (SSC) at either 

55ºC (MAP2), 58ºC (spinophilin and GAPDH) or 60ºC (synaptophysin) for 3 X 20 minutes, 

followed by 2 X 60 minute washes at room temperature. For GAP-43, washes were carried 

out in 0.5 X SSC at 58ºC for 3 X 20 minutes followed by 2 X 60 minutes at room 

temperature. For VGlut1, post-incubation washes were as previously published (Miyazaki et 

al., 2003), and consisted of 2 X 40 minute washes at 55ºC in 0.1 X SSC. Triplicate sections at 

each anatomical level were run concurrently for each transcript, and the hybridized sections 

placed against Kodak Biomax MR film (GE Healthcare, Little Chalfont, UK) alongside 14C 

microscales (GE Healthcare) for the following times: GAP-43, 1 day; synaptophysin, 2 days; 

VGlut1, 3 days; GAPDH, 4 days; MAP2 and STOP, 7 days; spinophilin, 14 days. Negative 

controls consisted of incubation in the presence of 50 fold excess cold unlabelled probe and 

ISHH with sense orientation probes. 

 

Image and statistical analysis 

Autoradiographs were measured using an MCID Elite v7.0 image analysis system 

(Interfocus, Haverhill, UK). Optical density values obtained were calibrated to 35SnCi/g tissue 

equivalents using the 14C microscales and a conversion factor of 3, and corrected for non-

specific background signal as represented by either sense strand hybridization or incubation 

with excess unlabelled probe. 

 Measurements were taken over the granule cell layer of the dentate gyrus (DG), the 

pyramidal layer of CA3 and CA1, and through the depth of the overlying occipital cortex for 

sections taken at the level of the dorsal hippocampus. For the sections taken at the level of the 

caudate putatmen, measurements were taken over the dorsolateral quadrant of the caudate 
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putamen and through the depth of the fronto-parietal and cingulate cortex. Finally, signal was 

measured in the cerebellum over the granule cell layer. These areas are illustrated in Figure 1 

A, B and D.  

 All statistical analyses were performed using SPSS v 13 software. For each transcript, 

analysis of variance (ANOVA) was performed to determine if there was an overall effect of 

genotype or an area by genotype interaction. If either were significant (P<0.05), subsequent 

ANOVAs were conducted for each individual brain area, with significant differences between 

each genotype explored using least significant difference (LSD). 

 

Results 

STOP mRNA 

In order to confirm the genotype of each animal and also examine the distribution of 

STOP mRNA in the mouse brain (which has not been previously described), the 

oligonucleotide probe used was designed against exon 1 of STOP mRNA, missing in the 

mutant mice. STOP mRNA was detectable in all areas examined in wild type mice, with a 

weaker signal observed in heterozygous mice, but was not detected in the nulls (Fig. 1). Of 

the areas examined here, STOP mRNA signal was highest over the hippocampus, moderate 

over the occipital, fronto-parietal and cingulate cortex and cerebellum, with the weakest 

signal observed over the caudate putamen.  

 

Synaptophysin mRNA 

Synaptophysin mRNA distribution was as previously reported in rodents (Marquèze 

Pouey et al., 1991; Eastwood et al., 1997). In the overall ANOVA, a significant effect of 

genotype was detected (F2, 115=15.55, P<0.001), but not a genotype by area interaction (F14, 

115=0.95, P=0.51). There were significant effects of genotype upon synaptophysin mRNA in 
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CA1, occipital and fronto-parietal cortex, and a trend towards significance in the cerebellum 

and cingulate cortex (Table 2). The significant effects of genotype were due to decreases in 

synaptophysin mRNA expression in STOP null and heterozygous mice as compared to the 

wild type mice (Table 2).  

 

VGlut1 mRNA 

VGlut1 mRNA was robustly detected in every area examined except the caudate 

putamen, in accordance with previous reports (Miyazaki et al., 2003). Genotype (F2, 98=18.61, 

P<0.001) had a significant effect upon VGlut1 mRNA in the overall ANOVA, and there was 

a significant genotype by area interaction (F12, 98=2.03, P=0.029). Individual ANOVAs 

detected effects of genotype upon VGlut1 mRNA in the DG, CA3, CA1, occipital and 

cingulate cortex, with a trend towards significance in the cerebellum (Table 3). These effects 

of genotype were due to decreases in VGlut1 mRNA expression in STOP null and 

heterozygotes as compared to wild type mice. 

 

GAP-43 mRNA 

The distribution of GAP-43 mRNA was as previously described (Cantallops and 

Routtenberg, 1999). As seen in humans, but not in rat, GAP-43 mRNA was robustly detected 

in the DG (see Eastwood and Harrison, 1998). Genotype (F2, 115=14.30, P<0.001) had a 

significant effect upon GAP-43 mRNA in the overall ANOVA, and there was a significant 

genotype by area interaction (F14, 115=2.48, P=0.004). Individual ANOVAs detected effects of 

genotype upon GAP-43 mRNA in the DG, CA3 and CA1, with a trend towards significance 

for genotype upon GAP-43 mRNA in the fronto-parietal cortex (Table 4). For DG, CA3 and 

CA1, the effects of genotype were due to decreases in expression as compared to wild type 
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mice, whilst for the fronto-parietal cortex, GAP-43 mRNA was increased in the null mice as 

compared to wild type mice. 

 

Spinophilin mRNA 

In agreement with previous reports in rats (Law et al., 2004a) and humans (Law et al., 

2004b), the distribution of spinophilin mRNA in mutant and wild type mice was consistent 

with a dendritic localization, with labelling observed not only over the pyramidal cell layer, 

but also adjacent strata of the DG and Ammon’s horn. Genotype (F2, 110=22.28, P<0.001) had 

a significant effect upon spinophilin mRNA in the overall ANOVA, and there was a 

significant genotype by area interaction (F14, 110=4.03, P<0.001). Subsequent individual 

ANOVAs found that genotype had a significant effect upon spinophilin mRNA in the DG, 

CA3, CA1 and cerebellum, with trends in the occipital and fronto-parietal cortex (Table 5). 

For the DG, CA3, CA1, occipital cortex and cerebellum, these were due to decreases in 

expression as compared to wild type mice, whilst for the fronto-parietal cortex, spinophilin 

mRNA was increased in the STOP null mice. 

 

MAP2 mRNA 

As reported above for spinophilin mRNA, and as observed in rats and humans (Tucker 

et al., 1989; Law et al., 2004a, b), MAP2 mRNA distribution in the STOP mutant and wild 

type mice is consistent with a dendritic localization.  For MAP2 mRNA in the overall 

ANOVA, neither a significant effect of genotype (F2, 110=2.15, P=0.122), nor a genotype by 

area interaction (F14, 110=0.83, P=0.638) were observed (Table 6). 

 

 

 



Altered synaptic protein mRNA expression in STOP mutant mice 10 

GAPDH mRNA 

ISHH against the house keeping gene GAPDH was carried out, as an index of overall 

gene expression. No significant effects of genotype (F2, 102=2.51, P=0.09) nor genotype by 

area interactions (F14, 102=0.90, P=0.56) were detected (Table 7).  

 

Discussion 

The results of this study demonstrate that the expression of pre- and post-synaptic 

protein mRNAs is altered in STOP mutant mice. We will focus our discussion on how deficits 

in STOP and stabilized microtubules may lead to synaptic alterations. Similarities (and 

differences) between changes in synaptic protein expression exhibited by STOP null and 

heterozygous mice to those reported in schizophrenia will be discussed. Finally, we will 

comment upon the role which STOP or other cytoskeletal proteins may play in the origins of 

synaptic pathology in schizophrenia, including mediation of the potential influence of 

susceptibility genes. 

 

Synaptic protein mRNA expression as markers of synaptic pathology and their altered 

expression in STOP null and heterozygous mice 

The synaptic protein mRNAs examined in this study were chosen because they inform 

on different aspects of synapses, and on the basis of reports of their altered expression in post 

mortem studies of schizophrenia (see Table 1). The utilization of synaptic proteins as markers 

of synapses, and their mRNAs as markers of synaptic changes in the regions to which neurons 

project, has been reviewed elsewhere in depth (see Harrison and Eastwood, 2001; Honer et 

al., 2000; Honer and Young, 2003; Eastwood and Harrison, 2005) and will only be briefly 

mentioned here. Of the three pre-synaptic proteins studied, synaptophysin has been the mostly 

widely utilised, with alterations in its expression often being interpreted as indicative of 
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changes in overall synaptic density (or size), thereby denoting synaptic pathology (see 

Masliah et al., 1990; Eastwood et al., 1994). To provide an indication of any preferential 

involvement of excitatory or inhibitory neurons, pre-synaptic proteins selectively expressed 

by subpopulations of neurons have been used (see Harrison and Eastwood, 1998; Eastwood 

and Harrison, 2005). Of these, the vesicular glutamate transporter, VGlut1, which loads 

synaptic vesicles with glutamate, is exclusive to glutamatergic terminals (Bellochio et al., 

1998, 2000; Fremau et al., 2001). The last pre-synaptic protein examined in this study, GAP-

43, is a phosphoprotein involved in neurodevelopment, injury response and synaptic plasticity 

(see Benowitz and Routtenberg, 1997; Eastwood, 2003). Post-synaptic proteins have also 

been utilised as synaptic markers (see Law et al., 2004b). MAP2 is a general dendritic marker 

(Pollard et al., 1994), whilst spinophilin is specifically involved in dendritic spine formation 

and function (Feng et al., 2000). As most cortical glutamatergic synapses terminate on spines, 

altered spinophilin expression in the absence of any change of the expression of MAP2 is 

interpreted to indicate particular structural or functional involvement of spines and 

glutamatergic synapses. 

 Table 8 summarizes the differences in pre- and post-synaptic protein mRNA 

expression detected in STOP mutant mice as compared to their wild type littermates. Note 

that synaptic protein mRNA expression was decreased in both STOP null and heterozygous 

mice, whilst the mRNA for the housekeeping gene GAPDH was unchanged, indicating that 

altered synaptic protein mRNA expression is unlikely to be due to a generalized decrease in 

gene expression. As outlined above, the pattern of change in synaptic protein mRNA is 

indicative of synaptic alterations in STOP mutant mice. The finding that spinophilin (but not 

MAP2) and VGlut1 mRNAs are altered suggests that glutamatergic synapses are involved, 

though as markers of inhibitory synapses were not examined, it remains to be determined 

whether GABAergic synapses may be similarly affected. 
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As schizophrenia is considered a disorder of aberrant neurodevelopment, it will be 

interesting to determine when the synaptic changes noted in these adult STOP mutant mice 

first occur. Furthermore, as all behavioural studies conducted to date have focussed on the 

null mouse, it will also be interesting to determine whether heterozygous STOP mice also 

exhibit altered sensorimotor gating and locomotor activity (Fradley et al., 2005). If they do, 

the use of heterozygous mice in place of nulls would overcome practical limitations of 

generating sufficient numbers of mice (see Fradley et al., 2005). Finally, as the present study 

only examined females, examination of males will be necessary to establish whether there are 

sex differences in the molecular profile of STOP mutant mice.  

 

How may lack of STOP lead to synaptic deficits?  

Decreases of cold-stable microtubules exhibited by STOP null and heterozygous mice 

(Andrieux et al., 2002) are likely to influence neurodevelopmental processes, and ongoing 

adult synaptic plasticity, by perturbing microtubule dynamics and/or their interactions with 

molecular motors. Growth cone turning (Tanaka and Kirschner, 1995; Williamson et al., 

1996), axon pathfinding (Suter and Forscher, 2000; Schaefer et al., 2002), and axon branching 

(Dent et al., 2004; Kalil and Dent, 2005), are all dependent on interactions between 

microfilaments and microtubules, and changes in the dynamics of microtubules could 

potentially lead to abnormalities in the formation and maintenance of synaptic connections. 

Our data demonstrating that STOP null and heterozygous mice exhibit changes in the 

expression of pre- and post-synaptic proteins provides some molecular evidence in support of 

this. How such altered connectivity may occur will be discussed.  

 Microtubules function as rails along which kinesin superfamily proteins (KIFs) and 

dyneins act as molecular motors to transport intracellular cargoes such as mRNAs, protein 

complexes and organelles (Hirokawa and Takemura, 2004). Two KIFs, KIF1A and KIF1B, 
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transport precursors of synaptic vesicles to axon terminals (Okada et al., 1995; Yonekawa et 

al., 1998; Zhao et al., 2001). Of particular relevance for the current study, knock out mice for 

KIF1A and KIF1B have reduced numbers of synaptic vesicles, indicating that our finding of 

decreased synaptophysin mRNA expression, and reductions in the number of synaptic 

vesicles in STOP mutant mice (Andrieux et al., 2002), may be caused by altered KIF function 

and diminished transport (and thence synthesis) of synaptic vesicles. The finding that 

treatment of STOP null mice with the microtubule stabilizing drug epothilone D partially 

returns to normal synaptic vesicle density (Andrieux et al., 2006) supports a role for 

microtubule stabilization in synaptic vesicle transport, and it will be interesting to determine if 

synaptophysin mRNA expression is likewise increased  

Given the importance of microtubules and their associated proteins in the formation 

and maintenance of dendrites (Liu et al., 2000; Yu et al., 2000; Scott and Luo, 2001; Jan and 

Jan, 2003), it might be predicted that deficits in cold stabilized microtubules in STOP mutant 

mice would lead to dendritic abnormalities. However, our data demonstrating decrements in 

spinophilin mRNA in the absence of alterations in that for MAP2, and the normal dendritic 

arborization observed in STOP null mice (Andrieux et al., 2002) suggest that changes in 

microtubule dynamics may instead preferentially affect spines. The presence of STOP 

(Andrieux et al., 2002) and microtubules (see van Rossum and Hanisch, 1999) in dendritic 

spines has been documented and stabilized microtubules are important in the transport and 

function of glutamate receptors, both during synaptogenesis and in adult synaptic plasiticity 

(Sergé et al., 2003; Washbourne et al., 2002, 2004; Yuen et al., 2005). Of note, the 

translocation of the RNA binding protein TLS (translocated in liposarcoma) into dendritic 

spines is dependent on stabilized microtubules, and hippocampal pyramidal neurons from 

TLS null mice exhibit decreased spine density and abnormal spine morphology (Fujii et al., 

2005). Together these data indicate that changes in microtubule dynamics in STOP deficient 
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mice may contribute to altered spine formation and/or function, and may underlie our findings 

of decreased spinophilin mRNA in STOP null and heterozygous mice.  

 

Are the present findings relevant to the understanding of schizophrenia? 

 The profile of change in expression of synaptic protein mRNAs seen here is quite 

similar to that observed in schizophrenia. For example, as in the hippocampus of STOP null 

and heterozygous mice (Table 8), post mortem studies mostly agree that, with the exception 

of MAP2 (see Table 1), synaptic protein mRNAs are reduced in the disorder. Although fewer 

studies have examined the cerebellum or occipital cortex in schizophrenia, synaptophysin 

mRNA is reportedly decreased in these areas too, consistent with the reduction seen in the 

STOP null mice. Concordance in findings between the STOP mutant mice and schizophrenia 

for the other brain areas examined here is difficult to determine, either because there are no 

comparable schizophrenia data (e.g. in cingulate cortex or caudate putamen) or because the 

rodent homologue of human dorsolateral prefrontal cortex is unclear.  

The above similarities, together with the previously described behavioural phenotype 

of the STOP mutant mice (Brun et al., 2005; Fradley et al., 2005), suggests that STOP is a 

candidate to contribute to the role which microtubules have been proposed to play in the 

pathophysiology of schizophrenia (Kerwin, 1993). Indeed, this candidacy recently received 

empirical support with the report of genetic association between STOP and schizophrenia 

(Shimizu et al., 2006). On the other hand, Shimizu et al. (2006) also found that one isoform of 

STOP mRNA was increased (and the other unchanged) in the prefrontal cortex in 

schizophrenia, arguing against a role for reduced STOP expression in the disorder. The 

situation remains unclear, however, since we have found STOP mRNA to be decreased in the 

hippocampus in schizophrenia (S.L.E. and P.J.H., unpublished observations). Thus, it remains 

to be determined whether STOP expression is altered in schizophrenia and, if so, whether this 
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is regionally specific. Clearly, the face validity of STOP null or heterozygous mice as a 

‘model’ of schizophrenia is affected by this issue. Equally, even if STOP expression is not 

found to be consistently reduced in schizophrenia, it does not negate the potential value of 

these mice, or the present findings, with regard to the disorder. Firstly, since STOP expression 

may have been reduced (and played its pathogenic role) in subjects with schizophrenia earlier 

in life, and subsequently normalised, perhaps due to antipsychotic medication. Secondly, the 

main significance of the present data is that they emphasise that alterations in synaptic protein 

gene expression, and synaptic functioning, can arise from “non-synaptic” mechanisms 

involving microtubules. As such, synaptic pathology in schizophrenia may have its origin 

elsewhere in the neuron (or even in non-neuronal cells). This is particularly relevant to our 

understanding of how susceptibility genes for schizophrenia may converge to alter synaptic 

function, given that most do not encode established structural components of the synapse or 

proteins known to be part of the synaptic proteome (see Grant et al., 2005; Harrison and 

Weinberger, 2005). Of note, one of the leading susceptibility genes, DISC1 (Disrupted in 

Schizophrenia 1), forms a complex with several proteins including NUDEL (nuclear 

distribution element-like) and Lis1 (lissencephaly gene 1 product), which binds to 

microtubules and is involved in neuronal migration and dynein-mediated motor transport (see 

Brandon et al., 2004; Kamiya et al., 2005.). The importance of this protein complex in axonal 

transport and dendritic morphogenesis has been demonstrated in Lis1 null Drosophila (Liu et 

al., 2000), whilst depletion of DISC1 or expression of a mutated form (mutDISC1) results in 

aberrant neuronal migration in vivo and impaired neurite outgrowth in vitro (Kamiya et al., 

2005). Interestingly, although DISC1 mRNA expression is not altered in schizophrenia, there 

are decrements in NUDEL and Lis1 mRNAs, associated with the DISC1 risk single 

nucleotide polymorphisms (Lipska et al., 2006), suggesting that DISC1 may exert its 

pathogenic effect in schizophrenia by impacting on the expression of its binding partners and 
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thereby alter microtubule dynamics and function.  One can speculate on a comparable role for 

STOP and its interacting proteins in schizophrenia.  

  

 Conclusions 

  The results of the current study complement data implicating microtubules in synaptic 

formation, maintenance and function, and give a precedent for altered microtubule dynamics 

producing changes in the molecular composition as well as functioning of synapses. Although 

serendipitously discovered, the STOP mutant mouse may be useful for studying aspects of the 

genetic pathophysiology of schizophrenia, especially its synaptic pathology and the roles that 

microtubules play in this process.  
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Figure Legends 
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Figure 1. Regional distribution of STOP mRNA. Representative autoradiographic images 

showing the distribution of STOP mRNA at the level of the dorsal hippocampus in wild type 

(A), heterozygous (C) and STOP null (E) mice, and at the level of the caudate putamen (B) 

and cerebellum (D) of wild type mice. F: Incubation with excess cold unlabelled probe, 

showing minimal background signal. CA: cornu Ammonis; CING: cingulate cortex; CPu: 

caudate putamen; DG: dentate gyrus; GCL: granule cell layer; FPC: fronto-parietal cortex; 

OC: occipital cortex. 
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Table 1. Summary of post mortem studies of pre- and post synaptic protein mRNA expression in 

schizophrenia.  

Brain Region  mRNA   Main Result  Study     

Hippocampus  Synaptophysin  ↓   Eastwood et al., 1995.  
         Eastwood and Harrison, 1999.
         Webster et al., 2001.  
          
 
   VGlut1   ↓   Eastwood and Harrison, 2005. 
 

GAP-43  ↓   Eastwood and Harrison, 1998. 
 
   ↔   Webster et al., 2001.  

 
Spinophilin  ↓   Law et al., 2004a. 
 
MAP-2   ↔   Law et al., 2004a.  

   
              
DLPFC  Synaptophysin  ↔   Karson et al., 1999. 
         Eastwood et al., 2000.  
         Glantz et al., 2000. 

Weickert et al., 2004.  
    
  

VGlut1   ↓   Eastwood and Harrison, 2005. 
 
GAP-43  ↔   Eastwood and Harrison, 1998. 
 
   ↓   Weickert et al., 2001.  

   
   Spinophilin  ↔   Weickert et al., 2004.  
 
             
Occiptal Cortex Synaptophysin  ↓   Eastwood et al., 2000b. 
 
   GAP-43  ↓   Eastwood and Harrison, 1998. 
 
  
 
Cerebellum  Synaptophysin  ↓   Eastwood  et al., 2001. 
    
             
  
Summary is limited to published papers in brain regions relevant to those examined in mice in the current 

study. DLPFC: dorsolateral prefrontal cortex.         
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Table 2. Synaptophysin mRNA expression in wild type, heterozygous and STOP null mice. 

 

Area Effect of Genotype  Wild type Heterozygotes  Nulls 
 
 
DG F2, 14=2.66, P=0.105  1928 ± 75 1655 ± 134  1523 ± 115a 
 
CA3 F2, 14=0.67, P=0.532  3132 ± 97 2937 ± 112  2950 ± 180 
 
CA1 F2, 14=5.05, P=0.022  1981 ± 63 1654 ± 81b  1557 ± 131c 
 
OC F2, 14=7.99, P=0.005  1145 ± 50 1011 ± 29d  881 ± 58e 
 
FPC F2, 15=3.94, P=0.042  1092 ± 25 1013 ± 22f  1006 ± 23g 
 
CING F2, 15=3.03, P=0.079  1565 ± 57 1338 ± 49h  1340 ± 98i 

CPu F2, 15=0.61, P=0.554  292 ± 10 269 ± 15  280 ± 16 

CB F2, 14=3.08, P=0.078  998 ± 40 958 ± 72  793 ± 37j 
 

Values are mean 35SnCi/g tissue equivalents ± SEM. a P=0.041, b P=0.025, c P=0.010, d P=0.045, e 

P=0.001, f P=0.029, g P=0.022, h P=0.042, i P=0.050, j P=0.037, as compared to wild type. No 

significant differences were found between heterozygous and null mice.  CA: cornu Ammonis; CB: 

cerebellum; CING: cingulate cortex; CPu: caudate putamen; DG: dentate gyrus; FPC: fronto-parietal 

cortex; OC: occipital cortex. 
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Table 3. VGlut1 mRNA expression in wild type, heterozygous and STOP null mice. 

 

Area Effect of Genotype  Wild type Heterozygotes  Nulls 
 
DG F2, 14=4.68, P=0.028  2963 ± 229 2311 ± 138a  2233 ± 180b 
      
CA3 F2, 14=4.06, P=0.041  4985 ± 155 4114 ± 273c  4546 ± 110 
 
CA1 F2, 14=5.18, P=0.021  3359 ± 242 2602 ± 149d  2793 ± 106e 
 
OC F2, 14=5.18, P=0.021  1470 ± 66 1311 ± 56  1185 ± 53f 
 
FPC F2, 14=2.71, P=0.101  1248 ± 37 1221 ± 32  1104 ± 62g 
 
CING F2, 14=4.21, P=0.037  1560 ± 48 1368 ± 96  1131 ± 132h  
 
CB F2, 14=2.92, P=0.087  2036 ± 25 1936 ± 65  1821 ± 65i 
 
 

Values are mean 35SnCi/g tissue equivalents ± SEM . a P=0.020, b P=0.016, c P=0.013, d P=0.007, e 

P=0.046, f P=0.006, g P=0.050, h P=0.012, i P=0.030, as compared to wild types. No significant 

differences were found between heterozygous and null mice. Abbreviations as in Table 2. 
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Table 4. GAP-43 mRNA expression in wild type, heterozygous and STOP null mice. 

 

Area Effect of Genotype  Wild type Heterozygotes  Nulls 
 
 
DG F2, 14=5.02, P=0.023  1227 ± 103 918 ± 76a  917 ± 54b 
 
CA3 F2, 14=4.43, P=0.032  1560 ± 104 1242 ± 49c  1189 ± 113d 
 
CA1 F2, 14=5.01, P=0.023  1476 ± 195 993 ± 55e  991 ± 100f 
 
OC F2, 14=1.24, P=0.319  604 ± 90 562 ± 74  438 ± 70 
 
FPC F2, 15=3.38, P=0.062  109 ± 5 123 ± 7  136 ± 7g 
 
CING F2, 15=0.97, P=0.402  349 ± 33 293 ± 43  260 ± 48 
 
CPu F2, 14=0.15, P=0.866  159 ± 4 149 ± 6  149 ± 22 
 
CB F2, 14=1.55, P=0.248  1750 ± 44 1666 ± 56  1782 ± 37 
 
 

Values are mean 35SnCi/g tissue equivalents ± SEM. a P=0.015, b P=0.015, c P=0.031, d P=0.015, e 

P=0.015, f P=0.014, g P=0.020, compared to wild types. No significant differences were found 

between heterozygous and null mice. Abbreviations as in Table 2. 
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Table 5. Spinophilin  mRNA expression in wild type, heterozygous and STOP null mice. 

 
 

Area Effect of Genotype  Wild type Heterozygotes  Nulls 
 
 
DG F2, 13=13.26, P=0.001  365 ± 14 272 ± 13a  261 ± 15b 

CA3 F2, 13=4.27, P=0.038  267 ± 5 221 ± 11c  211 ± 18d 

CA1 F2, 13=4.23, P=0.038  249 ± 16 207 ± 14e  192 ± 6f 

OC F2, 13=3.18, P=0.075  138 ± 3 124 ± 3  118 ± 8g 

FPC F2, 15=3.45, P=0.059  34 ± 2  35 ± 3h   44 ± 4i 

CING F2, 15=1.27, P=0.310  80 ± 3  74 ± 4   82 ± 5   
    
CPu F2, 15=2.63, P=0.105  37 ± 2  36 ± 1j   45 ± 5 
 
CB F2, 13=4.09, P=0.042  675 ± 15 628 ± 20  580 ± 32k 

 

Values are mean 35SnCi/g tissue equivalents ± SEM. a P=0.001, b P<0.001, c P=0.033, d P=0.016, e 

P=0.043, f P=0.014, g P=0.027, i P=0.037,   k P=0.013, as compared to wild types. 

h P=0.040, j P=0.05 as compared to nulls.  Abbreviations as in Table 2. 
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Table 6. MAP2 mRNA expression in wild type, heterozygous and STOP null mice. 

 

Area  Wild type Heterozygotes  Nulls 
 

DG  1216 ± 36 1191 ± 30  1138 ± 88 

CA3  940 ± 46 971 ± 47  926 ± 33 

CA1  909 ± 19 938 ± 26  930 ± 22 

OC  617 ± 50 594 ± 90  605 ± 59 

FPC  584 ± 17 588 ± 22  566 ± 22 

CING  834 ± 30 802 ± 23  749 ± 27 

CPu  385 ± 11 395 ± 14  375 ± 16 

CB  713 ± 16 804 ± 20  723 ± 23c   

 

Values are mean 35SnCi/g tissue equivalents ± SEM. No overall effect of genotype, or genotype by 

area interactions were detected. Abbreviations as in Table 2. 
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Table 7. GAPDH  mRNA expression in wild type, heterozygous and STOP null mice. 

 

Area  Wild type Heterozygotes  Nulls 
 

DG  1105 ± 22 1169 ± 68  1157 ± 35 

CA3  1793 ± 104 1871 ± 123  2102 ± 168 

CA1  1350 ± 87 1440 ± 59  1562 ± 56 

OC  677 ± 5 675 ± 5  670 ± 6 

FPC  371 ± 24 353 ± 14  397 ± 27 

CING  501 ± 40 470 ± 40  542 ± 44 

CPu  248 ± 15 238 ± 17  281 ± 19 

CB  863 ± 15 956 ± 102  847 ± 6.5 

 

Values are mean 35SnCi/g tissue equivalents ± SEM . No overall effect of genotype, or genotype by 

area interactions were detected. Abbreviations as in Table 2. 

 

 

 

 

 

 

 

 

 

 

 



Altered synaptic protein mRNA expression in STOP mutant mice 36 
Table 8. Summary of significant changes in mRNA expression detected between STOP mutants as compared to wild type mice. 

 

Area  STOP null mice      Heterozygous mice 

 SYN VGlut1 GAP-43 SPINO  SYN VGlut1 GAP-43 SPINO 

DG ↓ ↓ ↓ ↓  ↔ ↓ ↓ ↓ 

CA3 ↔ ↔ ↓ ↓  ↔ ↓ ↓ ↓ 

CA1 ↓ ↓ ↓ ↓  ↓ ↓ ↓ ↓ 

OC ↓ ↓ ↔ ↓  ↓ ↔ ↔ ↔ 

FPC ↓ ↓ ↑ ↑  ↓ ↔ ↔ ↔ 

CING ↓ ↓ ↔ ↔  ↓ ↔ ↔ ↔ 

CPu ↔ ND ↔ ↔  ↔ ND ↔ ↔ 

CB ↓ ↓ ↔ ↓  ↔ ↔ ↔ ↔ 

 
 
 
ND: no mRNA signal detected; SPINO: spinophilin; SYN: synaptophysin. Other abbreviations as in Table 2. 

  


