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SUMMARY 

 

In sperm cell, voltage-dependent calcium channels (VDCC) have been involved in different cellular 

functions like acrosome reaction (AR) and sperm motility. Multiple types of VDCC are present and their 

relative contribution in these functions is still a matter of debate. Based mostly on pharmacological 

studies, Low-Voltage-Activated Calcium Channels (LVA-CC), responsible of the inward current in 

spermatogenic cells, were described as essential for AR in sperm cell. The development of CaV3.1 or 

CaV3.2 null mice provides the opportunity to evaluate the involvement of such LVA-CC in acrosome 

reaction and sperm motility, independently of pharmacological tools. The depolarization-induced current 

is fully abolished in spermatogenic cells from CaV3.2 deficient mice. The spermatogenic inward current is 

thus only due to CaV3.2 channels. We showed that CaV3.2 channels are maintained in mature sperm cells 

by Western blot and immunohistochemistry experiments. Calcium imaging experiments revealed that 

calcium influx in response to KCl is reduced but not abolished in CaV3.2 null mature sperm in 

comparison to control sperm cells, demonstrating that CaV3.2 channels are functional in mature sperm 

cell. On the other hand, no difference was noticed in calcium signaling induced by solubilized zona 

pellucida. Moreover, neither Western blot or immunohistochemistry, nor calcium imaging experiments, 

suggest the presence of CaV3.1 in sperm head. Despite the CaV3.2 channels contribution in KCl-induced 

calcium influx, the reproduction parameters (number of sperm per epididymis, pups number, delay 

between mating and delivery), and the cellular functions (AR and sperm motility) remain intact in CaV3.2 

deficient mice.  These data demonstrate that in sperm, besides CaV3.2 channels, other types of VDCC are 

activated during the voltage-dependent calcium influx of AR, these channels likely belonging to high-

voltage activated Ca2+ channels family. The conclusion is that voltage-dependent calcium influx during 

acrosome reaction is due to the opening of redundant families of calcium channels. 
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INTRODUCTION 

 

The acrosome reaction (AR), the first step of fertilization, is an exocytotic event, allowing sperm to cross 

the zona pellucida (ZP) and to become competent for fusion with the oocyte, by unmasking the izumo 

protein (Inoue et al, 2005). ZP3, one of the three glycoproteins present in the zona pellucida, represents 

the main physiological agonist of the AR in rodent. The fusion of the outer acrosomal membrane with the 

plasma membrane is dependent of a cytoplasmic calcium rise. The calcium signaling requires the 

successive opening of at least three different types of calcium channels. Voltage-dependent calcium 

channels (VDCC), localized in the plasma membrane, are the first to be activated. Subsequently, an 

Inositol-1,4,5-triphosphate (InsP3) receptor, localized in the outer membrane of the acrosome, is activated 

(Walensky and Snyder, 1995; O'Toole et al, 2000) and leads to the calcium depletion of the acrosome, an 

operational calcium store (De Blas et al, 2002; Herrick et al, 2004). The depletion of this store finally 

leads to the activation of store-operated calcium channels like TRPC2 (Jungnickel et al, 2001).  

The successive activation of these channels determines two phases in the sperm acrosome calcium 

signaling: i) during a first phase, the opening of VDCCs elicits a very short transient calcium rise, of 

about 100 msec duration (Arnoult et al, 1999), ii) a second phase, corresponding to the activations of the 

InsP3 receptor and subsequently TRPC store-operated calcium channels, is characterized by a slow 

calcium increase (between few second to few minutes, dependent of reports), followed by a long lasting 

calcium entry. Different types of VDCC blockers like amiloride, PN200-110 (a dihydropyridine) or 

pimozide  (a diphenylbutylpiperidine) inhibit both the calcium transient and the subsequent slow calcium 

increase  and calcium plateau (Arnoult et al, 1996; Arnoult et al, 1999). In consequence, the calcium 

influx through VDCC is currently understood as the key triggering element for the second phase of 

calcium signaling in sperm cells. 

Voltage-dependent calcium channels are subdivided in high-voltage (HVA) and low-voltage-activated 

(LVA) calcium channels, represented by L, N, P/Q, R and by T-type calcium channels, respectively. At 

the molecular level, 10 different genes encode for VDCC α1 subunits, the pore subunit. The molecular 

characterization of VDCC present in sperm cells and their respective role in the sperm physiology is a 

hotly debated and studied question (Zhang et al, 2006; Arnoult et al, 1996; Santi et al, 1996; Goodwin et 

al, 1997; Goodwin et al, 1998; Arnoult et al, 1999; Westenbroek and Babcock, 1999; Serrano et al, 1999; 

Jagannathan et al, 2002; Stamboulian et al, 2004). 

Owing to the high difficulties to record voltage-dependent calcium currents in mature sperm cells, many 

groups have worked on the molecular characterization of voltage-dependent channels in spermatogenic 

cells (Lievano et al, 1996; Arnoult et al, 1996; Espinosa et al, 1999; Sakata et al, 2001; Jagannathan et al, 

2002; Stamboulian et al, 2004). In these cells, only T-type calcium currents are recorded during patch-

clamp experiments. Although mRNA encoding for both CaV3.1 (Sakata et al, 2001) and CaV3.2 
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(Jagannathan et al, 2002) have  been found in spermatogenic cells, results from CaV3.1 deficient mice 

suggested that CaV3.2 is the main calcium channel in spermatogenic cells (Stamboulian et al, 2004). On 

the other hand, several authors have claimed that part of the T-type current in spermatogenic cells could 

be due to activation of HVA channels, CaV1.2 (Goodwin et al, 1999) or CaV2.2 and CaV2.3 (Wennemuth 

et al, 2000). The development of transgenic mice deficient in CaV3.2 channels provides the opportunity to 

evaluate the actual contribution of CaV3.2 channels in the inward calcium current of spermatogenic cells. 

In this manuscript, we compare for the first time the inward calcium current density from wild-type 

spermatogenic cells with those of spermatogenic cells isolated from CaV3.1 or CaV3.2 deficient mice. The 

inward current elicited by depolarization is fully abolished in spermatogenic cells obtained from CaV3.2 

deficient mice. This result ends a long-term controversy over the molecular identity of the LVA inward 

current in spermatogenic cells: this current is due only to activation of CaV3.2 channels. In mature sperm 

cells, Western blotting experiments demonstrate for the first time the presence of CaV3.2 channel protein. 

By immunohistochemistry, we illustrate that CaV3.2 is localized in a specific patch of the plasma 

membrane located at the base of the acrosome, an area known to be the starting point of the calcium 

signaling during the acrosome reaction. Moreover, this area of the plasma membrane that contains the 

CaV3.2 channels overlays the external acrosomal membrane involved in exocytosis during acrosome 

reaction, since the CaV3.2 immunoreactivity is lost on acrosome reacted spermatozoa. Because of the 

presence of CaV3.2 channels in mature sperm cells, it was important to evaluate the contribution of 

CaV3.2 channels in sperm calcium signaling. First, we evaluated the contribution of CaV3.2 channels in 

voltage-dependent calcium influx, induced by high external K+. The depolarization-induced calcium 

signaling is biphasic: a calcium rise followed by a calcium plateau. In CaV3.2 deficient mice, both 

calcium rise and calcium plateau are reduced, demonstrating the functional state of CaV3.2 channels in 

mature sperm cell. Second, we evaluated the importance of such channels in calcium signaling induced by 

solubilized ZP. In CaV3.2 -/- sperm, the calcium signaling induced by ZP was identical to the one 

measured in wild type sperm.  

Concerning CaV3.1 channels, we were unable to find any specific staining with an antibody designed 

specifically against CaV3.1 channels, in agreement with the electrophysiological data. Moreover, the 

calcium signaling induced by high K+ is not affected in CaV3.1 deficient mice. These data, taken together, 

strongly suggest that CaV3.1 channels do not play a physiological role in sperm. 

 Despite the presence of CaV3.2 channels and their contribution in K+-induced calcium influx, the 

reproduction parameters (sperm concentration per epididymis, pups number, delay between mating and 

delivery), and the cellular functions (AR and sperm motility) of CaV3.2 deficient mice remain intact.  

These data demonstrate that in sperm, besides CaV3.2 channels, other types of VDCC are activated during 

the voltage-dependent calcium influx of AR. The absence of reproduction phenotype at the animal or 

cellular levels, indicates that the expression of different types of VDCC are redundant. 
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Finally, we show in this paper that the motility parameters of sperm from CaV3.1 or CaV3.2 deficient 

animals are not statistically different to those obtained from sperm of wild type animals, suggesting that 

neither CaV3.1 nor CaV3.2 are involved in sperm motility.  
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MATERIALS AND METHODS 

 

Biological preparations  

Knock-out mice: CaV3.1 (Kim et al, 2001b) and CaV3.2  (Chen et al, 2003) deficient mice have 

been described previously. Control mice corresponded to C57BL/6 males if non specified (Charles River-

France). The genetic backgrounds of both knockout mice are different. The genetic background of CaV3.1 

deficient mice is a cross between C57Bl/6 strain and SVJ129 strain. On the other hand, the genetic 

background of CaV3.2 deficient mice is a C57Bl/6 strain. 

Spermatogenic cells preparation: Seminiferous tubules were isolated from the testes of mice (8-

16 weeks old) and incubated at 37°C for 30 minutes in 3 ml of a solution containing (mM): NaCl (150), 

KCl (5), CaCl2 (2), MgCl2 (1), NaH2PO4 (1), NaHCO3 (12), D-glucose (11), pH 7.3 and collagenase type 

IA (1 mg/ml - Sigma).  Tubules were rinsed twice in collagenase-free medium and cut into 2 mm 

sections.  Spermatogenic cells were obtained by manual trituration and attached to culture dishes coated 

with Cell-Tak (Beckton Dickinson France).  Pachytene spermatocytes and round spermatids are the 

prominent cell types obtained from the diploid meiotic and the haploid post-meiotic stages of 

spermatogenesis, respectively.  These cells are readily distinguished based on cellular and nuclear 

morphology (Romrell et al, 1976). These stages were routinely used for electrophysiological recordings.  

However, similar results were obtained with both stages and data were pooled for presentation. 

Sperm membrane preparation:  Sperm cells, obtained by manual trituration of caudae 

epididymes from CaV3.1, CaV3.2 deficient mice or control C57Bl/6 mice (16 weeks old, Charles River), 

were pelleted (500 g , 10 minutes) and re-suspended in RIPA buffer containing in (mM) Tris (50), NaCl 

(150), 0,1 % SDS, 1% NP-40, 0,5 % DOC) complemented with a cocktail of protease inhibitors 

(Complete Mini, EDTA-free, Roche). Sperm cells were then sonicated (SONICATOR ULTRASONIC 

PROCESSOR XL, MISONIX INCORPORATED) for 1 sec on ice, repeated 30 times, with 7 sec 

intervals. Cell debris were pelleted (500 g, 15 minutes) and the supernatant used for Western blotting. To 

obtain a head-plasma membrane enriched fraction, sperm were capacitated in M16 (Sigma-Aldrich 

France) supplemented with 2% BSA (fraction V, Sigma-Aldrich France) pH 7.4 for 1 hour at 37°C. 

Sperm were pelleted (500 g, 10 minutes) and treated with 10 µM A23187 during 30 minutes at 37°C in 

the presence of a cocktail of protease inhibitors. Sperm were then centrifuged 5 minutes at 1000 g. The 

supernatant was collected and subsequently ultra-centrifuged at 100 000 g for 1 hour at 4°C. The pellet 

was re-suspended in RIPA buffer. 

Cell culture and transfection: HEK-293 cells were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Invitrogen) supplemented with 10% FBS (Invitrogen) and 1% penicillin/streptomycin 

and transiently transfected with a plasmid containing CaV3.1 cDNA (generous gift of Dr Anne Feltz) or 

CaV3.2 cDNA (generous gift of Dr Emmanuel Bourinet), using JetPEI from Qbiogene according to the 
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instructions of the manufacturer. Two days after transfection, transfected and control cells were collected 

and re-suspended in RIPA buffer complemented with a cocktail of protease inhibitors (Complete Mini, 

EDTA-free, Roche). 

 

Electrophysiological recordings 

 Ca2+ currents were recorded in the whole-cell configuration of the patch-clamp technique.  Pipettes 

were pulled from Corning #7052 glass (Gardner Glass Co., CA) and fire polished.  Pipette resistance was 

1-3 MΩ.  Currents were obtained with an Axopatch 200B amplifier (Axon Instruments).  All traces were 

corrected for leak currents, filtered at 2 kHz, and digitized at 20 kHz.  

 The pipette solution was designed to eliminate all K+ currents and consisted of the following 

components (mM): Cs-glutamate (130), D-glucose (5), HEPES (10), MgCl2 (2.5), Mg2ATP (4), EGTA-

Cs (10) pH 7.2 (adjusted with 1 N CsOH). For experiments, the bath solution was changed to a recording 

solution containing (mM): NaCl (100), KCl (5), CaCl2 (10), MgCl2 (1), TEA-Cl (26), Na-lactate (6), 

HEPES (10), D-glucose (3.3) and pH 7.4 (adjusted with 1 N NaOH). All experiments were done at room 

temperature (~25 °C). 

Primary antibodies 

For Western blotting, Antibodies against CaV3.2 (sc-16261) were from Santa Cruz Biotechnology, Inc. 

CA U.S.A. In the absence of specific commercial antibodies designed for immuno-histochemistry, we 

designed two antipeptide antibodies against the II-III loop of the CaV3.2 channels, a region presenting no 

homology with other VDCC. The peptides have been chosen in the II-III loop of the alpha1 subunit and 

correspond to the amino acids 1025-1034 ( Ab-1025) and 1169-1180 (Ab-1169) of the swissprot locus 

CAC1H_MOUSE, accession O88427. Antibodies against CaV3.1 were from Alomone Labs - Israel. 

Western blot analysis 

Proteins of sperm enriched plasma membrane preparation were separated on 10% polyacrylamide 

denaturing gels and elecrotransferred for 90 minutes at 350 mA to Immobilon P transfer membrane 

(Millipore). The membranes were then blocked 60 minutes with 4% non-fat dry milk (Biorad) in PBS 

Tween 0.1%. The primary antibody was added and incubated overnight at 4°C. After washing in PBS 

Tween 0.1%, the secondary antibody was added at 1:10,000 during 3 hours at room temperature. Brain 

and testis proteins were separated on 7% polyacrylamide denaturing gels and elecrotransferred over night 

at 22 V to Immobilon P transfer membrane (Millipore). The membranes were then blocked over night 

with 5% non-fat dry milk (Biorad) in PBS Tween 0.1%. The primary antibody was added and incubated 

for 2h00 at room temperature. After washing with 5% non-fat dry milk (Biorad) in PBS Tween 0.1%, the 

secondary antibody was added at 1:10,000 during 30 minutes at room temperature. The reactive proteins 

were detected using chemiluminescence assay followed by exposure to Biomax film (Kodak).  
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Immunohistochemistry and indirect immunofluorescence 

Sperm cells were harvested from the caudae epididymes, washed in PBS and fixed in 4% PFA for 30 

minutes on ice.  Fixed spermmatozoa were allowed to air-dry on poly-L-Lysine coated slides. The slides 

were washed in PBS (3 x 5 minutes), 50 mM NH4Cl (2 x 15 min), PBS (3 x 5 min), 0.1% triton X-100 in 

PBS (15 min) and PBS (3 x 5 min). Slides were blocked with 1% BSA and 2% normal goat serum during 

60 min at room temperature. Antibodies against CaV3.1 or CaV3.2 alpha1 subunit, as described above 

were diluted in blocking solution at 1/100 and slides were incubated overnight at 4°C. Slides were then 

incubated 60 minutes with secondary alexa fluor546-conjugated antibodies (Molecular probes), diluted at 

1/1000 and washed in PBS (3 x 5 minutes). For a double stain of the acrosomal status and CaV3.2 

channels, lectin from Pisum sativum conjugated to fluorescein isothiocyanate (PSA-FITC, Sigma Aldrich, 

France) was used to label the acrosomal matrix, allowing to identify the PSA-FITC negative cells as 

acrosome reacted cells. For the double staining experiments, sperm cells were first treated with 10 µM 

A23187 for 30 minutes after a 60 minutes capacitation period in a solution (M2, Sigma-A.) containing 

2% BSA, to obtain acrosome reacted sperm. Staining with PSA-FITC was used to evidence acrosome 

reacted sperm. Fixed sperm were washed in PBS for 3 x 5 minutes and incubated with PSA-FITC (10 

µg/ml in PBS) for 15 minutes at room temperature, in the dark before starting the immunostaining 

protocol for calcium channels detection.  

Slides were analyzed on a confocal laser scanning microscope (Leica TCS-SP2, Mannheim) 

Calcium imaging 

Sperm cells were obtained from C57Bl/6 mice (12 weeks old, Charles Rivers, France), CaV3.1 and 

CaV3.2 deficient mice from caudae epididymides by manual trituration. The fraction of motile sperm was 

determined by visual inspection within 10 minutes, and preparations with <75% motile cells were 

discarded. Sperm were loaded with 5 µM of the calcium indicator Oregon green BAPTA 1-AM 

(Molecular probes) by a 40 minutes incubation (37°C) in a solution A containing (in mM): NaCl (109), 

KCl (4.8), MgCl2 (1.2), CaCl2 (1.7), KH2PO4 (1.2), NaHCO3 (10), HEPES (25), sodium lactate (25), 

sodium pyruvate (1), D-glucose (5.6) and BSA 0.1%. 

Sperm were then centrifuged (5 minutes, 1200 rpm) and re-suspended in the solution A containing 2% 

BSA in order to promote in vitro capacitation for a period of 120 minutes incubation (37°C). Sperm were 

then centrifuged and re-suspended in the solution A without BSA and kept at 37°C until imaging 

experiment. 100 µl aliquots of capacitated sperm cells (6 x 106 /ml) were transferred to an imaging 

chamber, in which the lower surface was a glass coverslip treated with Cell-Tak (Beckton-Dickinson, 

France). The chamber was then connected to the perfusion apparatus and at least 10 ml of fresh medium 

was washed through. All experiments were carried out at 37° C in a continuous flow of medium. 

Solubilized zona pellucida, prepared as precisely described (Rockwell and Storey, 2000), was introduced 

in the recording medium by adding 10 µL of a solution containing 20 solubilized ZP by µL (final volume 
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100 µL). Thus, the final solubilized ZP concentration is 2 ZP/µL. Only sperm presenting a motile 

flagellum were studied. Cells were imaged on an inverted Nikon TE200U microscope, fitted with an X-

cite 120 EXFO source. Images were acquired with an IXON ANDOR TE885KCS-VP camera and the 

frame acquisition frequencies are 4 Hz for KCl and 1 Hz for ZP.  

Data were processed offline using ANDOR IQ 1.5 software. Fluorescence was measured in the whole 

head of the sperm. 

Acrosome reaction assay 

Sperm cells from the caudae epididymes were allowed to swim in M2 medium for 10 minutes. Then 

sperm cells were capacitated for 45 minutes at 37°C in M16 medium containing 20 mg/ml BSA. The AR 

was triggered by lacto-N-fucopentaose III-BSA (LNFP III-BSA). The compounds were injected in  the 

capacitation medium and sperm were incubated for an additional period of 80 minutes. Sperm cells were 

then fixed in 4% PFA and stained with coomassie blue, as previously described (Arnoult et al., 1996). 

M2 and M16 medium were purchased from Sigma and LNFP III-BSA from Dextra laboratories (Reading, 

UK). 1 mg of LNFP III-BSA was diluted in 500 µl of solution A, corresponding to a concentration of 

23.6 µM. LNFP III-BSA was used at a final concentration of 5 µM. 

 

Computer-assisted motility analysis 

Five hundred µl of sperm suspension in M2 medium were mixed with the same volume of M2 medium 

containing 4% BSA ( Fraction V Sigma) to initiate the capacitation. After incubation for 1 hour at 37°C , 

10 µl of the sperm suspension was immediately placed onto analysis chamber ( 2X-CEL Slides , 80 µm 

depth, Leja Products B.V., Netherlands) kept to 37°C  for microscopic quantitative study of sperm 

movement.  

Sperm motility parameters were measured at 37°C using a sperm analyzer (Hamilton Thorn Research, 

Beverley , USA). The settings employed for analysis were as followed: acquisition rate: 60 Hz; number of 

frames: 30; minimum contrast: 30; minimum cell size: 4; low-size gate: 0.13; high-size gate: 2.43; low-

intensity gate: 0.10; high-intensity gate: 1.52; minimum elongation gate: 5; maximum elongation gate: 

100 ; magnification factor: 0.81.  

The motility parameters measured were:  straight line velocity (VSL); curvilinear velocity (VCL) ; 

averaged path velocity (VAP) ; amplitude of lateral head displacement (ALH) ; beat cross frequency 

(BCF); linearity (LIN); straightness (STR). A minimum of 100 motile spermatozoa by sample was 

analysed. 
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RESULTS 

 

RECORDING OF INWARD CURRENT IN SPERMATOGENIC CELLS 

In order to determine the molecular identity of the channels responsible for the inward calcium current in 

spermatogenic cells, still unresolved since their first recording in 1984 (Hagiwara and Kawa, 1984), we 

first performed patch-clamp experiments, in the whole cell configuration, on spermatogenic cells from 

CaV3.x deficient mice. In Fig. 1A, we compared the current-density of inward current elicited by 

depolarization from a holding potential of -90 mV to a test potential of -20 mV of spermatogenic cells 

obtained from three different mouse strains: wild type-OF1 (control), CaV3.1 and CaV3.2 deficient mice. 

The current density was fully abolished in spermatogenic cells from CaV3.2 deficient mice. In 

comparison, no modification of inward current in CaV3.1 deficient pachytene spermatocytes was noticed, 

as already published (Stamboulian et al, 2004). The absence of CaV3.2 channels in testis was confirmed 

by Western Blot analysis. A specific antibody against CaV3.2 channels immunodecorates around 250 kD 

a band on brain and testis loaded proteins, obtained from wild type animals. In the other hand, no band is 

present at the same molecular weight of 250 kD on brain and testis loaded proteins, obtained from 

CaV3.2-/- animals (Fig. 1B). Fig. 1C shows representative traces of inward calcium current of pachytene 

spermatocytes from wild type and both deficient mice.   

                                                                                                    

PRESENCE AND LOCALIZATION OF CAV3.2 CHANNELS IN MATURE SPERM CELL 

The molecular identification of channels responsible for the inward current in spermatogenic cells made 

us to wonder if the CaV3.2 channels are still present in the mature sperm cell.  

By Western blot, two different antibodies, designed against CaV3.2 channels and named Ab-1025 and Ab-

1169, immunodecorate a band at the same molecular weight (around 250 kD) on wild type head-plasma 

membrane enriched fraction (Fig 2A, lanes 2 and 4 respectively). To check that both antibodies 

immunodecorate the same band, both antibodies have been mixed: in these conditions, only one band is 

elicited around 250 kD (Fig 2A, lane 5). Moreover, these bands are absent on sperm microsomes from 

CaV3.2-/- sperm (Fig 2A, lanes 1 and 3 respectively). The CaV3.2 deficient mice guaranty the specificity 

against CaV3.2 channels of the immunostaining. The CaV3.2 channels are thus present in mature sperm 

cells. 

By immuno-histochemistry, the antibody Ab-1169 evidenced a head staining, localized at the base of the 

acrosome, whereas no staining was observed in the sperm head of CaV3.2 deficient sperm, attesting again 

the specificity of this reactivity (Fig. 2B). The same antibody gave unspecific staining in the flagellum, 

making impossible to conclude whether the CaV3.2 channel was present in the tail (data not shown). 

It is well known that membrane reorganization occurs during capacitation. We followed the CaV3.2 

staining during capacitation and we observed that it was not modified during this step (Fig 3A).  
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From studies in neurons, we know that calcium channels involved in neurotransmission are localized in 

close vicinity to the secretion vesicles (Kim and Catterall, 1997). In order to further study the specific 

localization of CaV3.2 channels, we investigated if CaV3.2 channels are positioned in the pool of the 

plasma membrane merging with the outer acrosomal membrane during acrosome reaction. After 

capacitation, sperm cells were incubated 30 minutes in the presence of the Ca2+ ionophore A23187, and a 

double staining was performed using PSA-FITC to assess the status of the acrosome and Ab-1169 to 

localize the CaV3.2 channels. Acrosome reacted sperm were evidenced by the loss of the specific 

acrosomal matrix staining (negative PSA staining). Fig. 3B shows clearly that the CaV3.2 staining was 

strongly diminished or lost during acrosome reaction since CaV3.2 immunostaining was very strongly 

reduced in acrosome reacted spermatozoa. From the western blot of figure 2A and the immuno-

histochemistry of figure 3 results, we can conclude that at least, part of the CaV3.2 channels are localized 

in the plasma membrane that merged with the acrosome membrane during acrosome reaction. 

 

CALCIUM SIGNALING IN CAV3.1 AND CAV3.2 DEFICIENT MICE. 

The localization of CaV3.2 channels at the base of the sperm acrosome, is of potential interest since it has 

been demonstrated that calcium signaling induced by agonists as progesterone or ZP3 starts precisely in 

the same subcellular area (Shirakawa and Miyazaki, 1999; Fukami et al, 2003; Kirkman-Brown et al, 

2000). We therefore studied the voltage-dependent calcium signaling in sperm from CaV3.2 deficient 

mice, to further analyze the impact of the loss of CaV3.2 channels. We also studied for the first time the 

impact of the loss of CaV3.1 channels on voltage-dependent calcium signaling, using sperm from CaV3.1 

mice. Control capacitated sperm cells, loaded with the calcium dye Oregon green, presented a large 

calcium increase in the head sperm, when the plasma membrane was suddenly depolarized with a high 

concentration of external potassium (Fig. 4). For CaV3.1 deficient sperm cells, the amplitude and kinetics 

of high-K+-induced calcium signaling were similar to those recorded for control sperm cells. By contrast, 

for CaV3.2 deficient sperm cells, both amplitude and kinetics of high-K+-induced calcium signaling were 

modified: the mean amplitude was decreased by 30 % and the calcium signal was more transient (Fig. 4). 

By comparing the integrated calcium signal from control and CaV3.2 deficient sperm cells, a decrease of 

68 % was observed in the latter. 

Because K+-induced calcium increase was modified in CaV3.2 deficient sperm cells, we wondered if the 

calcium signaling induced by solubilized ZP, the physiological agonist, would be also altered. Indeed, 

voltage-dependent calcium channel antagonists were described to inhibit both the amplitude of the short 

calcium transient (Arnoult et al, 1999) and the rate of calcium increase which follows the short calcium 

transient (Arnoult et al, 1996). Solubilized ZP elicited a fast calcium increase, followed by a calcium 

plateau, returning slowly to zero, in both wild type and CaV3.2 deficient sperm cells (Fig. 5A). In order to 

characterize calcium signaling, we calculated for each sperm cell responding to ZP, the time to peak, the 
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normalized maximum amplitude and the time necessary to decrease the calcium peak by two (t1/2). In our 

experimental conditions, peaks were reached in 14.5 ± 6.9 sec and in 11.4 ± 3.9 sec in wild type (n=9) 

and in CaV3.2 -/- sperms (n=7), respectively (Fig. 5B), showing no statistical difference. These values fall 

in the range of previously described ZP-induced kinetics. Indeed, a wide range of ZP-induced calcium 

increase kinetics  have been reported in the past and peaks were reached from few seconds (Rockwell and 

Storey, 2000; Shirakawa and Miyazaki, 1999; Fukami et al, 2003) to minutes (Arnoult et al, 1996; 

Fukami et al, 2003). This range is likely due to experimental differences between groups, like ZP 

concentration, capacitation time or medium composition. No difference was also noticed for normalized 

peak amplitude and t1/2 (Fig. 5B). In our experimental conditions, normalized peak amplitudes were 1.45 

± 0.1 and in 1.47 ± 0.3 and the time necessary to decrease the calcium peak by two were 66 ± 35 sec and 

in 62 ± 52 sec, in wild type (n=9) and in CaV3.2 -/- sperms (n=7), respectively.  

 

The facts that we still recorded voltage-dependent calcium influx in CaV3.2 deficient sperm and that 

CaV3.1 deficient sperm did not present calcium signaling defect, strongly suggests that the remaining 

voltage-dependent calcium influx observed in CaV3.2 deficient sperm is due to the opening of different 

type of VDCC. High-voltage-activated calcium channels or CaV3.3 channels, present in sperm cells, 

could be responsible of the remaining calcium influx in CaV3.2 deficient spermatozoa.  

 

REPRODUCTION PARAMETERS OF CAV3.1 AND CAV3.2 DEFICIENT MICE 

We showed that CaV3.2 channels are present in mature sperm cell and that CaV3.2 deficient sperm cells 

present an altered K+-induced calcium signaling profile, with lower amplitude and a more transient 

calcium signals. These changes in calcium signaling induced by the loss of CaV3.2 channels may decrease 

the fertility of CaV3.2 deficient males. We studied two macroscopic reproduction parameters, the interval 

between mating and birth and the litter size. No difference in these two parameters was noticed (Fig. 6A, 

B) when males of C57Bl/6, CaV3.1 and CaV3.2 deficient strains were interbred with OF1 females.  

 

The absence of a specific macroscopic reproductive phenotype defect does not exclude i) an alteration of 

spermatogenesis leading to a reduction of sperm number or ii) a lowering of some sperm functions at the 

cellular level. Although membrane potential of spermatogenic cells does not allow T-type calcium 

activation, the fact that inward calcium current was totally absent in CaV3.2 deficient spermatogenic cells 

indeed raises the question of a role of CaV3.2 channels in sperm production. We measured the sperm 

concentration in cauda epididymis and no difference was noticed between wild type and in CaV3.2 -/- 

sperms (Fig. 7), both having a standard sperm concentration of around 5 millions of sperm per milliliters.  

Because voltage-dependent calcium channels are supposed to play a role in both sperm acrosome reaction 

and sperm motility, we focused our studies on these two cellular functions. Again, the development of 
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transgenic mice deficient in CaV3.1 or CaV3.2 channels provided a unique opportunity to test the 

physiological importance of such channels in sperm functions. We compared the number of acrosome 

reacted sperm induced by the lacto-N-fucopentaose III-BSA (LNFP III-BSA), a synthetic molecule 

designed to replace the signaling sugars of ZP3 (Hanna et al, 2004), after a capacitation of 120 minutes in 

2% BSA (Fig. 8A). In these peculiar conditions, we did not observe a lower rate of acrosome reacted 

sperm in CaV3.2 deficient mice, when compared to control mice, suggesting that the remaining voltage-

dependent calcium influx in CaV3.2 deficient mice is sufficient to promote a complete acrosome reaction. 

From experiments using pharmacological tools, it has been suggested that LVA calcium channels could 

be involved in sperm motility (Trevino et al, 2004). Using a sperm movement analyzer, the different 

parameters characterizing sperm movement were studied for CaV3.1 and CaV3.2 null mice or control 

capacitated sperm (Fig. 8B). No statistical difference was observed between the mean values of the 

different parameters measured for the three populations of sperm. 

 

 

PRESENCE AND  IMMUNOLOCALIZATION OF CAV3.1 CHANNELS IN SPERM 

The absence of inward calcium currents in spermatogenic cells from CaV3.2 deficient mice, the specific 

staining of CaV3.2 channels in sperm head and the decrease of depolarization-induced calcium influx in 

sperm from CaV3.2 deficient animals, clearly demonstrate that CaV3.2 channels are present and functional 

in sperm. On the other hand, the presence of CaV3.1 channels in sperm is still controversy since i) CaV3.1 

deficient spermatogenic cells present no alteration of the inward current and ii) CaV3.1 deficient sperm 

exhibit a similar depolarization-induced calcium to control sperm cells. The presence of CaV3.1 channels 

in rodent sperm is only supported by RT-PCR experiments, which clearly shows specific products 

amplification (Trevino et al, 2004). In order to better understand this apparent discrepancy between 

functional and molecular data, we did important efforts to attempt to evidence CaV3.1 channels by 

immunohistochemistry and Western blotting. For immunohistochemistry experiments, we tested a 

commercial antibody (Alomone, anti CaV3.1). In our experimental conditions, this antibody did not 

evidence a specific staining by immunochemistry in sperm (Fig. 9A). The flagellum is stained by the 

antibody but the CaV3.1 deficient sperm present an identical staining. In Western blotting, the same 

antibody specifically recognized a band of approximately at 240 kD in HEK-293 cells transfected with 

CaV3.1 clone. This band corresponds to CaV3.1 channels since in non transfected HEK-293 cells, no band 

is evidenced in the same area of molecular weight. In the whole sperm plasma membrane preparations, no 

signal was detected by the Alomone antibody (Fig. 9B), even if, to compensate an eventual low level of 

CaV3.1 channels expression in sperm, 1.7 times more of sperm protein (25 µg) than control HEK cells 

extract (14 µg) was loaded in the gel.  
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DISCUSSION 

 

IN SPERMATOGENIC CELLS, INWARD CURRENT IS ONLY DUE TO CAV3.2 CHANNELS 

The molecular identity of voltage-dependent inward calcium current in spermatogenic cells has been a 

debated question. If the pharmacological and biophysical properties of this current are close to those 

expected for CaV3.2 channels, some doubts were still present because the spermatogenic calcium current 

present some specific biophysical (Stamboulian et al, 2004) and pharmacological (Arnoult et al, 1998; 

Wennemuth et al, 2000) properties in comparison to those obtained by re-expression of cloned channels. 

The fact that no inward current is present in CaV3.2 deficient spermatogenic cells, represent a conclusive 

proof that spermatogenic inward calcium current is only due to the opening of CaV3.2 channels. It would 

be interesting to clone spermatogenic CaV3.2 channels in order to further understand the biophysical and 

pharmacological specificities carried by this channel at the molecular level. 

 

CAV3.2 CHANNELS ARE PRESENT IN MATURE SPERM HEAD AND PARTICIPATE TO THE VOLTAGE-

DEPENDENT CALCIUM INFLUX DURING ACROSOME REACTION 

In this manuscript, we showed that CaV3.2 channels are present from pachytene stages, by patch-clamp 

experiments, to mature sperm cells, by Western blot and immuno-histochemistry experiments. The 

CaV3.2 deficient mice channels provide the unique opportunity to guaranty the specificity of immuno-

localization. Its localization, at the base of the acrosome is unique, and different to the localizations 

already described for other voltage-gated channels (Westenbroek and Babcock, 1999; Trevino et al, 2004) 

or store-operated channels (Jungnickel et al, 2001; Sutton et al, 2004; Castellano et al, 2003; Trevino et 

al, 2001). The localization of CaV3.2 channels is particularly interesting since its localization seems to 

coincide with the locus of calcium signaling initiation during progesterone or ZP3-activated acrosome 

reaction (Fukami et al, 2003; Shirakawa and Miyazaki, 1999; Kirkman-Brown et al, 2000). This result 

indicates that it may be one of the first calcium channel activated during the depolarization event that 

follows ZP3 receptor activation. Moreover, we demonstrated herein that the plasma membrane, which 

merges with the acrosomal membrane during acrosome reaction, contains CaV3.2 channels. This result 

provides essential information. First, although CaV3.2 channels are expressed early during 

spermatogenesis, CaV3.2 channels play a physiological role in a narrow temporal window between the 

end of the capacitation, when it becomes functional, and the end of the acrosome reaction, when it is lost 

in membrane vesicle secretion. Indeed, as a low-voltage-activated calcium channel, CaV3.2 is fully 

inactivated at potential above -60 mV. Spermatogenic cells and non-capacitated sperm cells have a 

membrane potential around -30 mV and only fully capacitated sperm present a hyperpolarized membrane 

potential (Arnoult et al, 1999). Among all voltage-dependent calcium channels present in sperm 

(Westenbroek and Babcock, 1999), only CaV3.2 channels present an early expression pattern during 
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spermatogenesis and the reasons of this specific expression pattern are still not understood. Secondly, the 

fact that immunostaining of CaV3.2 disappears in acrosome reacted sperm demonstrates that the surface 

of the plasma membrane merging with the outer acrosomal membrane is not restricted to the acrosomal 

crescent when AR is induced by A23187 but extents to the equatorial segment. The fact that CaV3.2 

channels are present at a strategic localization for calcium signaling in sperm head made us wonder if 

calcium signaling is affected during acrosome reaction. In CaV3.2 deficient sperm, the peak calcium 

increase, elicited by KCl-induced depolarization, is diminished by 30% and the calcium signal is more 

transient. The integrated calcium signal is reduced overall by 68%. These results indicate that sperm 

CaV3.2 channels are functional and contribute significantly but partially to KCl-induced calcium 

signaling. This result differs from those obtained previously (Wennemuth et al, 2000), where KCl-

induced calcium signaling has been attributed mainly to HVA calcium channels. This difference 

evidences the recurrent problem of the specificity of calcium channels blockers. The localization of 

CaV3.2 channels in sperm head and their functionality strongly suggest that they contribute significantly 

to the calcium signaling during acrosome reaction. 

 

FUNCTIONAL CAV3.1  CHANNEL PROTEIN IS LIKELY ABSENT IN RODENT SPERM 

The presence of CaV3.1 channels in mature sperm cell was previously suggested, based on RT-PCR 

experiments (Trevino et al, 2004), in situ hybridization (Jagannathan et al, 2002) and immuno-

histochemistry experiments. From inhibition experiments, it was suggested that CaV3.1 channels may 

play a role in flagellum beat (Trevino et al, 2004). The CaV3.1 deficient mice gave us the opportunity to 

search for the CaV3.1 channels implications in two important sperm functions: acrosome reaction and 

sperm motility. Acrosome reaction is activated by an increase of intracellular calcium concentration. The 

initial rise is due to voltage-dependent calcium channels opening. If CaV3.1 channels were present and 

activated during this initial phase, calcium signaling elicited by KCl-induced depolarization should be 

affected in CaV3.1 deficient sperm in comparison to control sperm, in a similar way to CaV3.2 deficient 

sperm. No difference was observed in CaV3.1 deficient sperm in comparison to control sperm. This result 

clearly shows that CaV3.1 does not play a role in calcium signaling during acrosome reaction. In order to 

test a putative role of CaV3.1 in sperm motility, we compared with a sperm movement analyzer the 

different characteristics of sperm motility after capacitation of CaV3.1 sperm versus control sperm. No 

obvious difference was observed. 

The lack of cellular phenotype of CaV3.1 deficient mice is in good accordance with biochemical or 

immunohistology results obtained. Indeed, we were unable to obtain a specific staining of CaV3.1 

channels using the same antibody previously used (Trevino et al, 2004). We did obtain a signal in 

flagellum as well, but CaV3.1 deficient sperm presented identical staining. From our experiences, a lot of 

antibodies, known to give specific staining in several tissues, stain also sperm flagellum in a non specific 
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manner. In Western blot, the absence of signal in sperm extract does not necessary mean that CaV3.1 

channels are absent, but this result is in good accordance with the absence of phenotype of CaV3.1 

deficient mice. 

Although the presence of CaV3.1 channels in flagellum sperm remains to be established, this result 

demonstrates that the contribution of CaV3.1 channels to sperm flagellum beat would be very minor. 

 

CAV3.2 CHANNELS ARE NOT THE ONLY VDCC ACTIVATED DURING ACROSOME REACTION. 

The facts that i) the K+-induced calcium signaling was not abolished and ii) the second phase of ZP-

induced calcium signaling was not altered in CaV3.2 deficient sperm, suggest that other voltage-

dependent calcium channels are present and functional in sperm head, as well. Because calcium signaling 

is not affected in CaV3.1 deficient sperm, it is unlikely that the remaining voltage-dependent calcium 

increase in CaV3.2 deficient sperm is due to CaV3.1 channels opening.  

Different publications pointed out the presence of several other VDCC in spermatogenic or mature sperm 

cells. High-voltage-activated (HVA) calcium channels, but also CaV3.3, the last member of the LVA 

calcium channel family, have been described to be present. 

CaV3.3 RNA have been amplified in spermatogenic cells. In mature sperm cells, two groups have showed 

by immunohistochemistry realized with two different antibodies that the channels is restricted to the 

flagellum and is absent of the head (Trevino et al, 2004; Zhang et al, 2006) and then, CaV3.3 unlikely 

contributes to the remaining calcium influx in sperm head from CaV3.2 deficient mice.   

HVA channels, CaV1.2, CaV2.2 and CaV2.3, are present in the sperm head (Goodwin et al, 1999; 

Westenbroek and Babcock, 1999; Wennemuth et al, 2000). These HVA channels are likely activated 

during the physiological depolarization induced by ZP3 and contribute to the transient calcium influx 

sensitive to different classes of calcium blockers (Arnoult et al, 1999). 

 

EXPRESSION OF VDCC IN SPERM IS REDUNDANT.  

Most of the studies pointing out the central role of LVA channel in acrosome reaction were based on 

pharmacological studies. The different calcium channel blockers used were potent inhibitors of the 

spermatogenic CaV3.2 channels (Arnoult et al, 1998) and were also potent inhibitors of acrosome reaction 

(Arnoult et al, 1996; Arnoult et al, 1999). From these results, we have contributed with others groups 

(Santi et al, 1996; Florman et al, 1998; Trevino et al, 2004) to popularize the fact that LVA channels were 

key channels in sperm physiology. However the specificity of voltage-dependent calcium channel 

blockers among the different types of VDCC is only relative, the specificity representing generally a 10-

20 fold difference in affinity. An LVA calcium channel blocker which is used at a concentration that 

blocks most of the LVA channels, also blocks a small proportion of HVA channels. Then, during an 

inhibition experiment, when 100% of the LVA calcium channels are blocked, a small proportion of HVA 
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channels (around 20 %) are blocked, as well. Because CaV3.2 is responsible of 62 % of the integrated 

calcium entry, in the presence of a CaV3.2 channel blocker, an extra inhibition of 20% of the remaining 

calcium influx, via the inhibition of HVA channels, could diminish the voltage-dependent calcium influx 

in such way that acrosome reaction would be then blocked. Although the channel antagonists are 

important tools in the characterization of ionic channels involved in a specific physiological function, the 

response obtained is always dependent of the specificity these tools. In the other hand, the development of 

transgenic mice deficient in CaV3.1 or CaV3.2 channels provided a unique opportunity to evaluate the 

physiological importance of these channels in sperm physiology in general and in the acrosome reaction 

or sperm motility in particular, independently of pharmacological agents. 

The reproduction parameters of CaV3.2 deficient mice studied at different levels are normal. We did not 

observe alteration in the number of pups by litter, the delay between mating and delivery, the rate of 

acrosome reaction induced by an agonist of ZP3 receptor, sperm motility and the ZP-induced calcium 

signaling. We can then conclude that there is no macroscopic fertility or cellular functions troubles in 

CaV3.2 deficient mice, although we demonstrated that CaV3.2 channels are present and functional in wild 

type sperm cells. These data suggest that CaV3.2 channels are redundant calcium channels. Similar results 

were obtained with CaV2.2 (Kim et al, 2001a) or CaV2.3 (Sakata et al, 2001) deficient mice, which do not 

present any fertility trouble, as well. The likely conclusion is that voltage-dependent calcium influx 

during acrosome reaction is due to the opening of redundant families of calcium channels. Finally, the 

redundancy of VDCC seems to be a general feature. Indeed, there is a large discrepancy between the high 

number of cellular types where VDCC are expressed and  the low number of physiological anomalies 

generated by the lack of only one VDCC in the different knock-out mice (Kim et al, 2001a; Saegusa et al, 

2000; Jun et al, 1999; Kim et al, 2001b; Chen et al, 2003). 
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FIGURE LEGENDS 

 

Figure 1. Inward calcium current in spermatogenic cells measured in the whole cell configuration 

of the patch-clamp technique.  

A. Current densities measured at the peak current, corresponding to a depolarization of a holding potential 

of -90 mV to a test potential of -20 mV in spermatogenic cells from wild type, CaV3.1 and CaV3.2 

deficient mice. Results are expressed as mean ± s.d. Above histrograms, n indicates the number of cells 

recorded.  

B. Western blots of mouse testis membrane proteins obtained with anti-CaV3.2 Ab. Membrane proteins 

were loaded on polyacrylamide gel and transferred to nitrocellulose. The apparent molecular size markers 

are indicated on the left. Antibody is from Santa-Cruz, USA. 

C. Representative superimposed traces of inward current recorded in spermatogenic cells from wild type, 

CaV3.1 or CaV3.2 deficient mice. Holding potential -90 mV, test potentials from -60 mV to +30 mV, 10 

mV increments. 

 

Figure 2. Immunodetection and localization of  CaV3.2 channels in mature sperm cells. 

A. Western blot showing the presence of CaV3.2 channels in mature sperm cells. The microsomes 

recovered by centrifugation after acrosome reaction of sperm from CaV3.2 deficient animals (lanes 1 and 

3) or wild-type OF1 animals  (lanes 2, 4 and 5) were loaded on polyacrylamide gel and transferred to 

nitrocellulose. Lanes 1 and 2, antibody Ab-1169; lanes 3 and 4, antibody Ab-1025, lane 5 both antibodies. 

B. Specific antibody against CaV3.2 channel evidences a specific localization of CaV3.2 channels, at the 

base of the acrosome (red staining in control sperm). The staining is absent in sperm from CaV3.2 

deficient mice. The fluorescence and phase contrast pictures were superimposed to precisely localize the 

staining in relation to structures. The staining obtained in flagellum is unspecific since identical staining 

was observed in flagellum of wild type or CaV3.2 -/- sperm.  

 

Figure 3. CaV3.2 channels localization after capacitation and acrosome reaction. 

Double-staining with anti-CaV3.2 antibody and with lectins from Pisum sativum conjugated to FITC 

(green), localized CaV3.2 channels and the acrosome matrix, respectively.  

A. Capacitation does not modify CaV3.2 staining (images of the right column): capacitated sperm cells 

displayed a staining at the base of the acrosome, identical to that observed on non capacitated sperm. B. 

Acrosome reacted sperm loose the CaV3.2 channel staining (images of the two left columns). AR is 

evidenced by the absence of PSA staining 
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Figure 4. Comparison of high-K+-induced calcium signaling in sperm from wild type, CaV3.1 or 

CaV3.2 deficient animals.  

KCl-induced depolarization elicits a large calcium signaling in control sperm ( , n=7) and a similar 

calcium signaling in sperm from CaV3.1 deficient animals ( , n=10). On the other hand, calcium 

signaling is reduced in sperm from CaV3.2 deficient animals ( , n=13). Results are expressed as 

normalized mean intensities ± s.d. 

 

Figure 5. Comparison of calcium signaling induced by solubilized ZP in sperm from wild type or 

CaV3.2 deficient animals.  

A. Solubilized ZP (2 ZP/µL) elicits a fast calcium increase, followed by a calcium plateau in both control 

sperm ( ) and sperm from CaV3.2 deficient animals ( ). Acquisition rate, 1 Hz. 

B. Characteristics of calcium signaling induced by solubilized ZP. Histograms showing the time to peak, 

the normalized maximum amplitude, and the time necessary to decrease the calcium peak by two (t1/2) for 

wild type (black bars, n=9) and for CaV3.2 -/- sperms (white bars, n=7). In our experimental conditions, 

peaks were reached in 14.5 ± 6.9 sec and in 11.4 ± 3.9 sec,  normalized peak amplitudes were 1.45 ± 0.1 

and in 1.47 ± 0.3 and the time necessary to decrease the calcium peak by two were 66 ± 35 sec and in 62 

± 52 sec in wild type and in CaV3.2 -/- sperms, respectively. Results are expressed as mean ± s.d. 

 

 

Figure 6. Macroscopic reproduction parameters of CaV3.1 and CaV3.2 deficient animals.  

A. Interval between mating and pups delivery in function of the different strains of mice.  

B. Average litter size in function of the different strains of mice. Results are expressed as mean ± s.d. 

Above histrograms, n indicates the number of litter studied.  

 

 

Figure 7. Testis weight and sperm count of CaV3.2 deficient animals. 

A t-test indicates that neither testis weight nor sperm count are different between wild type animals (n=6) 

and CaV3.2 -/- animals (n=6).  

 

Figure 8.  Cellular reproduction parameters of CaV3.1 and CaV3.2 deficient animals. 

A. Acrosome reaction induced by 5 µM LNFP III-BSA of CaV3.2 deficient mice and wild type mice.  

The two left columns correspond to sperm incubated during 125 minutes in the capacitation medium, the 

two right columns correspond to sperm incubated first during 45 minutes in  the capacitation medium, and 

subsequently in the presence of 5 µM of  LNFP III-BSA for an extra period of 80 minutes in the 
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capacitation medium. Mean ± s.d. of 3 independent experiments. In each experiment, more than 150 

sperm cells have been analyzed. 

B. Sperm motility parameters of CaV3.1 and CaV3.2 deficient animals in comparison to wild type sperm.  

The motility parameters measured were:  averaged path velocity (VAP); straight line velocity (VSL); 

curvilinear velocity (VCL); amplitude of lateral head displacement (ALH); beat cross frequency (BCF); 

straightness (STR); linearity (LIN). Black columns: control sperm cells, light grey columns: sperm cells 

from CaV3.1 null mice and dark grey columns: sperm cells from CaV3.2 null mice. Results are expressed 

as mean ± s.d.  

 

 

Figure 9. No evidence for the presence of CaV3.1 channel in mouse sperm.  

A. Immunostaining with anti-CaV3.1 antibody from Alomone on two types of mature sperm: control 

sperm (OF1) and CaV3.1 deficient sperm.  

B. Western Blot with anti-CaV3.1 Alomone antibody (upper panel). The specificity of the antibody was 

checked on HEK-293 cells transiently transfected with plasmids containing CaV3.1 versus non transfected 

cell. A polyacrilamide gel, loaded with the identical protein amounts as used for the Western Blot, was 

stained with coomassie blue, to indicate the protein loading (lower panel). 




















