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1. Introduction

Since its proposal by Fisher [16], likelihood inference has occupied a central
position in statistical inference. In some situations, modified versions of the
likelihood have been proposed. Marginal, conditional, profile and partial likeli-
hoods have been proposed to get rid of nuisance parameters. Pseudo-likelihood
and hierarchical likelihood may be used to circumvent numerical problems in the
computation of the likelihood, that are mainly due to multiple integrals. Penal-
ized likelihood has been proposed to introduce a smoothness a priori knowledge
on functions, thus leading to smooth estimators. Several reviews have already
been published, for instance [31], but it is nearly impossible in a single paper
to describe with some details all the types of likelihoods that have been pro-
posed. This paper aims at describing the conventional likelihood and two of its
variants: penalized and hierarchical likelihoods. The aim of this paper is not to
give the properties of the estimators obtained by maximizing these likelihoods,
but rather to describe these three likelihoods together with their link to the
Kullback-Leibler divergence. This interest more in the foundations rather than
the properties, leads us to first develop some reflexions and definitions about
statistical models and to give a slightly extended version of the Kullback-Leibler
divergence.

In section 2, we recall the definition of a density and the relationship between
a density in the sample space and for a random variable. In section 3, we give a
slightly extended version of the Kullback-Leibler divergence (making it explicit
that it also depends on a sigma-field). Section 4 gives an account of statisti-
cal models, distinguishing mere statistical families from statistical models and
defining the misspecification risk. Section 5 presents the likelihood and discusses
issues about its computation and the performance of the estimator of the max-
imum likelihood in terms of Kullback-Leibler risk. In section 6, we define the
penalized likelihood and show that for a family of penalized likelihood estima-
tors there is an identical family of sieves estimators. In section 7, we describe
the hierarchical likelihood. In section 8, we briefly sketch the possible unifica-
tion of these likelihoods through a Bayesian representation that allows us to
consider the maximum (possibly penalized) likelihood estimators as maximum
a posteriori (MAP) estimators; this question however cannot be easily settled
due to the non-invariance of the MAP for reparameterization. Finally, there is
a short conclusion.

2. Definition of a density

Consider a measurable space (S,A) and two measures µ and ν with µ abso-
lutely continuous relatively to ν . For G a sub-σ-field of A the Radon-Nikodym
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derivative of µ with respect to ν on X , denoted by: dµ
dν |G

is the G-measurable

random variable such that

µ(G) =

∫

G

dµ

dν |G
dν, G ∈ G.

The Radon-Nikodym derivative is also called the density. We are interested in
the case where µ is a probability measure, which we will call P 1; ν may also be
a probability measure, P 0. In that case we can speak of the likelihood ratio and

denote it L
P1/P0

G . In order to speak of a likelihood function, we have to define
a model (see section 4). Note that likelihood ratios (as Radon-Nikodym deriva-
tives) are defined with respect to a sigma-field. The definitions and properties
of these probabilistic concepts are very clearly presented in [45]. For the statis-
tician, sigma-fields represent sets of events which may be (but are not always)

observed. If H and G are different sigma-fields, dP1

dP0 |H
and dP1

dP0 |G
are different,

but if H ⊂ G the former can be expressed as a conditional expectation (given
H) of the latter and we have the fundamental formula:

dP 1

dP 0 |H
= EP0

[

dP 1

dP 0 |G
|H

]

.

Consider now the case where the measurable space (Ω,F) is the sample space
of an experiment. For the statistician (Ω,F) is not any measurable space: it is a
space which enables us to represent real events. We shall write in bold character
a probability on (Ω,F), for instance, P

1. Let us define a random variable X,
that is, a measurable function from (Ω,F) to (ℜ,B). The couple (P 1, X) induces
a probability measure on (ℜ,B) defined by: P 1

X(B) = P
1{X−1(B)}, B ∈ B. This

probability measure is called the distribution of X. If this probability measure
is absolutely continuous with respect to Lebesgue (resp. counting) measure, one
speaks of continuous (resp. discrete) variable. For instance, for a continuous

variable we define the density f1
X =

dP1
X

dλ , where λ is Lebesgue measure on
ℜ, which is the usual probability density function (p.d.f.). Note that the p.d.f.

depends on both P
1 and X, while dP

1

dP
0
|X

depends on X but not on a specific

random variable X. Often in applied statistics one works only with distributions,
but this may leave some problems unsolved.

Example 1. Consider the case where concentrations of CD4 lymphocytes are
measured. Ω represents the set of physical concentrations that may happen. Let
the random variables X and Y express the concentration in number of CD4
by mm3 and by ml respectively. Thus we have Y = 103X. So X and Y are
different, although they are informationally equivalent. For instance the events
{ω : X(ω) = 400} and {ω : Y (ω) = 400000} are the same. The densities of X
and Y , for the same P

1 on (Ω,F), are obviously different. So, if we look only
at distributions, we shall have difficulties to rigorously define what a model is.
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3. The Kullback-Leibler risk

Many problems in statistical inference can be treated from the point of view of
decision theory. That is, estimators for instance are chosen as minimizing some
risk function. The most important risk function is based on the Kullback-Leibler
divergence. Maximum likelihood estimators, use of Akaike criterion or likelihood
cross-validation can be grounded on the Kullback-Leibler divergence. Given a
probability P

2 absolutely continuous with respect to a probability P
1 and X

a sub-σ-field of F , the loss using P
2 in place of P

1 is the log-likelihood ratio

L
P

1
/P

2

X = log dP
1

dP
2
|X

. Its expectation is E
P

1 [L
P

1
/P

2

X ]. This is the Kullback-

Leibler risk, also called divergence [28, 29], information deviation [4] or entropy
[1]. The different names of this quantity reflects its central position in statistical
theory, being connected to several fields of the theory. Several notations have
been used by different authors. Here we choose the Cencov [4] notation:

I(P 2|P 1;X ) = E
P

1 [L
P

1
/P

2

X ].

If X is the largest sigma-field defined on the space, then we omit it in the
notation. Note that the Kullback-Leibler risk is asymmetric and hence does not
define a distance between probabilities; we have to take on this fact. If X is a
random variable with p.d.f. f1

X and f2
X under P

1 and P
2 respectively we have

dP
1

dP
2
|X

=
f1

X (X)

f2
X

(X)
and the divergence of the distribution P 2

X relative to P 1
X can

be written:

I(P 2
X |P 1

X) =

∫

log
f1

X(x)

f2
X(x)

f1
X(x)dx. (3.1)

We have that I(P 2|P 1;X ) = I(P 2
X |P 1

X), if X is the σ-field generated by X on
(Ω,F). Note that on (Ω,F) we have to specify that we assess the divergence on
X ; we might assess it on a different sigma-field and would of course obtain a
different result. This provides more flexibility. In particular, we shall use this in
the case of incomplete data. The observation is represented by a sigma-field O.
Suppose we are interested in making inference about the true probability on X .
We have complete data if our observation is O = X . With incomplete data, in
the case where the mechanism leading to incomplete data is deterministic, we
have O ⊂ X . In that case it will be very difficult to estimate I(P 2|P 1;X ) and

it will be more realistic to use I(P 2|P 1;O) = E
P

1 [L
P

1
/P

2

O ]. We need this flex-
ibility to extend Akaike’s argument for the likelihood and for developing model
choice criteria to situations with incomplete data. This will become important
in section 5, where P

1 will be the true unknown probability (denoted P
∗) and

the problem will be to estimate this divergence rather than to compute it.

Example 2. Suppose we are interested in modeling the time to an event, X,
and we wish to evaluate the divergence of P

2 with respect to P
1. It is natural to

compute the divergence on the sigma-field X generated by X, I(P 2|P 1;X ) =
I(P 2

X |P 1
X) given by formula (3.1). Suppose that we have an observation of X

under P
1 which is right-censored at a fixed time C. We observe (X̃, δ) where
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X̃ = min(X, C) and δ = 1{X≤C}. Thus on {X ≤ C} we observe all the events of
X but on {X > C} we observe no more events. If we represent the observation
by the sigma-field O, we can say that O is generated by (X̃, δ). It is clear that we
have O ⊂ X . Although in theory it is still interesting to compute the divergence
of P

2 with respect to P
1 on the sigma-field X it is also interesting to compute

it on the observed sigma-field, which is I(P 2|P 1;O). It can be proved by simple

probabilistic arguments that on {X ≤ C} we have dP
1

dP
2
|O

=
f1

X (X)

f2
X

(X)
and on

{X > C} we have dP
1

dP
2
|O

=
S1

X (C)
S2

X
(C)

and thus

I(P 2|P 1;O) =

∫ C

0

log
f1

X(x)

f2
X(x)

f1
X(x)dx + log

S1
X(C)

S2
X(C)

S1(C),

where S1
X(.) and S2

X(.) are the survival functions of X under P
1 and P

2 respec-
tively.

4. Statistical models and families

4.1. Statistical families

We consider a subset P of the probabilities on a measurable space (S,A). We
shall call such a subset a family of probabilities, and we may parameterize this
family. Following [22], a parameterization can be represented by a function from
a set Θ with values in P: θ → P θ. It is desirable that this function be one-to-one,
a property linked to the identifiability issue which will be discussed later in this
section. The parameterization associated with the family of probabilities P can
be denoted Π = (P θ; θ ∈ Θ) and we have P = {P θ; θ ∈ Θ}. We may denote
Π ∼ P. If Π1 ∼ P and Π2 ∼ P, Π1 and Π2 are two parameterizations of the
same family of probabilities and we may note Π1 ∼ Π2.

P is really a family of probabilities and Π a parametrized family of probabili-
ties. We may call them statistical families if the aim of considering such families
is to make statistical inference. However, a family of probability on (ℜ,B) is not
sufficient to specify a statistical model (here, we do not follow [22]). A statistical
model depends on the random variables chosen, as exemplified in section 2.

4.2. Statistical models

A family of probabilities on the sample space of an experiment (Ω,F) will be
called a statistical model and a parameterization of this family will be called a
parameterized statistical model.

Definition 1. Two parameterized statistical models Π = (P θ, θ ∈ Θ) on X
and Π′ = (P γ , γ ∈ Γ) on Y are equivalent (in the sense that they specify the
same statistical model) if X = Y and they specify the same family of probability
on (Ω,X ).
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The pair (X, Π) of a random variable and a parameterized statistical model
induces the parameterized family (of distributions) on (ℜ,B): ΠX = (P θ

X ; θ ∈
Θ). Conversely, the pair (X, ΠX) induces Π if X = F . In that case, we may
describe the statistical model by (X, ΠX). Two different random variables X
and Y induce two (generally different) parameterized families on (ℜ,B), ΠX

and ΠY . Conversely, one may ask whether the pairs (X, ΠX) and (Y, ΠY ) define
equal or equivalent parameterized statistical models. We need the definition
of “informationally equivalent” random variables (or more generally random
elements).

Definition 2. X and Y are informationally equivalent if the sigma-fields X
and Y generated by X and Y are equal.

Each pair (X, P θ
X) induces a probability on (Ω,X ) P

X,θ = P θ
XoX and thus

the pair (X, ΠX) induces the parameterized statistical model (P X,θ , θ ∈ Θ).
Similarly, each pair (Y, P γ

Y ) induces a probability on (Ω,Y) P
Y,γ = P γ

Y oY and
the pair (Y, ΠY ) induces the parameterized statistical model (P Y,γ, γ ∈ Γ).
Tautologically, we will say that (X, ΠX) and (Y, ΠY ) define the same statistical
models if (P X,θ, θ ∈ Θ) and (P Y,γ , γ ∈ Γ) are equivalent.

Example 1 (continued). (i) ΠX =(N (103; σ2), σ2 > 0) and ΠY = (N (103; σ2),
σ2 > 0) are the same parameterized families on (ℜ,B). However, since X and Y
are measurements of the same quantity in different units, these parameterized
families correspond to different statistical models.

(ii) ΠX = (N (µ, σ2); µ ∈ ℜ, σ2 > 0) and ΠY = (N (µ, σ2); µ ∈ ℜ, σ2 > 0)
are the same parameterized family on (ℜ,B). (X, ΠX) and (Y, ΠY ) specify the
same statistical model but not the same parameterized statistical model.

(iii) ΠX = (N (103; σ2), σ2 > 0) and ΠY = (N (106; 106σ2), σ2 > 0) are
different families on (ℜ,B). However (X, ΠX) and (Y, ΠY ) specify the same
statistical model (with the same parameterization).

For sake of simplicity we have considered distributions of real random vari-
ables. The same can be said about random variables with values in ℜd or stochas-
tic processes that are random elements with values in a Skorohod space. Com-
menges and Gégout-Petit [6] gave an instance of two informationally equivalent
processes. The events described by an irreversible three-state process X = (Xt),
where Xt takes values 0, 1, 2, can be described by a bivariate counting process
N = (N1, N2). The law of the three-state process is specified by the transition
intensities α01, α02, α12. There is a way of expressing the intensities λ1 and λ2 of
N1 and N2 such that the laws of X and N correspond to the same probability
on (Ω,F). Thus the same statistical model can be described with X or with N .

4.3. Statistical models and true probability

So-called objectivist approaches to statistical inference assume that there is
a true, generally unknown, probability P

∗. Frequentists as well as objectivist
Bayesians adopt this paradigm while subjectivist Bayesians, following De Finetti
[11], reject it. We adopt the objectivist paradigm, which in our view is more
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suited to answer scientific issues. Statistical inference aims to approach P
∗ or

functionals of P
∗. Model Π is well specified if P

∗ ∈ Π and is mis-specified
otherwise. If it is well specified, then there is a θ∗ ∈ Θ such that P

θ∗

= P
∗. If

we consider a probability P
θ, we may measure its divergence with respect to

P
∗ on a given sigma-field O by I(P θ|P ∗;O), and we may choose θ that mini-

mizes this divergence. We assume that there exists a value θopt that minimizes
I(P θ|P ∗;O). We call I(P θopt |P ∗;O) the misspecification risk of model Π. Of
course, if the model is well specified, then I(P θ|P ∗;O) is minimized at θ∗, and
the misspecification risk is null.

5. The likelihood

5.1. Definition of the likelihood

Conventionally, most statistical models assume that independently identically
distributed (i.i.d.) random variables, say Xi, i = 1, . . . , n, are observed. How-
ever, in case of complex observation schemes, the observed random variables
become complicated. Moreover the same statistical model can be described by
different random variables. For instance, in Example 2 the observed random
variables are the pairs (X̃i, δi). However, we may also describe the observation
by (δiXi, δi), or in terms of counting processes by (N i

u, 0 ≤ u ≤ C), where
(N i

u = 1{Xi≤u}). These three descriptions are observationally equivalent, in

the sense that they correspond to the same sigma-field, say Oi = σ(X̃i, δi) =
σ(δiXi, δi) = σ(N i

u, 0 ≤ u ≤ C).
We shall adopt the description of observations in terms of sigma-fields because

it is more intrinsic. We shall work with a measure space (Ω,F) containing all
events of interest. For instance the observation of subject i, Oi, belongs to F .
Saying that observations are i.i.d. means that the Oi are independent, that there
is a one-to-one correspondence between Oi and Oi′ and that the restrictions
of P

∗ to Oi (denoted P
∗
Oi

) are the same. We call Ōn the global observation:
Ōn = ∨n

i=1Oi. Since we do not know P
∗, we may in the first place reduce the

search by restricting our attention to a statistical model Π and find a P
θ ∈ Π

close to P
∗, that is, one which minimizes I(P θ|P ∗;Oi). We have already given

a name to it, P
θopt, but we cannot compute it directly because we do not know

P
∗. The problem is that I(P θ|P ∗;Oi) doubly depends on the unknown P

∗:
(i) through the Radon-Nikodym derivative and (ii) through the expectation.

Problem (i) can be eliminated by noting that L
P

∗
/P

θ

Oi
= L

P
∗
/P

0

Oi
+ L

P
0
/P

θ

Oi
.

Thus, by taking expectation under P
∗:

I(P θ|P ∗;Oi) = I(P 0|P ∗;Oi) − EP
∗

(

L
P

θ
/P

0

Oi

)

.

Minimizing I(P θ|P ∗;Oi) is equivalent to maximizing EP
∗(L

P
θ
/P

0

Oi
). We cannot

compute EP
∗(L

P
θ
/P

0

Oi
), but we can estimate it. The law of large numbers tells
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us that, when n → ∞:

n−1
n

∑

i=1

L
P

θ
/P

0

Oi
→ EP

∗

(

L
P

θ
/P

0

Oi

)

.

Thus, we may maximize the estimator on the left hand, which is the loglikeli-

hood L
P

θ
/P

0

Ōn
divided by n. Maximizing the loglikelihood is equivalent to max-

imizing the likelihood function LP
θ
/P

0

Ōn
. The likelihood function is the function

θ → LP
θ
/P

0

Ōn
. In conclusion, the maximum likelihood estimator (MLE) can be

considered as an estimator that minimizes a natural estimator of the Kullback-
Leibler risk.

5.2. Computation of the likelihood

Computation of the likelihood is simple in terms of the probability on the ob-
served σ-field. The conventional way of specifying a model is in terms of a ran-
dom variable and a family of distributions (X, (fθ

X(.))θ∈Θ). Then the likelihood
for observation X is simply fθ

X(X). When the events of interest are represented
by stochastic processes in continuous time, it is also possible to define a den-
sity and hence a likelihood function. See [15] for diffusion processes and [23] for
counting processes.

Two situations make the computation of the likelihood more complex. The
first is when there is incomplete observation of the events of interest. If the
mechanism leading to incomplete data is random we should in principle model
it. The theory of ignorable missing observation of Rubin [38] has been extended
to more general mechanisms leading to incomplete data in [20]. This has been
developed in the stochastic process framework by Commenges and Gégout-Petit
[5] (who also give some general formulas for likelihood calculus). The second
situation occurs when the law is described through a conditional probability and
the conditioning events are not observed. This is the framework of random effects
models (see section 7.1). Although conceptually different these two situations
lead to the same problem: the likelihood for subject i can be relatively easily
computed for a “complete” observation Gi and the likelihood for the observation
Oi ⊂ Gi is the conditional expectation (which derives from the fundamental
formula):

LP
θ
/P

0

Oi
= E

P
0

[

LP
θ
/P

0

Gi
|Oi

]

. (5.1)

The conditional expectation is expressed as an integral which must be computed
numerically in most cases. The only notable exception is the linear mixed ef-
fects model where the integral can be analytically computed. For examples of
algorithms for non-linear mixed effects see [12] and [19]. For general formulas
for the likelihood of interval-censored observations of counting processes see [6].
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5.3. Performance of the MLE in terms of Kullback-Leibler risk

We expect good behavior of the MLE θ̂ when the law of large numbers can
be applied and when the number of parameters is not too large. Some cases of
unsatisfactory behavior of the MLE are reported for instance in [30]. The prop-
erties of the MLE may not be satisfactory when the number of parameters is too
large, and especially when it increases with n as in an example given by Ney-
mann and Scott [36]. In this example (Xi, Yi), i = 1, . . . , n are all independent
random variables with Xi and Yi both normal N(ξi, σ

2). It is readily seen that
not only the MLE of ξi, i = 1 . . . , n, but also the MLE of σ2 are inconsistent.
This example is typical of problems where there are individual parameters (a ξi

for each i), so that in fact the statistical model changes with n. Such situations
are better approached by random effects models.

To assess the performance of the MLE we can use a risk which is an extended
version of the Kullback-Leibler risk with respect to P

∗:

EKL(P θ̂,Oi) = EP
∗

(

L
P

∗
/P

θ̂

Oi

)

.

The difference with the classical Kullback-Leibler risk is that here P
θ̂ is random:

so EKL(P θ̂,Oi) is the expectation of the Kullkack-Leibler divergence between

P
θ̂ and P

∗. In parametric models (that is, Θ is a subset of ℜp), it can be shown
[9, 35] that

EKL(P θ̂,Oi) = EP
∗ [L

P
∗
/P

θopt

Oi
] +

1

2
n−1Tr(I−1J) + o(n−1), (5.2)

where I is the information matrix and J is the variance of the score, both
computed in θopt; here the symbol Tr means the trace. This can be nicely inter-

preted by saying that the risk EKL(P θ̂,Oi) is the sum of the misspecification

risk EP
∗ [L

P
∗
/P

θopt

X ] and the statistical risk 1
2n−1Tr(I−1J). Note in passing

that if Π is well specified we have EP
∗ [L

P
∗
/P

θopt

Oi
] = 0 and I = J , and thus

EKL(P θ̂,Oi) = p
2n + o(n−1).

6. The penalized likelihood

There is a large literature on the topic: see [13, 14, 17, 18, 21, 25, 37, 44] among
others. Penalized likelihood is useful when the statistical model is too large to
obtain good estimators, while conventional parametric models appear too rigid.
A simple form of the penalized log-likelihood is

plκ(θ) = L
P

θ
/P

0

Ōn
− κJ(θ),

where J(θ) is a measure of dislike of θ and κ weights the influence of this measure
on the objective function. A classical example is when θ = (α(.), β), where α(.)
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is a function and β is a real parameter. J(θ) can be chosen as

J(θ) =

∫ ∞

0

α′′(u)2du.

In this case J(θ) measures the irregularity of the function α(.). The maximum
penalized likelihood estimator (MpLE) θpl

κ is the value of θ which maximizes
plκ(θ). κ is often called a smoothing coefficient in the cases where J(θ) is a
measure of the irregularity of a function. More generally, we will call it a meta-
parameter. We may generalize the penalized log-likelihood by replacing κJ(θ) by
J(θ, κ), where κ could be multidimensional. When κ varies, this defines a family
of estimators,(θpl

κ ; κ ≥ 0). κ may be chosen by cross-validation (see section 8).
There is another way of dealing with the problem of statistical models that

might be too large. This is by using the so-called sieve estimators [40]. Sieves are
based on a sequence of approximating spaces. For instance rather than working
with a functional parameter we may restrict to spaces where the function is
represented on a basis (e.g. a splines basis). Here we consider a special sieves
approach where the approximating spaces may be functional spaces. Consider
a family of models (Pν)ν≥0 where:

Pν = (P θ; θ ∈ Θ : J(θ) ≤ ν).

For fixed ν , the MLE θ̂ν solves the constrained maximization problem:

maxL
P

θ
/P

0

Ōn
; subject to J(θ) ≤ ν. (6.1)

When ν varies this defines a family of sieve estimators: (θ̂ν ; ν ≥ 0). θ̂ν maximizes

the Lagrangian L
P

θ
/P

0

Ōn
− λ[J(θ) − ν ] for some value of λ. The Lagrangian

superficially looks like the penalized log-likelihood function, but an important
difference is that here the Lagrange multiplier λ is not fixed and is a part of
the solution. If the problem is convex the Karush-Kuhn-Tucker conditions are
necessary and sufficient. Here these conditions are

J(θ) ≤ ν ; λ ≥ 0;
∂L

P
θ
/P

0

Ōn

∂θ
− λ

∂J(θ)

∂θ
= 0. (6.2)

It is clear that when the observation Ōn is fixed, the function κ → J(θpl
κ ) is a

monotone decreasing function. Consider the case where this function is continu-
ous and unbounded (when κ → 0). Then for each fixed ν there exists a value, say
κν , such that J(θpl

κν ) = ν . Note that this value depends on Ōn. Now, it is easy
to see that θpl

κν satisfies the Karush-Kuhn-Tucker conditions (6.2), with λ = κν .
Thus, if we can find the correct κν we can solve the constrained maximization
problem by maximizing the corresponding penalized likelihood. However, the
search for κν is not simple, and we must remember that the relationship be-
tween ν and κν depends on Ōn. A simpler result, deriving from the previous
considerations, is:
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Lemma 6.1 (Penalized and sieves estimators). The families (P θpl
κ ; κ ≥ 0)

and (P θ̂ν ; ν ≥ 0) are identical families of estimators.

The consequence is that since it is easier to solve the unconstrained maximiza-
tion problem involved in the penalized likelihood approach, one should apply
this approach in applications. On the other hand, it may be easier to develop
asymptotic results for sieve estimators (because θ̂ν is a MLE) than for penal-
ized likelihood estimators. One should be able to derive properties of penalized
likelihood estimators from those of sieve estimators.

7. The hierarchical likelihood

7.1. Random effects models

An important class of models arises when we define a potentially observable
variable Yi for each subject, and its distribution is given conditionally on un-
observed quantities. This is the classical framework of random effects models,
which we have already mentioned in subsections 5.2 and 5.3. Specifically, let us
consider the following model: conditionally on bi, Yi has a density fY |b(.; θ, b

i),
where θ is a vector of parameters of dimension m and bi are random effects (or
parameters) of dimension K. The (Yi, b

i) are i.i.d. Typically Yi is multivariate of
dimension ni. We assume that the bi have density fb(.; τ ), where τ is a param-
eter. Typically Yi is observed, while bi is not. This can be made more general
for including the case of censored observation of Yi.

The conventional approach for estimating θ is to compute the maximum like-
lihood estimators. Empirical Bayes estimators of the bi can be computed in
a second stage. The likelihood (for observation i) is computed by taking the
conditional expectation given Oi of the complete likelihood on the sigma-field
including the random effect Gi = Oi ∨ σ(bi). This is an application of formula
(5.1). Practically the computation of this conditional expectation involves the
integrals

∫

fθ
Y |b(Yi|b)fb(b)db. Random effects models have been thoroughly stud-

ied in both linear [43] and non-linear [10] cases. While in the linear case compu-
tation of the above integrals is analytical, in the non-linear case it is not. The
numerical computation of these multiple integrals of dimension K is a daunting
task if K is larger than 2 or 3, especially if the likelihood given the random
effects is not itself very easy to compute; this is the curse of dimensionality.

7.2. Hierarchical likelihood

For hierarchical generalized linear models, the hierarchical likelihood (or h-
likelihood), was proposed by Lee and Nelder [32]; see also [33, 34]. The h-
likelihood is the joint (or complete) likelihood of the observations and the
(unobserved) random effects, but where the random effects are treated as pa-

rameters. The complete loglikelihood is L
P

θ
/P

0

Ḡn
. It can be decomposed into
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L
P

θ
/P

0

Ḡn
= L

P
θ
/P

0

Ḡn|b
+ L

P
θ
/P

0

b ; the last term can be written
∑n

i=1 log fb(b
i; τ ).

None of these likelihoods can be computed (is measurable for) Ōn. The h-

loglikelihood function is the function γ → L
P

θ
/P

0

Ḡn
where γ = (θ, b) is the

set of all the “parameters”. Thus, estimators (here denoted MHLE) of both θ
and b can be obtained by maximizing the h-loglikelihood:

hlτ (γ) = L
P

γ
/P

0

Ōn
−

n
∑

i=1

log fb(b
i; τ ).

Often the loglikelihood can be written L
P

γ
/P

0

Ōn
=

∑n
i log f(Yi; θ, b

i). How-
ever, this formulation is not completely general, because there are interesting
cases where observations of the Yi are censored. So, we prefer writing the loglike-

lihood as L
P

γ
/P

0

Ōn
. We note γ̂τ = (θ̂τ , b̂τ) the maximum h-likelihood estimators

of the parameters for given τ ; the latter (meta) parameter can be estimated by
profile likelihood. The main interest of this approach is that there is no need
to compute multiple integrals. This problem is replaced by that of maximizing
hlτ (γ) over γ. That is, the problem is now a large number of parameters that
must be estimated, which this is equal to m+nK. This may be large, but special
algorithms can be used for generalized linear models.

Therneau and Grambsch [41] used the same approach for fitting frailty mod-
els, calling it a penalized likelihood. It may superficially look like the penalized
quasi likelihood of Breslow and Clayton [2], but this is not the same thing. There
is a link with the more conventional penalized likelihood for estimating smooth
functions discussed in section 6. The h-likelihood can be considered as a penal-
ized likelihood but with two important differences relative to the conventional
one: (i) the problem is parametric; (ii) the number of parameters grows with n.
Commenges et al. [9] have proved that the maximum h-likelihood estimators for
the fixed parameters are M-estimators [42]. Thus, under some regularity con-
ditions they have an asymptotic normal distribution. However, this asymptotic
distribution is not in general centered on the true parameter values, so that the
estimators are biased. In practice the bias can be negligible so that this approach
can be interesting in some situations due to its relative numerical simplicity.

8. Akaike and likelihood cross-validation criteria

An important issue is the choice between different estimators. Two typical sit-
uations are: (i) choice of MLE’s in different models; (ii) choice of MpLE’s with
different penalties. If we consider two models Π and Π′ we get two estimators

P
θ̂ and P

γ̂ of the probability P
∗, and we may wish to assess which is better.

This is the “model choice” issue. A penalized likelihood function produces a

family of estimators (P θpl
κ ; κ ≥ 0), and we may wish to choose the best. Here,

what we call “the best” estimator is the estimator that minimizes some risk
function; in both cases we can use the extended version of the Kullback-Leibler
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risk already used in section 5:

EKL(P θ̂;Oi) = EP
∗(L

P
∗
/P

θ̂

Oi
).

Since P
∗ is unknown we can first work with EP

∗(L
P

0
/P

θ̂

Oi
), which is equal,

up to a constant, to EKL(P θ̂;Oi). Second we can, as usual, replace the ex-
pectation under P

∗ by expectation under the empirical distribution. For para-

metric models, Akaike [1] has shown that an estimator of EP
∗(L

P
0
/P

θ̂

Oi
) was

−n−1(L
P

θ̂
/P

0

Ōn
− p), and Akaike criterion (AIC) can be deduced by multiplying

this quantity by 2n: AIC = −2L
P

θ̂
/P

0

Ōn
+ 2p. Other criteria have been proposed

for model choice, and for more detail about Akaike and other criteria we refer
to [3, 27, 35]. Here, we pursue Akaike’s idea of estimating the Kullback-Leibler
risk. It is clear that the absolute risk itself can not in general be estimated.
However, the difference of risks between two estimators in parametric models

∆(P θ̂, P γ̂) = EKL(P θ̂;Oi) − EKL(P γ̂ ;Oi) can be estimated by the statistic

D(P θ̂, P γ̂) = (1/2n)(AIC(P θ̂) − AIC(P γ̂)) and a more refined analysis of the
difference of risks can be developed, as in [9].

The leave-one-out likelihood cross-validation criterion can also be considered
as a possible “estimator” up to a constant of EKL [7]. It is defined as:

LCV (P θ̂n ;On+1) = −
1

n

n
∑

i=1

L
P

θ̂(Ōn|i)/P
0

Oi
,

where Ōn|i = ∨j 6=iOj and On+1 is another i.i.d. replicate of Oi. Then, we define
an estimator of the difference of risks between two estimators:

∆(P θ̂, P γ̂) = LCV (P θ̂n ;On+1) − LCV (P γ̂n ;On+1) (8.1)

The advantage of LCV is that it can be used for comparing smooth estimators in
nonparametric models, and in particular it can be used for choosing the penalty
weight in penalized likelihood. A disadvantage is the computational burden, but
a general approximation formula has been given ([7, 37]):

LCV ≈ −n−1[L
P

θ̂
/P

0

Ōn
− Tr(H−1

plκ
HLŌn

)],

where HLŌn
and Hplκ are the Hessian of the loglikelihood and penalized log-

likelihood respectively. This expression looks like an AIC criterion and there are
arguments to interpret Tr[H−1

plκ
HLŌn

] as the model degree of freedom.

9. Link with the MAP estimator

One important issue is the relationship between the three likelihoods considered
here and the Bayesian approach. The question arises because it seems that these
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three likelihoods can be identified with the numerator of a posteriori distribu-
tions with particular priors. Thus MLE, MpLE and MHLE could be identified
with the maximum a posteriori (MAP) estimators with the corresponding pri-
ors. However, this relationship depends on the parameterization. Thus the MLE
is identical to the MAP using a uniform prior for the parameters. If we change
the parameterization, the uniform prior on the new parameters does not corre-
spond in general to the uniform prior on the original parameters, as was already
noticed by Fisher [16]. This apparent paradox led Jeffreys to propose a prior
invariant for parameterization [24], known as Jeffrey’s prior. However the MAP
with Jeffreys’s prior is no longer identical to the MLE when Jeffreys’s prior is
not uniform. For instance, for the parameter of a binomial trial, Jeffreys’s prior
is 1/

√

p(1 − p). Adding the logarithm of this term to the loglikelihood shifts the
maximum away from 0.5. Moreover it is questionable whether this invariance
property can be identified with a non-informativeness character of this prior (for
a review on the choice of priors, see [26]).

In the Bayesian paradigm, rather than considering estimators based on max-
imization of some expression such as the likelihood or posterior density, it is
common to attempt to summarize the statistical inferences by using quantiles
of the posterior distribution, such as the median, or expectations with respect
to the posterior. While such estimators may be more satisfactory, they typically
involve multiple integrals that are hard to compute: computations are mostly
being done with the MCMC algorithm. Maximization methods have the ad-
vantage of being potentially easier in the case where multiple integrals can be
avoided. There are also approximate Bayesian methods, which yield the a pos-
teriori marginal distribution by approximating some of the multiple integrals by
Laplace approximation, which in turn involves a maximization problem. Rue et
al. [39] claim that this approach is much faster than the MCMC algorithm.

Conclusion

The Kolmogorov representation of a statistical experiment has to be taken se-
riously if we want to have a deep understanding of what a statistical model is.
The Kullback-Leibler risk is underlying most of the reflexions about likelihood,
as was clearly seen by Akaike [1]. Finally, the link with the Bayesian approach
should be explored more thoroughly than could done in this paper. The MLE
and MAP estimators are the same if, in a given paramterization, the prior used
for the MAP is uniform. However, this identity is not stable with respect to repa-
rameterizations. Similar remarks hold for the link between penalized likelihood
and MAP.
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