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Channel inactivation in G-protein regulation 

Abstract 

 

Direct regulation of N-type calcium channels by G-proteins is essential to control neuronal 

excitability and neurotransmitter release. Binding of the Gβγ dimer directly onto the channel is 

characterized by a marked current inhibition (“ON” effect), whereas the pore opening- and 

time-dependent dissociation of this complex from the channel produce a characteristic set of 

biophysical modifications (“OFF” effects). Although G-protein dissociation is linked to 

channel opening, the contribution of channel inactivation to G-protein regulation has been 

poorly studied. Here, the role of channel inactivation was assessed by examining time-

dependent G-protein de-inhibition of Cav2.2 channels in the presence of various inactivation-

altering β subunit constructs. G-protein activation was produced via µ-opioid receptor 

activation using the DAMGO agonist. Whereas the “ON” effect of G-protein regulation is 

independent of the type of β subunit, the “OFF” effects were critically affected by channel 

inactivation. Channel inactivation acts as a synergistic factor to channel activation for the 

speed of G-protein dissociation. However, fast inactivating channels also reduce the temporal 

window of opportunity for G-protein dissociation, resulting in a reduced extent of current 

recovery, whereas slow inactivating channels undergo a far more complete recovery from 

inhibition. Taken together, these results provide novel insights on the role of channel 

inactivation in N-type channel regulation by G-proteins and contribute to the understanding of 

the physiological consequence of channel inactivation in the modulation of synaptic activity 

by G-protein coupled receptors. 

 

Key words: N-type calcium channel; Cav2.2 subunit; G-protein; G-protein coupled receptor; 

µ-opioid receptor; inactivation; β subunit. 
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Introduction 

 

Voltage-dependent N-type calcium channels play a crucial role in neurotransmitter release at 

central and peripheral synapse (3, 47). Several subtypes of N-type channels are known to exist 

that differ in their inactivation properties either because of differences in subunit composition 

(43) or because they represent splice variants (5, 28). N-type channels are strongly regulated 

by G-protein coupled receptors (GPCRs) (4, 18, 25, 29, 30). Direct regulation by G-proteins 

involves the binding of the Gβγ dimer (22, 27) on various structural determinants of Cav2.2, 

the pore-forming subunit of N-type channels (1, 12, 15, 23, 33, 38, 44, 53). This regulation is 

characterized by typical biophysical modifications of channel properties (14), including: i) a 

marked current inhibition (7, 51), ii) a slowing of activation kinetics (30), iii) a depolarizing 

shift of the voltage-dependence of activation (4), iv) a current facilitation following prepulse 

depolarization (26, 42), and v) a modification of inactivation kinetics (52). Current inhibition 

has been attributed to Gβγ binding onto the channel (“ON” effect), whereas all other channel 

modifications are a consequence of a variable time-dependent dissociation of Gβγ from the 

channel (“OFF” effects) (48). Although the dissociation of Gβγ was previously described as 

voltage-dependent (17), it was then suggested that channel opening following membrane 

depolarisation was more likely responsible for the removal of Gβγ (35). More recently, we 

have shown that the voltage-dependence of the time constant of Gβγ dissociation was directly 

correlated to the voltage-dependence of channel activation suggesting that Gβγ dissociation is 

in fact intrinsically voltage-independent (48). 

Although Gβγ dissociation, and the resultant characteristic biophysical changes associated 

with it, has been correlated with channel activation, the contribution of channel inactivation in 

G-protein regulation has been barely studied. Evidence that such a link may exist has emerged 

from a pioneering study from the group of Prof. Catterall (23) in which it was demonstrated 

that mutations of the β subunit binding domain of Cav2.1, known to affect inactivation, also 

modify G-protein modulation. A slower inactivating channel, in which the Arg residue of the 

QQIER motif of this domain was substituted by Glu, enhanced the prepulse facilitation 

suggesting that the extent of G-protein dissociation was enhanced. However, establishing a 

specific relationship between channel inactivation and G-protein regulation with mutants of 

such a motif is rendered difficult because this motif is also a Gβγ binding determinant (15, 23, 

53). Indeed, mutations of this motif are expected to decrease the affinity of G-proteins for the 

channel, and hence may facilitate G-protein dissociation. Differences in G-protein regulation 
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of Cav2.2 channels have also been reported if the channel is associated to β subunit that 

induce different inactivation kinetics (11, 20, 31). However, in none of these studies, a formal 

link between channel inactivation and G-protein regulation has been established.  

In this study, we analyzed how modifying channel inactivation kinetics could affect the 

parameters of G-protein dissociation (time constant and extent of dissociation). We used a 

method of analysis that was recently developed on N-type channels for extracting all 

parameters of G-protein regulation at regular potential values, independently of the use of 

prepulse depolarisations (49). The objective was to perform a study in which the structural 

properties of the pore-forming subunit would remain unaltered in order to keep the known G-

protein binding determinants of the channel functionally intact. Structural analogues of β 

subunits, known or expected to modify channel inactivation properties, were used (16, 32, 

40). It is concluded that fast inactivation accelerates G-protein dissociation from the channel, 

whereas slow inactivation slows down the process. However, channel inactivation also 

reduces the temporal window of opportunity in which G-protein dissociation can be observed. 

Far less recovery is observed for channels that undergo fast inactivation, whereas slow 

inactivating channels display almost complete G-protein dissociation. With regard to the 

landmark effects of G-protein regulation, it is concluded that the “ON” effect (extent of G-

protein inhibition) is independent of the type of inactivation provided by β subunits, whereas 

all “OFF” effects (slowing of activation and inactivation kinetics, shift of the voltage-

dependence of activation) are largely influenced by the kinetics of channel inactivation 

induced by the β constructs. These results better explain the major differences that can be 

observed in the regulation of functionally distinct N-type channels. Furthermore, they provide 

an insight of the potential influence of channel inactivation in modulating G-protein 

regulation of N-type channels at the synaptic level. 
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Materials and Methods 

 
Materials 

The cDNAs used in this study were rabbit Cav2.2 (GenBank accession number D14157), rat 

β1b (X61394), rat β2a (M80545), rat β3 (M88751), rat β4 (L02315) and rat µ-opioid receptor 

(rMOR, provided by Dr. Charnet). D-Ala2,Me-Phe4,glycinol5)-Enkephalin (DAMGO) was 

from Bachem (Bubendorf, Germany). 

 

Molecular biology 

The CD8-β1b chimera was generated by polymerase chain reaction (PCR) amplification of the 

full length β1b using oligonucleotide primers 5’-

CGCGGATCCGTCCAGAAGAGCGGCATGTCCCGGGGCCCTTACCCA-3’ (forward) 

and 5’-ACGTGAATTCGCGGATGTAGACGCCTTGTCCCCAGCCCTCCAG-3’ (reverse) 

and the PCR product was subcloned into the BamHI and EcoRI sites of the pcDNA3-CD8-

βARK-myc vector after removing the βARK insert (vector generously provided by D. Lang, 

Geneva University, Geneva, Switzerland). The truncated N-terminal β1b construct (β1b ΔN, 

coding for amino acid residues 58 to 597) was performed as described above using the 

primers 5’-

CGCGGATCCACCATGGGCTCAGCAGAGTCCTACACGAGCCGGCCGTCAGAC-3’ 

(forward) and 5’-

CGGGGTACCGCGGATGTAGACGCCTTGTCCCCAGCCCTCCAGCTC-3’ (reverse) and 

the PCR product was subcloned into the KpnI and BamHI sites of the pcDNA3.1(-) vector 

(Invitrogen). The truncated N-terminal β3 construct (β3 ΔN, coding for amino acid residues 16 

to 484) was performed using the primers 5’-

CGCGGATCCACCATGGGTTCAGCCGACTCCTACACCAGCCGCCCCTCTCTGGAC-

3’ (forward) and 5’-

CGGGGTACCGTAGCTGTCTTTAGGCCAAGGCCGGTTACGCTGCCAGTT-3’ (reverse) 

and the PCR product was subcloned into the KpnI and BamHI sites of the pcDNA3.1(-) 

vector.  

 

Transient expression in Xenopus oocytes 

Stage V and VI oocytes were surgically removed from anesthetized adult Xenopus laevis and 

treated for 2-3 h with 2 mg/ml collagenase type 1A (Sigma). Injection into the cytoplasm of 
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cells was performed with 46 nl of various cRNA mixture in vitro transcribed using the SP6 or 

T7 mMessage mMachine Kit (Ambion, Cambridgeshire, UK) (0.3 µg/µl Cav2.2 + 0.3 µg/µl 

µ-opioid receptor + 0.1 µg/µl of one of the different calcium channel β constructs. Cells were 

incubated at 19°C in defined nutrient oocyte medium as described (19).  

 

Electrophysiological recording 

After incubation for 2-4 days, macroscopic currents were recorded at room temperature (22-

24°C) using two-electrode voltage-clamp in a bathing medium containing (in mM): Ba(OH)2 

40, NaOH 50, KCl 3, HEPES 10, niflumic acid 0.5, pH 7.4 with methanesulfonic acid. 

Electrodes filled with (in mM): KCl 140, EGTA 10 and HEPES 10 (pH 7.2) had resistances 

between 0.5 and 1 MΩ. Macroscopic currents were recorded using Digidata 1322A and 

GeneClamp 500B amplifier (Axon Instruments, Union City, CA). Acquisition and analyses 

were performed using the pClamp 8 software (Axon Instruments). Recording were filtered at 

2 kHz. Leak current subtraction was performed on-line by a P/4 procedure. DAMGO was 

applied at 10 µM by superfusion of the cells at 1 ml/min. All recordings were performed 

within 1 min after DAMGO produced maximal current inhibition. We observed that this 

procedure fully minimized voltage-independent G-protein regulation that took place later, 5-

10 min after DAMGO application (data not shown). Hence, the inhibition by DAMGO was 

fully reversible as assessed by washout experiments. Also, no run-down was observed during 

the time course of these experiments. Cells that presented signs of prepulse facilitation before 

µ-opioid receptor activation (tonic inhibition) were discarded from the analyses. 

 

Analyses of the parameters of G-protein regulation 

The method used to extract all biophysical parameters of G-protein regulation (GIt0, the initial 

extent of G-protein inhibition before the start of depolarisation, τ, the time constant of G-

protein unbinding from the channel, and RI, the extent of recovery from inhibition at the end 

of a 500 ms test pulse, unless specified in the text) were described elsewhere (49). The key 

steps required to extract these parameters are briefly summarized in Fig. 1. This method is 

analogous to the method that relies on the use of prepulses but avoids many of the pitfalls of 

the latter (use of an interpulse potential that favours G-protein reassociation, differences in the 

rate of channel inactivation between control and G-protein regulated channels, and facilitation 

that occurs during the control test pulse) (49). 
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Mathematical and statistical analyses 

Current-voltage relationships (I/V) were fitted with the modified Boltzmann equation I(V) = 

Gmax×(V-E))/(1+exp(-(V-V1/2)/k)) where I(V) represents the maximal current amplitude in 

response to a depolarisation at the potential V, Gmax the maximal conductance, E the inversion 

potential of the Ba2+, and k a slope factor. All data are given as mean ± S.E.M for n number 

observations and statistical significance (p) was calculated using Student’s t-test. Statistical 

significance for scatter plot analysis was performed using the Spearman Rank Order 

correlation test. 
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Results 

 

N-type current inhibition by G-proteins is independent of the β subunit species 

G-protein inhibition is generally studied through the measurement of the peak currents. 

However, this approach doesn’t take into account the fact that, at the time to peak, a 

considerable proportion of G-proteins has already dissociated from the channel during 

depolarization. In order to better estimate the real extent of N-type current inhibition by G-

proteins, we used the technical approach described in Fig. 1 to measure GIt0, the maximum 

extent of G-protein inhibition before the start of the G-protein unbinding process. 

Representative current inhibition and kinetic alterations are shown for Cav2.2 channels co-

expressed with either β1b, β2a, β3 or β4 subunit (Fig. 2a, top panel) and the corresponding GIt0 

values were quantified (Fig. 2a, bottom panel). The β subunits did not alter significantly the 

maximum extents of inhibition that ranged between 59.2 ± 1.4% (Cav2.2 / β2a channels, n = 

25) and 62.4 ± 1.8% (Cav2.2 / β1b channels, n = 25) (Fig. 2b). In the following part of this 

study, three other β subunit constructs have been coexpressed with Cav2.2, β1b ΔN, CD8-β1b 

and β3 ΔN. As for the wild-type β isoforms, GIt0 varied non significantly (p > 0.05) between 

58.4 ± 1.8% (β1b ΔN, n = 9) and 63.5 ± 1.3 (CD8-β1b, n = 10). 

The two parameters that are relevant for the “OFF” effects, τ (the time constant of G-protein 

unbinding from the channel) and RI (the extent of current recovery from G-protein inhibition 

after a 500 ms depolarisation), will be used to investigate the role of N-type channel 

inactivation in G-protein regulation. GIt0 is not a time-dependent parameter and cannot be 

influenced by the time course of inactivation. 

 

Current recovery from G-protein inhibition is altered when the inactivation kinetics of 

Cav2.2 channels are modulated by β subunits 

Auxiliary β subunits are known to influence the inactivation kinetics of Cav2.2 channels with 

a rank order of potency, from the fastest to the slowest, of β3 ≥ β4 > β1b >> β2a (45). 

Representative control current traces at 10 mV for Cav2.2 channels co-expressed with each 

type of β-subunits are shown in Fig. 3a (left panel). As expected from former reports, the β3 

subunit produces the fastest inactivation, whereas β2a induced the slowest inactivation. The 

β1b and β4 subunits induce intermediate inactivation kinetics. In agreement with previous 

reports (11, 20), β subunits markedly affect G-protein regulation. Here, we investigated how 
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channel inactivation affects the kinetic of G-protein departure from the channel, as well as the 

extent of relief from inhibition (RI). The time constants τ of G-protein dissociation were 

extracted from the IG-proteins unbinding traces for each combination of channels (Fig. 3a, middle 

panel), whereas RI was calculated as the extent of dissociation by comparing the current 

levels of IDAMGO, IDAMGO wo unbinding and IControl after 500 ms of depolarisation (Fig. 3a, right 

panel). The data show that both τ and RI values are differentially affected by the kinetics of 

channel inactivation. Average parameters are reported in Fig. 3b (for τ) and Fig. 3c (for RI). 

The time constant τ of recovery from G-protein inhibition is 2.9-fold faster for the fastest 

inactivating channel (Cav2.2 / β3, 37.5 ± 3.3 ms, n = 13) than the slowest inactivating channel 

(Cav2.2 / β2a, 107.8 ± 2.7 ms, n = 22). Interestingly, the rank order for the speed of recovery 

from G-protein inhibition (β3 ≥ β4 > β1b >> β2a) is similar to that observed for inactivation 

kinetics. Indeed, student t-tests demonstrate that differences between β subunits are all highly 

statistically significant (p ≤ 0.001) except between β3 and β4 were the difference is less 

pronounced (p ≤ 0.05) (Fig. 3b). It is thus concluded that the speed of channel inactivation 

imposed by each type of β subunit impacts the time constant of recovery from G-protein 

inhibition. Channel inactivation appears as a “synergistic factor” to channel activation (48) 

for the speed of G-protein dissociation. Next, the effects of β subunits were investigated on RI 

values (Fig. 3c). Two of the β subunits (β3 and β4) have closely related RI values (56.9 ± 

1.8% (n = 21) vs 56.8 ± 1.2% (n = 34)). In contrast, β1b and β2a statistically decrease (45.0 ± 

1.3%, n = 24) and increase (96.1 ± 1.4%, n = 29) RI values, respectively. From these data, it 

is clear that faster recovery from inhibition is not necessarily associated with an elevated RI 

value. Although channel inactivation accelerates the kinetics of G-protein dissociation from 

the channel, it also reduces the time window in which the process can be completed. In these 

data, a relationship seems to exist between channel inactivation conferred by β subunits and 

G-protein dissociation. It is however unclear whether this link is only due to the kinetics of 

inactivation conferred by β subunits or also to differences in molecular identities. In order to 

precise these first observation, we examined how structural modifications of individual β 

subunits, known to alter channel inactivation, affect the recovery parameters from G-protein 

inhibition. 

 

Deletion of a β subunit determinant important for fast inactivation alters recovery from 

G-protein inhibition 
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Important determinants for the control of inactivation rate have been identified in the past on 

β subunits (32, 37). Deletion of the amino-terminus of β subunits is known to slow-down 

channel inactivation (16). According to the data of Fig. 3, slowing of inactivation should 

increase both the time constant τ of recovery from G-protein inhibition and the extent of 

recovery RI. Fig. 4a & b illustrate the extent of slowing in inactivation kinetics of Cav2.2 / β1b 

channels when the first N-terminal 57 amino acids of β1b subunit are deleted (β1b ΔN). The 

amount of inactivation at the end of a 500 ms depolarization at 10 mV shows a 2.2-fold 

decrease from 58.4 ± 1.6% (n = 22) to 26.2 ± 2.3% (n = 10) (Fig. 4b). Representative traces of 

DAMGO regulation of Cav2.2 / β1b and Cav2.2 / β1b ΔN currents demonstrate that the deletion 

of the N-terminus of β1b produces a significant modification in G-protein regulation (Fig. 4c, 

left panel). Notably, DAMGO-inhibited Cav2.2 / β1b ΔN currents display much slower 

activation kinetics (quantified in Fig. 8c). The analysis of the time-course of IG-proteins unbinding 

traces in the presence of truncated β1b reveals a slower time-course (Fig. 4c, middle panel). 

Also, the deletion of the N-terminus of β1b leads to an increased recovery from G-protein 

inhibition (Fig. 4c, right panel). Statistical analyses show a significant increase in the time 

constant τ of recovery (2.0-fold) from 60.0 ± 2.0 ms (n = 24) to 118.6 ± 2.5 ms (n = 10) (Fig. 

4d) and an increase in the RI values (1.8-fold) from 45.0 ± 1.3% (n = 24) to 79.6 ± 2.5% (n = 

9) by the deletion of the N-terminus of β1b (Fig. 4e). 

To confirm that these effects are independent of the nature of the β subunit involved, similar 

experiments were conducted with a 15 amino acid N-terminal truncated β3 subunit (β3 ΔN). As 

for β1b ΔN, β3 ΔN produces a slowing of channel inactivation kinetics. After 500 ms at 10 mV, 

Cav2.2 / β3 channels inactivate by 68.9 ± 1.7% (n = 21) compared to 41.1 ± 1.1% (n = 10) for 

Cav2.2 / β3 ΔN channels (Fig. 5a,b). As expected, DAMGO inhibition of Cav2.2 / β3 ΔN 

channels produces currents with slower activation and inactivation kinetics than Cav2.2 / β3 

channels (shift of the time to peak of the current from 20.7 ± 2.5 ms with β3 (n = 21) to 77.0 ± 

7.6 ms with β3 ΔN (n = 10) (Fig. 5c, left panel). Moreover, the time course of IG-proteins unbinding 

was slowed-down with the N-terminal truncation of β3 (Fig. 5c, middle panel), and the 

recovery from inhibition was enhanced (Fig. 5c, right panel). Quantification of these effects 

reveals a statistically significant slowing (1.8-fold) of the time constant of recovery τ from G-

protein inhibition from 37.5 ± 3.3 ms (n = 13) to 67.4 ± 4.5 ms (n = 10) (Fig. 5d) and an 

increase of RI values (1.2-fold) from 56.9 ± 1.8% (n = 21) to 66.9 ± 2.1% (n = 10). However, 

the time constant of recovery in the presence of β3 ΔN remains fast compared to the 
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inactivation kinetics, which may explain the lower increase in RI values compared to what 

has been measured with β1b ΔN. Also, the starting value of RI is high for β3 (56.9%) compared 

to β1b (45.0%) which limits the possibility of increase. 

 

Slowing of channel inactivation by membrane anchoring of β subunit also alters the 

properties of recovery from G-protein inhibition 

Another approach to modulate channel inactivation is to modify the docking of the β subunits 

to the plasma membrane (13, 40). For that purpose, we expressed a membrane-inserted CD8 

linked to β1b subunit (CD8-β1b) along with Cav2.2. As shown in earlier studies using the same 

strategy but with a different β subunit (2, 40), membrane anchoring of β1b subunit 

significantly slows down the inactivation kinetics (Fig. 6a). Indeed, inactivation was reduced 

by 1.5-fold from 58.4 ± 1.6% (n=22) to 38.1 ± 1.8% (n=10) (Fig. 6b). Membrane anchoring 

of β1b via CD8 slowed down the DAMGO inhibited current activation kinetics (Fig. 6c, left 

panel). Under DAMGO inhibition, a greater shift of the time to peak of the current was 

observed for CD8-β1b than for β1b (from 57.0 ± 4.1 ms with β1b (n = 12) to 168.8 ± 7.0 ms 

with CD8-β1b (n = 10)). Also, recovery from inhibition was slowed 1.9-fold from 60.0 ± 2.0 

ms (n = 24) to 112.3 ± 5.4 ms (n = 8) (Fig. 6d), whereas RI increased 1.3-fold from 45.0 ± 

1.3% (n = 24) to 58.0 ± 1.9% (n = 9). 

 

Inactivation limits the maximum observable recovery from G-protein inhibition 

As demonstrated above, inactivation influences both the time constant of recovery and the 

maximal observable recovery from inhibition. In order to study the effect of channel 

inactivation on the maximum recovery from inhibition, independently of the time constant of 

recovery, we compared RI values and inactivation at a fixed time constant of recovery. The 

time constant of recovery from inhibition shows a voltage-dependence similar to that of 

channel opening (48). An example of this voltage-dependence is illustrated in Fig. 7a (left 

panel) for Cav2.2 / β1b channels. A plot of the time constant of recovery as a function of 

membrane depolarization indicates a great extent of variation in τ values (Figure 7a, middle 

panel). This voltage-dependency of τ values was observed for all channel combinations (data 

not shown). We then chose to impose the τ value to 50 ± 5 ms for all expressed channel 

combinations by selecting the appropriate recordings from the set of traces obtained at various 

test potentials (Fig. 7a, right panel). This τ value was chosen because it allows the 

incorporation of a large number of recordings in the analysis. Also, with a τ of 50 ms, the RI 
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value at 500 ms after depolarisation has reached saturation (95% of recovery after 150 ms of 

depolarisation). For traces that underwent a recovery from inhibition with a τ value of 50 ± 5 

ms, we measured the extent of recovery RI and of inactivation, both at 500 ms. Representative 

examples for different channel combinations (Cav2.2 along with either β2a, β4 or β3, from the 

slowest to the fastest inactivation) are shown in Fig. 7b (left panel) where the RI values and 

the extent of inactivation (right panel) are measured in each experimental condition. Fig. 7c 

shows the negative correlation existing between the extent of maximum recovery from 

inhibition and the extent of inactivation (statistically significant at p < 0.001, n = 62). These 

results demonstrate that the only restriction to observe a complete current recovery from G-

protein inhibition is the inactivation process. Indeed, channels that have almost no 

inactivation (Cav2.2 / β2a) show a complete recovery from inhibition. The curve predicts that, 

for completely non-inactivating channels, 100% of the current would recover from inhibition. 

These results confirm that the experimental protocol used herein to minimize voltage-

independent inhibition was fully functional. Conversely, channels that present the most 

inactivation present the smallest amount of recovery from inhibition.  

 

Differences in calcium channel inactivation generate drastic differences in the 

biophysical characteristics of G-protein regulation 

Since recovery from G-protein inhibition induces an apparent slowing of activation and 

inactivation kinetics and shifts the voltage-dependence of activation towards depolarized 

values (48), differences in channel inactivation that affect the recovery process should also 

affect the biophysical effects of G-proteins on N-type channels. Calcium currents are 

generally measured at peak amplitudes. The consequences of this protocol are shown for 

Cav2.2 / β1b and Cav2.2 / β1b ΔN channels that present different inactivation kinetics (Fig. 8a,b). 

Several observations can be raised. First, it is observed that the slowing of Cav2.2 inactivation 

induced by truncating the N-terminus of β1b is responsible for a drastic slowing of activation 

kinetics under DAMGO application. This effect is most pronounced at low potential values 

and is significantly reduced at high potential values. These effects are quantified in Fig. 8c. 

For instance, at 0 mV, the average shift of the time to peak for Cav2.2 / β1b ΔN channels (307.7 

± 9.0 ms, n = 10) is on average 9.2-fold greater than that observed for Cav2.2 / β1b channels 

(33.4 ± 5.2 ms, n = 19) (Fig. 8c). Differences in slowing of activation kinetics, triggered by 

the two β subunits, remain statistically significant for potential values up to 30 mV. Above 30 

mV, the convergence of both curves can be explained by the fact that recovery from G-protein 
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inhibition becomes too rapid to be influenced by changes in inactivation kinetics. Second, at 

the time points of the peak of the current, slowing of inactivation by the N-terminal truncation 

of β1b induces i) an hyperpolarising shift of the voltage-dependence of RIpeak values, and ii) an 

increase in RIpeak values for potentials equal or below 30 mV (Fig. 8d). Since RIpeak values 

represent a voltage-dependent gain of current that is added to the unblocked fraction of 

control currents under G-protein regulation, they apparently modify the voltage-dependence 

of channel activation (I/V curves) and reduce the level of DAMGO inhibition (48). For Cav2.2 

/ β1b channels, average half-activation potential values were significantly shifted by 6.4 ± 0.9 

mV (n=13) under DAMGO inhibition, whereas for Cav2.2 / β1b ΔN channels, a non significant 

shift by 1.9 ± 0.5 mV (n=10) was determined (Fig. 8e,f). This difference in behaviour can 

readily be explained by the voltage-dependence of RIpeak values. In the case of Cav2.2 / β1b, 

the maximal RIpeak occurs at 30 mV (Fig. 8d), a depolarizing shift of 20 mV compared to 

control Cav2.2 / β1b currents, which is responsible for the depolarizing shift of the I/V curve 

under DAMGO inhibition (Fig. 8e). Conversely, for Cav2.2 / β1b ΔN, the maximal RIpeak value 

is observed at 10 mV (Fig. 8d), which is -5 mV hyperpolarized to the control Cav2.2 / β1b ΔN 

peak currents, and therefore influences far less the I/V curve under DAMGO inhibition (Fig. 

8f). Finally, it should be noted that with a slowing of inactivation kinetics, the resultant 

increase in RIpeak values (Fig. 8d, for potentials below 40 mV) produces an apparent reduction 

in DAMGO inhibition that is clearly evident when one compares the effect of DAMGO on 

I/V curves of Cav2.2 / β1b and Cav2.2 / β1b ΔN (Fig. 8e,f). 

In conclusion, these data indicate that slowing of channel inactivation kinetics increases the 

slowing of the time to peak by DAMGO, whereas it reduces both the peak current inhibition 

and the depolarizing shift of the voltage-dependence of activation. 
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Discussion 

 

Relevant parameters to study the influence of inactivation on N-type channel regulation 

by G-proteins 

N-type channel regulation by G-proteins can be described accurately by three parameters: the 

G-protein inhibition level at the onset of depolarization (GIt0), the time constant of recovery 

from inhibition (τ), and the maximal extent of recovery from inhibition (RI). GIt0 is indicative 

of the “ON” effect, whereas τ and RI are the quantitative parameters leading to all “OFF” 

effects of the G-protein regulation (48). Since GIt0 is a quantitative index of the extent of G-

protein inhibition at the start of the depolarization, i.e. at a time point where no inactivation 

has yet occurred, inactivation cannot influence this parameter. On the other hand, G-protein 

dissociation is a time-dependent process at any given membrane potential and can be thus 

affected by channel inactivation since both processes occur within a similar time scale. This 

study aimed at investigating this issue and comes up with two novel conclusions. First, 

channel inactivation kinetics influences the speed of G-protein dissociation, and second, 

removal of G-proteins occurs within a time window that is closely controlled by inactivation. 

Hence, the speed of G-protein dissociation and the time window during which this process 

may occur control the extent of current recovery from G-protein inhibition at any given time. 

These conclusions were derived from the use of a recent biophysical method of analysis of N-

type calcium channel regulation by G-proteins which is independent of potential changes in 

channel inactivation behaviour while G-proteins are bound onto the channels (49). 

 

G-protein inhibition is completely reversible during depolarization provided that the 

channel has slow inactivation 

There are two physiological ways to terminate direct G-protein regulation on N-type calcium 

channels: i) the end of GPCR stimulation by recapture or degradation of the agonist 

(experimentally mimicked by washout of the bath medium), and ii) membrane depolarization 

by trains of action potentials (experimentally simulated by a prepulse application). Whereas 

the first one always leads to a complete recovery from G-protein inhibition, the second one 

produces a transient and variable recovery. Interestingly, a very slowly inactivating channel, 

such as the one produced by the combination of Cav2.2 and β2a subunits, can lead to a 

complete recovery from G-protein inhibition following membrane depolarisation, whereas a 

fast inactivating channel such as the one produced by the co-expression of the β1b subunit 
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leads only to a partial recovery. For slow inactivating channels, the time window for G-

protein dissociation is large since channel inactivation does not interfere with the process. 

Conversely, for fast inactivating channels, the time window for G-proteins to unbind from the 

channel is considerably reduced since inactivation prevents the observation of a complete 

recovery from inhibition. For these channels, the extent of recovery from inhibition is 

controlled by both the speed of G-protein dissociation and the time window of opportunity. 

Hence, the speed of current recovery from G-protein inhibition is controlled by channel 

inactivation as well as by channel opening as previously shown (48), whereas the time 

window opportunity of this process is only controlled by channel inactivation. It is likely that 

both parameters (the time constant of recovery τ and the time window of opportunity) are 

under the control of additional molecular players or channel modifying agents such as 

phosphorylation that may act on one or the other parameters in an independent manner, and 

could contribute to a fine control of the direct G-protein regulation. 

 

There is an unexpected relationship between the channel inactivation kinetics and the 

kinetics of current recovery from G-protein inhibition 

One surprising observation from this study is that fast inactivation accelerates the speed of 

current recovery from G-protein inhibition, whereas, on the contrary, slower inactivation 

slows down G-protein dissociation from the channel. This was first demonstrated through the 

use of different β subunit isoforms (see also (11, 20)), and then confirmed with β subunit 

constructs known to modify channel inactivation kinetics. Besides this functional correlation, 

there might be a structural basis that underlies a mechanistic link between channel 

inactivation and G-protein dissociation. Indeed, (23) illustrated that an R to A mutation of the 

QXXER motif (one of the Gβγ binding determinant within the I-II linker of Cav2.x channels 

(15)) slows both the inactivation kinetics and the recovery from G-protein inhibition. The I-II 

loop of Cav2.2 appears as a particularly interesting structural determinant for supporting G-

protein dissociation. First, it contains several Gβγ binding determinants whose functional role 

remains unclear (12, 15, 23, 34, 53, 54). Second, this loop is known to contribute to fast 

inactivation (21, 23, 46)) possibly through a hinged lid mechanism that would impede the ion 

pore (46). Third, some of the residues of the QXXER motif have been found to contribute to 

inactivation in a voltage-sensitive manner (41). A possible working hypothesis for the 

contribution of the I-II loop to G-protein regulation can be proposed: i) the channel openings 

provide an initial destabilizing event favouring G-protein dissociation, and ii) the hinged lid 
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movement of the I-II loop triggered by the inactivation process further accelerates G-protein 

dissociation through an additional decrease in affinity between Gβγ and the channel. 

There is however an alternative possibility based on the expected relationship between 

channel opening probability and rate of G protein dissociation (48). At the potential at which 

we performed this study (10 mV), all channel combinations are at their maximal activation 

(data not shown) and should produce maximal opening probabilities. Nevertheless, we can’t 

rule out that the various β subunits and structural analogues introduce differences in the 

maximal opening probabilities of the channel thereby explaining differences in the rate of G 

protein dissociation: e.g. β2a with a lower opening probability and thus slower recovery from 

inhibition. However, this would imply that anything that leads to a slowing of inactivation 

kinetics, through a modification of β subunit structure, produces a reduced opening 

probability. The likelihood of this hypothesis is probably low, but can’t be dismissed. 

 

Inactivation differentially affects each characteristic biophysical channel modification 

induced during G-protein regulation 

Since time-dependent G-protein dissociation is responsible for the characteristic biophysical 

modifications of the channel (48), inactivation, by altering the parameters of the recovery 

from inhibition, plays a crucial role in the phenotype of G-protein regulation. Two extreme 

case scenarios were observed. G-protein regulation of slowly inactivating channels, such as 

Cav2.2 / β1b ΔN, induces an important slowing of the activation kinetics, but no or little 

depolarizing shift of the voltage-dependence of activation and less peak current inhibition. 

Conversely, faster inactivating channels, such as Cav2.2 / β1b, present reduced slowing of 

activation kinetics, but a greater peak current inhibition and a marked depolarizing shift of the 

voltage-dependence of activation. These data point to the fact that characteristic biophysical 

changes of the channel under G-protein regulation should not be correlated with each other. 

Indeed, an important shift of the time to peak is not necessarily associated with an important 

depolarizing shift of the voltage-dependence of activation or a greater peak current reduction. 

It thus seems important to be cautious on the absence of a particular phenotype of G-protein 

regulation that does not necessarily reflect the lack of direct G-protein inhibition.  

 

Physiological implications of channel inactivation in G-protein regulation 

N-type channels are rather heterogeneous by their inactivation properties because of 

differences in subunit composition (43) or in alternative splicing (5, 28). Very little 
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information is available on the targeting determinants that lead to N-type channel insertion at 

the synapse. However, a contribution of the β subunits and of specific C-terminal sequences 

of Cav2.2 is thought to be involved in the sorting of mature channels (24). An epileptic 

lethargic phenotype in mouse is known to arise from the loss of expression of the β4 subunit, 

which is accompanied by a β subunit reshuffling in N-type channels (9). These animals 

present an altered excitatory synaptic transmission suggesting the occurrence of a 

modification in channel composition and/or regulation at the synapse (10). Synaptic terminals 

that arise from single axons present a surprising heterogeneity in calcium channel 

composition and in processing capabilities (39). One of the synaptic properties most 

influenced by calcium channel subtypes is presynaptic inhibition by G-proteins. Evidence has 

been provided that the extent of N-type current facilitation (hence current recovery from G-

protein inhibition) is dependent on both the duration (8) and the frequency of action potentials 

(AP) (36, 50). Low frequencies of AP produce no or little recovery, whereas high frequency 

action potentials more dramatically enhance recovery. Hence, slowly inactivating channels 

should allow much better recovery from G-protein inhibition than fastly inactivating channels, 

thereby further enhancing the processing abilities of synaptic terminals. In that sense, a model 

of synaptic integration has been proposed by the group of Dr. Zamponi that would be 

implicated in short-term synaptic facilitation or depression (6). It should be noted that 

inactivation of calcium channels does not only rely on a voltage-dependent component, and 

that other modulatory signals (calcium-dependent inactivation, phosphorylation) need to find 

a place in the integration pathway. 

 

Conclusion 

These data permit a better understanding of the role of inactivation in N-type calcium channel 

regulation by G-proteins and will call attention to the contribution of the different β subunits 

in physiological responses at the synapse.  
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Footnotes: The following abbreviations have been used. DAMGO: D-Ala²,Me-

Phe4,glycinol5)-Enkephalin; rMOR: Rat µ-opioid receptor; PCR: polymerase chain reaction; 

RI: Recovery from inhibition; NS: non statistically significant. 
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Figure legends 
 

Fig. 1 Illustration of steps leading to the determination of the biophysical parameters of N-

type currents regulation by G-proteins, according to (49). a Representative Cav2.2 / β1b 

current traces elicited at 10 mV for control (IControl) and DAMGO (IDAMGO) conditions. b 

Subtracting IDAMGO from IControl results in ILost (blue trace), the evolution of the lost current 

under G-protein activation. IControl and ILost are then extrapolated to t = 0 ms (the start of the 

depolarisation) by fitting traces (red dashed lines) with a single and double exponential, 

respectively, in order to determine GIt0, the maximal extend of G-protein inhibition. c IDAMGO 

without unbinding (IDAMGO wo unbinding, blue trace) represents an estimate of the amount of control 

current that is present in IDAMGO and is obtained  by the following equation: IDAMGO without 

unbinding = IControl × (1 – (ILostt0
 / IControlt0

)). d Subtracting IDAMGO wo unbinding from IDAMGO results in 

IG-protein unbinding with inactivation (blue trace), the evolution of inhibited current that recovers from 

G-protein inhibition following depolarisation. e IG-protein unbinding with inactivation is divided by the fit 

trace (normalized to 1) describing inactivation kinetics of the control current (grey dashed 

line) in order to reveal the net kinetics of G-protein dissociation (IG-protein unbinding, blue trace) 

from the channels. A fit of IG-protein unbinding (red dashed line) by a mono-exponential decrease 

provides the time constant τ of G-protein dissociation from the channel. f The percentage of 

recovery from G-protein inhibition (RI, in red) at the end of 500 ms pulse is measured as RI = 

(IDAMGO – IDAMGO wo unbinding) / (IControl – IDAMGO wo unbinding) × 100. Arrows indicate the start of 

the depolarisation.  

 

Fig. 2 Maximal G-protein inhibition of N-type currents is independent of the type of β 

subunits. a Representative current traces elicited at 10 mV before (IControl) and under 10 µM 

DAMGO application (IDAMGO) for Cav2.2 channels co-expressed with the β1b, β2a, β3 or β4 

subunit (top panel). Corresponding traces allowing the measurement of the maximal DAMGO 

inhibition at the start of the depolarisation (GIt0) are also shown for each experimental 

condition (bottom panel). IControl and ILost (obtain by subtracting IDAMGO from IControl) were 

fitted by a mono- and a double exponential respectively (red dash lines) in order to better 

estimate the maximal extent of DAMGO-inhibited current before the start of the 

depolarisation (GIt0). The red double arrow indicates the extent the DAMGO-inhibited current 

at t = 0 ms. Traces were normalized at the maximal value of IControl at t = 0 ms in order to 
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easily compare the extent of current inhibition. b  Block diagram representation of GIt0 for 

each experimental condition. Data are expressed as mean ± S.E.M (in red) for n studied cells. 

Fig. 3 Influence of β subunits on the recovery of N-type channel inhibition by G-proteins. a 

Representative current traces before (IControl) and during application of 10 µM DAMGO 

(IDAMGO) are shown at 10 mV for Cav2.2 channels expressed with β1a, β2a, β3 or β4 subunit 

(left panel). Corresponding IG-protein unbinding traces are shown for each condition (middle panel) 

and were fitted by a mono-exponential decrease (red dashed line) in order to determine the 

time constant τ of G-protein unbinding from the channel. The arrow indicates the start of the 

depolarisation. Traces were normalized in order to better compare kinetics. Traces that 

allowed the measurement of RI values (in red) are also shown for each condition (right panel). 

b Box plot representation of the time constant τ of G-protein unbinding as a function of the 

type of β subunit co-expressed with Cav2.2 channels. Number of cells studied is indicated in 

parentheses. c Block diagram representation of RI values measured after 500 ms 

depolarisation as a function of the type of the β subunit expressed with Cav2.2 channels. Data 

are expressed as mean ± S.E.M (in red) for n studied cells. Statistical t-test: NS, none 

statistically significant; *, p ≤ 0.05; ** p ≤ 0.01; ***, p ≤ 0.001.  

 

Fig. 4 Slowing of inactivation kinetics by N-terminal truncated β1b subunit modifies recovery 

of N-type currents inhibition by G-proteins. a Representative current elicited by a step 

depolarisation at 10 mV for Cav2.2 channels co-expressed with the wild-type β1b subunit or 

with the N-terminal truncated β1b ΔN subunit. Current traces were normalized to facilitate 

comparison of the kinetics and extent of inactivation. b Block diagram representation of the 

extent of inactivated current after 500 ms depolarisation. c Representative current traces 

before (IControl) and during application of 10 µM DAMGO (IDAMGO) are shown at 10 mV for 

Cav2.2 channels co-expressed with the wild-type β1b subunit or with the truncated β1b ΔN 

subunit (left panel). Corresponding normalized IG-protein unbinding traces fitted by a mono-

exponential decrease (red dashed line) are shown for each condition (middle panel). The 

arrow indicates the start of the depolarisation. The black dotted line represents the Cav2.2 / β1b 

channel condition shown for comparison. Corresponding traces allowed the measure of RI 

values (in red) are also shown for each experimental condition (right panel). d Box plot 

representation of time constants τ of recovery from G-protein inhibition at 10 mV for each 

experimental condition. e Block diagram representation of RI values after 500 ms 
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depolarisation at 10 mV for each experimental condition. Data are expressed as mean ± S.E.M 

(in red) for n studied cells. Statistical t-test: ***, p ≤ 0.001.  

 

Fig. 5 Slower inactivation kinetics induced by N-terminal truncated β3 subunit also modifies 

recovery of N-type current inhibition by G-proteins. Legends as in Fig. 4 but for cells 

expressing Cav2.2 channels in combination with the wild-type β3 subunit or with the N-

terminal truncated β3 ΔN subunit. Data are expressed as mean ± S.E.M (in red) for n studied 

cells. Statistical t-test: **, p ≤ 0.01; ***, p ≤ 0.001.  

 

Fig. 6 Slowing of inactivation kinetics by membrane anchoring of β1b subunit modifies 

recovery of N-type current inhibition by G-proteins. Legends as in Fig. 4 but for cells 

expressing Cav2.2 channels in combination with the wild-type β1b subunit or with the 

membrane-linked CD8−β1b subunit. Data are expressed as mean ± S.E.M (in red) for n 

studied cells. Statistical t-test: ***, p ≤ 0.001. 

 

Fig. 7 The extent of N-type channel inactivation correlates with the extent of current recovery 

from G-protein inhibition. a An example of the influence of membrane potential values on the 

time constant τ of current recovery from G-protein inhibition is shown for Cav2.2 / β1b 

channels. Normalized IG-protein unbinding traces fitted by a mono-exponential decrease (red dashed 

line) are shown for a range of potentials from 0 to +40 mV (left panel). The arrow indicates 

the start of the depolarisation. Traces were superimposed to facilitate kinetic comparisons. 

Corresponding voltage-dependence of the time constant τ of current recovery from G-protein 

inhibition (n=13) is shown (middle panel). Data are expressed as mean ± S.E.M (in red) and 

were fitted with by a sigmoid function. Scheme illustrating normalized IG-protein unbinding trace for 

a define time constant τ of 50 ms ± 5 ms (red and black lines respectively) (right panel). Grey 

area represents the accepted variation in τ values (± 10%) for the incorporation of current 

traces in our subsequent analyses. The arrow indicates the virtual start of the depolarisation. b 

Representative normalized current traces before (IControl) and under 10 µM DAMGO 

application (IDAMGO) for Cav2.2 expressed in combination with β2a, β4 or β1b subunit at +20 

mV, +10 mV et +10 mV respectively (left panel). Traces were selected on the basis of the 

measured recovery G-protein inhibition time constant τ (between 45 and 55 ms). 

Corresponding traces allowing the measurement of RI values (in red) after a 500 ms 

depolarisation (right panel). The grey area represents the extent of current inactivation during 
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a 500 ms depolarisation. c Scattered plot representation of RI values after a 500 ms 

depolarisation as a function of the extent of inactivation. Values are shown for various Cav2.2 

/ β combinations (n = 62) showing a time constant τ of recovery from G-protein inhibition of 

50 ms ± 5 ms independently of the test potential. Fitting these values by a linear curve 

provided a linear regression coefficient of -0.768 which is statistically significant at p < 0.001 

(Spearman Rank Order correlation test). 

 

Fig. 8 Effect of channel inactivation on characteristic biophysical changes induced by G- 

protein activation. Representative current traces before (IControl) and under 10 µM DAMGO 

application (IDAMGO) as well as corresponding traces allowing the measurement of RI values 

are shown for Cav2.2 / β1b (a) and Cav2.2 / β1b ΔN (b) at various membrane potentials 

illustrating DAMGO effects on channel activation kinetics and current recovery from G-

protein inhibition in two conditions of channel inactivation. Arrows indicate the time to peak 

of the currents for control and DAMGO conditions. The time to peak of DAMGO-inhibited 

currents (IDAMGO) has been indicated also on RI traces (arrows in lower panels). Double 

arrows indicate the extent of current recovery from G-protein inhibition at these time points 

(RIpeak). c Box plot representation of the shift of the current time to peak induced by DAMGO 

application for Cav2.2 / β1b channels (green boxes, n=14) and Cav2.2 / β1b ΔN channels (blue 

boxes, n=10) as a function of membrane potential. d Histogram representation of RIpeak values 

at the peak of DAMGO currents (IDAMGO) for Cav2.2 / β1b channels (green bars, n=14) and 

Cav2.2 / β1b ΔN channels (blue bars, n=10) as a function of membrane potential. Current-

voltage relationship (I/V) were performed for Cav2.2 / β1b channels (green plots, n = 13) (e) 

and Cav2.2 / β1b ΔN channels (blue plots, n = 10) (f) for control (circle symbol) and DAMGO-

inhibited (triangle symbols) currents measured at their peak. Data were fitted with a modified 

Boltzmann equation as described in Materials and Methods section. Insert represents the shift 

of the half maximum current activation potential (V1/2) induced by DAMGO application for 

Cav2.2 / β1b (green box, n = 13) and Cav2.2 / β1b ΔN channels (blue box, n = 10). Data are 

expressed as mean ± S.E.M (in red) for n studied cells. Statistical t-test: NS, none statistically 

significant; *, p ≤ 0.05; ** p ≤ 0.01; ***, p ≤ 0.001.  
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