N
N

N

HAL

open science

Fisher information matrix for nonlinear mixed effects
multiple response models: evaluation of the
appropriateness of the first order linearization using a
pharmacokinetic/pharmacodynamic model.

Caroline Bazzoli, Sylvie Retout, France Mentré

» To cite this version:

Caroline Bazzoli, Sylvie Retout, France Mentré. Fisher information matrix for nonlinear mixed ef-
fects multiple response models: evaluation of the appropriateness of the first order linearization us-
ing a pharmacokinetic/pharmacodynamic model.. Statistics in Medicine, 2009, 28 (14), pp.1940-56.
10.1002/sim.3573 . inserm-00371363

HAL Id: inserm-00371363
https://inserm.hal.science/inserm-00371363
Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inserm.hal.science/inserm-00371363
https://hal.archives-ouvertes.fr

Fisher information matrix for nonlinear mixed effects multiple response
models: evaluation of the appropriateness of thefirst order linearization
using a phar macokinetic/phar macodynamic model

Caroline Bazzoli*, Sylvie Retout, France Mentré

INSERM, U738, Paris, France; Université Paris DitledFR de Médecine, Paris, France

"corresponding author:
Caroline Bazzoli,
Inserm U738,

16, rue Henri Huchard
75018 Paris, France
Fax: 33 144 85 62 83

Email: caroline.bazzoli@inserm.fr



SUMMARY

We focus on the Fisher information matrix used design evaluation and optimization in
nonlinear mixed effects multiple response model® ®Valuate the appropriateness of its
expression computed by linearization as proposedafsingle response model. Using a
pharmacokinetic—pharmacodynamic (PKPD) examplefikge compare the computation of
the Fisher information matrix by approximation toecderived from the observed matrix on a
large simulation using the stochastic approximatexpectation—maximization algorithm
(SAEM). The expression of the Fisher informationtmafor multiple responses is also
evaluated by comparison to empirical informatioriaoted through a replicated simulation
study using the first order linearization estimatimethods implemented in the NONMEM
software (FO, FOCE) and the SAEM algorithm in th©NDOLIX software. The predicted
errors given by the approximated information matare close to those given by the
information matrix obtained without linearizatiorsing SAEM and to the empirical ones
obtained with FOCE and SAEM. The simulation stutBpallustrates the accuracy of both
FOCE and SAEM estimation algorithms when jointlydaling multiple responses and the
major limitations of the FO method. This study Hights the appropriateness of the
approximated Fisher information matrix for multiplesponses, which is implemented in
PFIM 3.0, an extension of the R function PFIM detkd to design evaluation and
optimization. It also emphasizes the use of thimmating tool for designing population
multiple response studies, as for instance in PKRIRlies or in PK studies including the

modelling of the PK of a drug and its active metdabo

KEYWORDS: nonlinear mixed effects models; multipdsponses; Fisher information

matrix; population design; first order approximati®FIM



1 Introduction

Nonlinear mixed effects models (NLMEM) are widelged to analyze various biological
processes described by longitudinal data. Sinceptineary models developed by Sheimer

al. [1] in pharmacokinetic (PK) and pharmacodynami®)PNLMEM are become widely
used for modelling of biological processes. NLMEMso called the population approach,
allow estimation of the mean value of the paranseterthe studied population and their
interindividual variability, or population charagstics. NLMEM are also now commonly
used for the joint modelling of several biologicakponses such as the PK of parent drugs
and of their active metabolite. NLMEM allow a spasampling design with few data points
per individual in a large set of individuals. Tleesn be particularly useful in studies in specific
populations such as children or patients with seridiseases, where classical studies with a
large number of samples are often limited for ethor physiological reasons.

Estimation of the parameters in NLMEM is commonbrfprmed by maximum likelihood.
However, due to the nonlinearity of the regresdianction, an analytical expression of the
log-likelihood in nonlinear mixed effects modelsnnat be provided. To solve this issue
several methods for estimating the parameters hbeen proposed, based on an
approximation of the log-likelihood such as thesFi©rder method (FO) or the First Order
Conditional Estimate (FOCE) method proposed by dstrtom and Bayes [2]. Both methods
use a linearization of the structural model eitli@und the expectation of the random effects
parameter (FO) or around individual estimates efrdindom effects (FOCE). These methods
have been implemented in the NONMEM software [3bd] also in the nlme function of
Splus and R software [5]. Compared to FO, the F@@&Ehod provides less biased estimates
and, in the context of joint modelling of multiplesponses, is more appropriate with fewer
problems of convergence or of inter-individual aade estimation [6, 7]. Alternative
methods have also been proposed to maximize thelihdod using a stochastic
approximation of the integrals, such as the Gansgjaadrature [8] or the Adaptative
Gaussian quadrature methods implemented in the XBWI procedure of SAS. Recently,
the Stochastic Approximation Expectation—Maximiaati algorithm (SAEM) has been
developed and implemented in the MONOLIX softwaf [0]. It uses a stochastic
approximation version of the standard expectaticaxtmization (EM) algorithm [11, 12].
The convergence and the consistence of the estirhate been proved by the authors. In this
algorithm, the EM algorithm is used for finding nraxim likelihood estimates of parameters



in models, where the model depends on unobservedbles corresponding to the random
effects in the NLMEM.

An appropriate choice of experimental design fotinesting parameters in NLMEM is
required. Called a population design in this framey a design is defined as a group of
elementary designs; each elementary design is cesdpof a set of sampling times to be
performed in several individuals. Determining a glagon design involves identifying both
the allocation of the sampling times and the wigstaup structure, that is to say the number
of elementary designs, the number of samples penezitary design and the proportion or the
number of individuals in each elementary designoatiog to a fixed total number of
samples. Simulation studies have shown that theigpoa of estimation of the parameters
depends on the choice of the design [13, 14] amd #m appropriate choice can thus
substantially improve the efficiency of studiesn the context of NLMEM with sparse
designs, the challenge is then to determine thdetcdf between few sampling times and
informative data to obtain correct parameter es@sha

To evaluate population designs, the theory of optmexperimental design described for
instance by Atkinson and Donev [15] or by Walted &ronzato [16] in classical nonlinear
models, has been extended to NLMEM. This theorg gsiéeria based on the Fisher
information matrix (M}). It comes from the Cramer-Rao inequality; inded,inverse of M

is the lower bound of the variance covariance matfiany unbiased estimators of the
parameters. As the likelihood has no closed formuinframework, a linearization of the
model around the expectation of the random effleassbeen proposed by Men&tél. [17]

and extended by Retoettal. [18] to derive an approximate expression gf Mccuracy of

this approximation was first shown by simulatioraafexample based on a real PK study [18,
19], and was confirmed by comparison of the predi@E computed from this approximate
Me to those given by an evaluation ofMithout linearization obtained by stochastic
approximation using the SAEM algorithm of MONOLIZX(]. The approximated expression
of Mg has been implemented in R functions PFIM and PARV@br population design
evaluation and optimization, respectively [21-Z3¢cently, PFIM Interface 2.1, a graphical
user interface version, has been developed, allpiirth evaluation and optimization in the
same tool [21]. However, currently, these toolsya@ilow evaluation and optimization of
population designs of single response models. kdtigte response models, the same
linearization method around the expectation ofrflmelom effects as for single response
models has been proposed to approximate the papuldt[24-27]. In those papers,

illustrations of this development were providedngseither a PKPD model or a joint PK



model of a drug and its metabolite. However, theueacy of the development ofddy
linearization for multiple responses has not ya&rbevaluated. Even if the same linearization
as in the single response is used, computatiotheaome more complicated for multiple
responses. Indeed, some parameters can be indludederal responses and the information
on those parameters is therefore obtained from efitiose response profiles. This is usual
in the PKPD context where PD response dependseoRKhparameters. Moreover, as noted
previously, use of the linearization around theestation of the random effects appears to be
inadequate for joint estimation of multiple respensodels [6, 7]. The appropriateness of its
use in the context of design evaluation is thus glgeestionable and should be investigated.
The objective of this study was therefore to evi@uhe first order approximation to compute
the Fisher information matrix in NLMEM with multiplresponses. To do this, we considered
a PKPD simulation example associated with a pojmatesign. Then, we compared the
predicted standard errors (SE), computed from pipecximated expression of Mo those
given by the evaluation of Mwithout linearization obtained by stochastic appration

using the SAEM algorithm of MONOLIXWe also performed another evaluation by
comparison of those predicted SE to the empirinakpobtained by estimation on simulated
datasets using three different estimation algorsthir®© and FOCE (with NONMEM); SAEM
(with MONOLIX). Based on those simulations, we atemnpared the performance of those
three estimation methods in the same simultanemalysas of this PKPD model.

In Section 2, we introduce the notations, desctibe PKPD example and present the
methodology used to evaluate:-léind to compare the estimation methods. Sectices8ribes
the results of the evaluation and the comparisascu3sion of the results is provided in
Section 4. The development ofNbr multiple responses is given in detail in thep&ndix.



2 Methods

2.1 Notation

In the nonlinear mixed effect multiple response glpdn “elementary” desigd, for one
individual i is defined byn sampling times. It is composed of several sub-tesssgyich that

& =(&1.& 5. & ), With &, being the sub-design associated with kfieesponse,

k=1,...,K. &, is defined by(tikl,tikz,... ,timk), the vector of then, sampling times for the

K
observations of th&" response, so thah, =>'n, .
k=1

For N individuals, we define a “population design” corspd of theN allocated elementary

designsé,, i =1,...,N. A population design is therefore described lgylkh elementary

N
designs for a total numbarof observations such that= Zni :
i=1

=={¢&,....&} (1)

Usually population designs are composed of a lanimembelQ of groups of individuals with

identical design within each group. Each of thaseigs is defined by an elementary

designé,,q=1,...,Q, which is composed, for thie" response, ofy, sampling times
(t t t ) to be performed in a numbét, of individuals. The population design can

gk17 "gk27° " " Fokng

then be written as follows:
=={laN[EN] &N @

A nonlinear mixed effects multiple response moded multiple response population model is

defined as follows. The vector of observatiofigor thei" individual is defined as the vector

of theK different responses:

Y=YV Y | 3)



wherey, , k=1,...,K , is the vector of observations for & response. Each of these

responses is associated with a known funcfiowhich defines the nonlinear structural

model. TheK functions fx can be grouped in a vector of multiple responseeaisdq such as:

T

FO.6)=| 1(6.6) L(a.é) . h(8&) | @

where g is the vector of all the individual parameters rezktbr all the response models in
individuali. The vector of individual parameteés depends ofi, thep-vector of the fixed
effects parameters and dnthe vector of thg random effects for individual The relation
betweend and(,h) is modelled by a functiog, 8 = g(5,b ), which is usually additive,
so that§) = 8+h , or exponentiado thatg = Sexp(h ). It is assumed that ON (0,Q) with

Q defined as g x p -diagonal matrix, for which, each diagonal elemght =1,... ,p,

represents the variance of thBcomponent of the vectdx.

The statistical model is thus given by:

where ¢, is the vector composed of thevectors of residual errorg, , k =1,... K,
associated with thi€ responses. We also suppase N (O,Zik) with ¥, an, xn, -diagonal

matrix such that
zik (ﬂlh 'O-interk ’Jdopek ’Eik) = dlag (O-interk + Jsiopek fk (g (ﬂ’bl ) ’Eik ))2 (6)

where o

interk

and g, qualify the model for the variance of the residerabr of the
k" response. The casg,,, =0 returns a homoscedastic error model, whereasatse ¢

O.... =0 returns a constant coefficient of variation ermmadel. The general case where the

interk

two parameters differ from O is called a combingdremodel. We then note

2, (ﬂ,h O ter ,agope,gﬁ) the variance ot , over theK responses, such that isan xn -



and o

inter

diagonal matrix composed of each diagonal elemeat owith k =1,... K. 0y,

are two vectors of thik componentss, ., and gy, , k=1,...,K, respectively. Finally,

inter
conditionally on the value df, we assume that the erragsare independently distributed.
Let ¥ be the vector of population parameters to be eséichsuch as

=(8".df.....a% Oy’ Oyope ) @Nd leth be the vector of variance

terms A" =(af,.. Orie 1Tgope )» SO thatW’ —(,BT,/]T).

p!

2.2 Population Fisher information matrix for multiple response models

The population Fisher information matrix for a ptgtion design= (see Equation (1)), is

defined as the sum of tikeelementary Fisher information matricés. (LIJ,Ei) for each

individual i

N

M (W,2)=D M (W.€) (7)

i=1

In the case of a limited numb@rof groups, as in Equation (2), it is expressed by:

Q
MF(W’E):ZNqMF(w"(Q) (8)

The expression of an elementary Fisher informataitrix for multiple responses has been
extended by Hookeat al. [25] using the same development as for single responodels

with a first Taylor expansion of the model as inf#éet al. [17] and Retouét al. [22].

Its expression is given below for one individuahd depends on the approximated marginal

expectationE; and variance/; of the observation¥ [28]. Details of this development are

given in the Appendix.

.
LEVEL I v s V-1 V) ith m and| =1,....dim(¥). (9)
ow, oW "2 v, oW,

m m

M (W.6)=



with,

E(Y) OE =F(9(5,0).) (10)

aFT(g(ﬂ.o),é)JQLGF(g(ﬂ’O) 4)

vy o 094 5000, aumt) a0

This expression has been implemented in an extesithe R function PFIM, PFIM 3.0.
This function has been developed for R 2.4.1 agtdriversions. The implementation of the
population Fisher information matrix assumes thatwariance of the observations with
respect to the mean parameters is constant (seendpq). PFIM 3.0 evaluates population
designs in NLMEM with multiple responses and thetsims the expected standard errors,
defined as the square roots of the diagonal elesradrihe inverse of M on the population
parameters with the design evaluated. To use PR\isBme prior information has to be
supplied by the user such as the structural madglarameterization and a priori values of
the parameters. PFIM 3.0 can also optimize popriatesigns with different optimization
options. More details are available in an extendieument that can be freely downloaded
with the function PFIM 3.0 on the PFIM website [21]

2.3 PKPD simulation example

In this paper, we use a simple and typical PKPDehad an example to evaluate My
simulation. It is derived from the one used by Herak al. [25] to illustrate the development
of the Fisher information matrix for a multiple pesse model. The PK model for drug
concentration is a one compartment with bolus igmat first order elimination given as

follows for the sampling timéx:

dose Cl
fPK (GPK Lo )= Texq _ItPK ) (12)

where ,, =(Cl,V, )" is the vector of the PK parameters withandVc, the clearance and the

volume in the central compartment, respectively.



The PD model for drug effect is a simde,_, model with baseline, expressed as a function

of the predicted concentratiorfs, , and given as follows for the sampling tintgs :

Emax fPK (HPK’ tPD)
CSO + fPK (HPK ! tPD)

fPD (0P|< ’0PD  top ) =B+ (13)

where 8., = (E,, E,....Cs) is the vector of the PD parameters Wi, E,., andC,,, the

effect at baseline, the maximum effect and the eotration needed to observe half of the
maximum effect, respectively.

We assumed an exponential model of the randomtsffecboth the PK and the PD
parameters. We associated a proportional error hvattethe PK model characterized by the

parameteioy, ., and a homoscedastic error model with the PD mdulacterized by the
parametelo .-, - 1hus, the vector of population parametéfss described by the vector of
the fixed effectsg™ = ( Bo: By Be, Pe. 'Bcso) and byA" the vector composed by the
variance of the random effects and by the paramébethe error models such that

AT = (wé VO G GG O ek 'a-interPD) . The dose was fixed to 1 and the parameter

values used in this paper are given in Table 1.

We determined a population design associated WishRKPD example. This determination
was empirical, without any optimization. The popigia design was composed of one group
of N =100 individuals. They all had 3 sampling times at ®,16 and 12 for PK and 4

sampling times for PD at 0.166, 6, 12 and 20 holinsrefore, we had one elementary design

(& &op) with &, =(0.166, 6,12 and &,, =(0.166, 6,12, 2. The population design was

thus defined by :{[({PK oo ) , N]} . The curve profiles of the PK and the PD modettifier

fixed effects are displayed in Figure 1; the samgptimes for each response are overlaid.

2.4 Evaluation of Mg for multiple responses

2.4.1 Comparison of M with and without linearization

In this section, we propose to compare the prediSte obtained from the approximate fdr
multiple responses computed by PFIM 3.0 to the Biained from more “exact” approaches

using the SAEM estimation algorithm. This lattega@ithm was used by Retoettal. [20]

10



and Samsost al. [29] to show the appropriateness of this appratiom in a single response
model. This SAEM algorithm allows the observed dapan Fisher information matrix to be
computed according to two approaches. The firstagmh was developed by Samsbal.

[29] and has been used to evaluate an “exact” |ptipn Fisher information matrix using the
Louis’s principle [30]. It does not require anydarization and can thus be considered as the
“true” population Fisher information matrix. Thecemd approach evaluates the Fisher
information matrix using a linearization of the nebdround the conditional expectation of
the individual parameters previously estimated B¥M without any linearization.

To perform this comparison, we first computed thedcted M- for the population design
associated with the PKPD example using PFIM 3.8e8an the linearization. We then
simulated a dataset of PK and PD observations@@0D individuals in order to achieve
asymptotic properties using the software R 2.4aldd that, we used the parameter values

given in Table 1 and the sampling times shown gufé 1, defining the PKPD example
(section 2.3). For each individualwe simulated a vector of random effedisin N (O,Q) :
where the diagonal elements Qf are the variance of the random effects, and wautzed

the individual parameters usiré) = ﬂexp(lq ) We then calculated the individual PK
concentrationsf,, (0, .t ) predicted by the model at each timgof &, . We also
computed the individual PK concentrations at eaoe t,, of &, to derive the
concentrationf, (QPK ,tPD) for the PD response using Equation (13). PD olasens

fop (Bnc» B o tep ) Were then generated. Finally, for each responsesimulated the random
errors &, and &,, from a normal distribution with zero mean and &ade derived from
Equation (6) using the parameterg, .. ando, ..., respectively. Those errors were added

to the previously generated PK and PD data to thersimulated observations for the PK and
the PD response respectively.

Using MONOLIX (Version 2.1) with SAEM as the estitiwe algorithm, we estimated the
parameters using this simulated dataset and wedi@ved the observed population Fisher
information matrix with the Louis’s principle prodere and the linearization method of
SAEM. For these two Fisher information matrices,tlhven transformed the observed SE for

each component of the population vectoobtained with a simulation dflg,, =10000
individuals into predicted S& a population ofN =100 individuals to be adapted to the
design of the example usirté=, (V¥,) = $N§m(wi)1/ij/ N, for thei"™ component of¥.

11



For estimation with the SAEM algorithm, we usedratal set of parameters with the values

(0.2,0.05,1.2,5,1F for the fixed effects(1,1,1,1, 0.5 for the variance of the random effects

and (0.5, 0.5) for the residual error3.he default values for the algorithm were used pice

for the number of Markov chains, which was set,tarl the number of iterations with two
different steps sizes, which was set to 1000 afd 1@ ensure good convergence.

The predicted SE obtained by linearization withN#BLO were designated PFIM. The
notations SAEM_LO and SAEM_LI denote the predici&tiobtained with the SAEM
algorithm using the Louis’s principle and the lineation method, respectively.

2.4.2 Comparison of M to empirical information through replicated siitdn

Another objective was to compare the predicted S¥computed from PFIM 3.0 to the
empirical SE obtained by the FO method, the FOCEatkand the SAEM algorithm on
simulated datasets. To do that, we simulated 1@@8sdts of 100 individuals with the
software R 2.4.1 using the same PKPD model andlptpa design described previously.
Datasets were simulated using a similar method asdtion 2.4.1, using the same parameter
values and the same sampling times.

For each simulated data file, we estimated the ladipn parameters for the PKPD model
using first the FO method and the FOCE with inteoscmethod implemented in NONMEM
software version V and then, using the SAEM algoniin MONOLIX (Version 2.1).

For the estimations using the FO and FOCE methaadssets of initial parameters were
defined. The first corresponded to the value ofgaameters used for the simulation (Table

1). The second one was used only in the case kblaconvergence with the first set. The

values of the second set of initial parameters vi@rthe fixed effects(0.08, 0.1,1.5,3, 0)5;

the values of the variance of the random effectktha variance of the residual errors were
the same as for the first set of initial parametéhe initial values of the parameters and the
different elements required to use the SAEM algamitvere identical to those described in
section 2.4.1.

For each parameter of the PKPD model, we compaeegdredicted SE using the three
evaluations of Mwith PFIM, SAEM_LO and SAEM_Lko the empirical SE obtained with
the FO method, the FOCE method and the SAEM algaridenoted FO, FOCE, and SAEM,

respectively. These empirical SE are defined asdhngple estimate of the standard deviation

12



from the parameter estimates for each method, densg only the subset of datasets
fulfilling all convergence conditions.

We were also interested in comparing the distrdyutf the observed SE provided by each of
the estimation methods to the empirical SE antiéqgotredicted SE. In this case, we
considered only the subset of datasets for whi¢h th® convergence and the variance—
covariance matrix of estimation were obtained. therdistribution of the SE provided by the
SAEM algorithm, we considered both methods of catapen of the SE, the Louis’s

principle and the linearization.
2.5 Comparison of results for estimation methods with and without linearization

Using the previous simulations, we also comparedthee methods of estimation: FO,
FOCE and the SAEM algorithm. For each parameterrelative bias as well as the relative

RMSE were computed for tt&datasets fulfilling convergence conditicé&s 1000) , Which,
for W, , thel™ parameter of the population vectr, are given by:

S (@f—w,"

Bias(Wl):éz w?] (14)

with @f the estimated value oF, for the s" simulated datasets an®; the true value.

3 Reaults
3.1 Comparison of Mg with and without linearization

The SE predicted through the use of the SAEM dligorion a large dataset (SAEM_LI and
SAEM_LO) and those predicted by PFIM 3.0 are reggbih Table 2 as relative SE, i.e. SE
divided by the true value of the parameter, not&&RNd expressed in %. Overall, whatever
the method, the RSE of the population parameters wary close for the fixed effects with a
difference of at most 1.3% fqf. between the SE predicted by PFIM and the one diyen

SAEM_LO. Regarding the variance parameters, RSIE aiso very close, except fa@so for

13



which PFIM seemed to slightly overestimate the peter estimate precision with a
difference of about 10% compared to the SAEM apgresa.
This evaluation shows the appropriateness of thension of the population Fisher

Information matrix for multiple response modelsngsihe first order approximation.

3.2 Comparison of Mg to empirical information through replicated simulation

Convergence was achieved for all datasets anddti@ce—covariance estimates were
obtained for 997 datasets among the 1000 simuttsets with the FO method.
Convergence with the FOCE method of NONMEM was ioletd for only 853 sets. Among
those 853 sets, the variance—covariance matristohation was obtained for only 798 sets.
Finally, with the SAEM procedure, no problem of eergence or covariance—variance matrix
was noted for any of the 1000 datasets.

For each parameter the empirical RSE obtained tvétlthree estimation methods and the
predicted RSE of SAEM_LI, SAEM_LO and PFIM are d#ggfed in Figure 2. Concerning the
FO method, the empirical RSE were much larger tharRSE of PFIM, SAEM_LI and
SAEM_LO except for the PK parameters. This diffeeis above all important for the PD
parameterwgs0 with a RSE close to 200%. In contrast, the emalifRSE for FOCE and

SAEM were very close to the RSE predicted with SAEM SAEM_LO and PFIM.

The distribution of observed RSE from the thregesion methods, including both methods
of computation of M with the SAEM algorithm, are reported as boxplotEigure 3, part (A)
and part (B), for the mean and the variance pamsatespectively. For the FO method, the
range of the observed RSE was much larger thaihése obtained with the FOCE method or
both SAEM procedures. However, the observed RS ofvere concordant with the
empirical ones. For all the parameters, the RSHigied with PFIM were consistent with the
distribution of the RSE observed with FOCE andtithe SAEM procedures but not for FO.
The range of the observed RSE for FOCE, SAEM aadtiresponding empirical RSE were
also concordant. However, for most parametersRBBE computed using the Louis’s
principle of SAEM had a broader distribution thgnusing linearization, with values for
several datasets being outliers (Figure 3). Thablem occurred in particular for the RSE on

«f_ parameter.

In this example, the RSE predicted by PFIM, comgnte the first order linearization, were
thus concordant with the empirical ones and thewiesl RSE obtained from the simulation

study.

14



3.3 Comparison of three estimation methods

The relative bias and relative RMSE obtained whihthree estimatiomethods are presented
in Table 3. Convergence was not achieved for 15%etimulated datasets using the FOCE
method whereas the FO method and the SAEM algominmrerged for all datasets.
Regarding the FO method, bias and RMSE were lageatally for the parameters of the PD
model (fixed effects, random effects and residuare) whereas FOCE and SAEM provided
reasonable bias and RMSE for all the parametershEdixed effects, slightly lower bias and
RMSE were observed for the SAEM procedure comparé@®CE. We observed important

RMSE (> 40%) for the parametewés0 whatever the estimation method. This is in agreemen

with the large RSE obtained for that parameteripresly.

4 Discussion

We evaluated the expression of the population Fisiiermation matrix for multiple

response models using a linearization of the m@#g| as for single response models. Note
that our evaluation focused on the case of multgdponses, in which some parameters are
involved in several responses. For cases in whachmeters differ across responses, the same
information would be obtained using-M:ither for a single response or multiple responses
The expression of Mfor multiple response models has been implemant&FIM 3.0, an
extension of the R function PFIM, dedicated to papon design evaluation and optimization
[21-23]. Using a PKPD model, we have shown the eyppateness of the predicted RSE
obtained with M computed by PFIM 3.0 by comparison to those coetgbutithout any
linearization by the SAEM algorithm implementedine MONOLIX software (see Section
3.1). The predicted RSE were indeed all very cogeept for a slight discrepancy in the RSE
for Csovariability.

The simulation study on the PKPD example showeddmeordance between the RSE
predicted by PFIM and the empirical RSE computedfestimation results with the FOCE

or the SAEM algorithm using simulated datasets &ms#ion 3.2). Regarding results using the
FO algorithm, the empirical RSE were much largantthose predicted by PFIM or obtained
with FOCE or SAEM, in particular regarding the \adnility of the PD parameters. The
distribution of the RSE obtained with FO, FOCE &®&EM from the simulated data files are

in accordance with their respective empirical ones.
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Regarding the comparison of the estimation metfimdsultiple response models, no
problems of convergence were apparent with SAE®IFO method for the 1000 simulated
data files (see Section 3.3). However, it was difti to fulfill convergence conditions with
the FOCE method for which convergence was obsdnreahly 853 of 1000 datasets. The
simulation study illustrated the accuracy of theEBRAalgorithm in the simultaneous
approach, the parameter estimates being unbiaskdidnsmall RMSE. Similar results were
observed for the FOCE method, but conclusions mmeshade with caution due to problems
of convergence, as noted previously. Regardingtk®large bias and RMSE already
observed in the context of single response mo@édls\yas also observed in this context of
multiple response models with simultaneous estonafThe FO method produced larger RSE
on all PD parameters compared to those computdudtiaet FOCE method. This is in
accordance with the recommendation to use the FQ&Hod instead of the FO method in
this simultaneous estimation context [6, 7]. Thiparent difference can be explained by
considering the difference between FO and FOCEwxupations. The FO method
approximates the likelihood by linearizing the plapion model in its random effects about a
value of zero whereas FOCE is defined by a linefiom of the model around individual
estimates of the random effects. The FOCE methes m®re information than the FO
method, which is an advantage for estimation intiplel response models. Although the
estimation method FO performed badly, the samednder approximation in the
computation of M to predict SE performed well. The limitations bistfirst order
approximation around the expectation of the randéfects thus differ for design evaluation
where derivatives of log-likelihood are computed &or parameter estimation.

Several studies have considered the single respsingessing the limitations of this
linearization for design evaluation. Using a simpledel with few random effects, Han [32]
found that M was quite different when computed by linearizativein by an adaptative
Gaussian quadrature method. Mestlél. [33] compared the Fisher information matrix
computed by linearization to one computed by stsiihaimulation and showed that the
linearization seems to have no impact on the pdipul@®-optimal designs obtained but only
on the true efficiency of the designs. Whetheradapative Gaussian quadrature or via
stochastic simulation, the evaluation of the Fish@rmation matrix without linearization is
computationally intensive and is also limited taatrix of small dimensions. Finally, in the
context of Bayesian design where prior distributiane used, Hagt al. [34] proposed an

attractive solution to computedvhowever, it is also time consuming.
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Another alternative to the linearization methotbi€ompute the expected Fisher information
matrix using the SAEM estimation algorithm, as megd here. A large dataset is simulated
to be close to the asymptotic properties. The ofeskelk is then estimated for the estimation
performed in this dataset using one of the two wathof deriving M proposed for SAEM.
This simulation study shows a broader distributbthe observed RSE when:Né

computed by the Louis’s principle [30] comparedhe RSE observed with the linearization
procedure. Nevertheless, correct results are aaddnom both methods. Although the
approach using the SAEM algorithm of MONOLIX versi2.1 can be applied for problems
with a large number of random effects, it is tinonesuming (hours) compared to PFIM
(seconds). It may be required in specific casel asavhen design evaluation is used to
predict the power of a test to detect covariat@$ [Phe appropriateness of the RSEs of PFIM
combined with its fast execution emphasizes itsaathge in cases of design optimization
where a large number of \Mvften have to be computed. Moreover, in desigituati@an and
optimization for nonlinear models, some a priofiues of the parameters are required. Often,
they are not precisely known, and therefore thelhe@ise exact methods to predict is!
guestionable.

In this study, we empirically determined a popwatdesign associated with a simple PKPD
example for which the dose was equal to 1. No cham¢ghe dose was envisaged because the
main purpose of this work was to evaluatefist a PKPD model associated with one
population design. However, it would be interestimgtudy the influence of dose on the
population design and thus to plan dose optimiraticorder to have a better understanding
of the relationship between the PK and the PD model

In the present study, we considered only the chaad@agonak) matrix with no correlation
between the random effects of the PK and the PBrpaters. This could be extended by
exploring the appropriateness ot Mhen the PK parameters are directly correlatet thie

PD parameters, and thus the developmentfdvia full Q matrix. This development was
performed by Mentrét al. [17] for the correlation of the random effectsgraeters of single
response models and recently by Ogungbenab [26] for multiple response models.
Furthermore, the population Fisher information mxamplemented in PFIM 3.0 is
approximated by a block diagonal matrix assumirg the variance of the observations with
respect to the mean parameters is constant (seendpq). It would therefore be interesting to
investigate the influence of this assumption oncii@putation of the Fisher information

matrix.
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In conclusion, the comparison of RSE predicted BiMPto RSE computed without any
linearization by SAEM as well as to RSE obtainemhrfrthe simulation study, supports the
appropriateness of the approximated Fisher infaomahatrix for multiple response models.
Its implementation in PFIM 3.0 provides a usefuinpaiting tool for design evaluation and

optimization in the development of PKPD or PK sadi
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APPENDIX: Technical details in the development of il NLMEM for multiple responses

The population Fisher information matrid . (LIJ,Ei) for multiple response models for the

individual i with designé, is given by

_gf L (W)
MF(W,Ei)—E( awaqﬂj (16)

where L, (W;Y,) is the log likelihood of the vector of observason of that individual for the

population parameterd . BecauseF is nonlinear, there is no analytical expressiarttie

log-likelihood L, (kP;Yi) , and we use the first-order Taylor expansion of tioeleh

F(8.6)=F(g9(B.h).&). around the expectation bf, that is to say around 0:

(17)

F(9(A.h).&) OF (@(B.0)4 ){GFT(géﬁ,O),a)jb.

With this approximation, the Equation (5) can béten as:

(18)

Y DF(g(ﬂ,m,é>+("FT(9(6'§’°)’5 ’jbm,

Therefore, the approximated marginal expectafiprand variance/, of Y, are given by :

E(Y) UE =F(9(5,0).5) (10)

var (¥) OV :{GFT(Q(M) ’5)19{5':(9(&0) £)

' ab Py J* 3(8.0.0e Tuope £) (11)
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The log-likelihoodL, is thus approximated by:

-2L, (Wi¥) On In(27) + In(M]) + (¥ -E ) Vi (Y -E) (19)

Note that in this approximation, for sake of simjbyi we have assumed that the variance of
the error model is not linked to the random effedtthe individual but only to the mean

parameters. Based on this expression of the l@gtiod L,, we can derive the expression of

an elementary Fisher information matrix for a npltiresponse model. For the sake of
simplicity, we have omitted the indigefor the individual in the following. Mis a block
matrix depending on the approximated marginal ebghen E and varianc&/ of the

observations:

1( A(EV) C(EV)
MF(W’E)DE(CT(E,V) B(E,V)j (20)
where
_O0ET _ _ O0E oV, 0V .. . B
(A(E\V)), =2 mV o +tr(aﬂlv aﬂmv ) withm andl =1,...,p
4 0V :
(B(E,\V)),, tr(—V JV ) withmandl =1,...,dim(A)
4 oV

(C(EV))n =tr (—V

o —-V™) with [ =1,...,dim(A) andm=1,...,p

m

In this paper, we consider that the variance ofbtheervations with respect to the mean

parameters is constant, &{E,V),, =0.
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LIST OF FIGURES

Figure 1. Concentration (left) and effect (middle) profilersus time for the mean parameter
values used in the PKPD example. PK sampling tifled and PD sampling times (middle)

are represented y The right hand graph describes the effect versusentration.

Figure 2. Barplot of predicted and empirical RSE (%) foe fixed effects, the variances of
the random effects and the residual errors of KReIPexample. The empirical RSE
computed by the FO, FOCE methods and the SAEM igthgoon 1000, 853 and 1000
replicates are denoted FO, FOCE and SAEM, respdygtiVhe predicted RSE (%) computed
by SAEM and by PFIM are denoted SAEM_LO (for SEamid by the Louis’s principle),
SAEM_LI (for SE obtained by linearization) and PFIlMspectively.

Figure 3. Boxplots of the RSE (%) for fixed effects (A) afwl the variance components (B)
estimated from 997, 758 and 1000 replicates resdeby the FO, FOCE INTER methods
and the SAEM algorithm. SLO denotes the observeld SAEM computed by the Louis’s
principle whereas SLI denotes the observed RSEA&Ns computed by linearization. The
dotted line represents the RSE predicted by PFiM&ah parameter and the s#ar ()
represents the empirical RSE obtained for eachadethome outliers have been omitted with

respect to the Y scale for clarity of the figure.
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Table 1. Population parameters values used for the sintiatample

Parameters IBCI A’c ﬂ E, ﬁEmax 18C50 aé c‘«éc c‘éo ('Uémax aéso Oy opePK OinterPD

Values 0.05 02 1 4 1 0.250.25 0.09 0.09 0.09 0.3 0.15
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Table 2. Comparison of the relative standard errors (RS%)jmredicted by the SAEM algorithm implementedM@NOLIX V2.1 with both

methods of computation of the SE (noted SAEM_LOUouis’s principle and SAEM_LI for the linearizatianethod) and predicted by PFIM
for the PKPD example.

Parameters

Methods :Bcl A/c ﬁ Eo ﬂEmax ,Bcso aé aéc CUEO aémax Cuéo Oy opePK OinterPD

PFIM 5.3 5.6 3.5 3.2 4.6 15.7 17.7 18.9 154 348 56 7.4
SAEM_LO 5.3 5.9 3.8 3.6 5.9 15.9 15.3 21.4 15.8 344. 6.6 6.4
SAEM_LI 5.3 5.6 3.9 3.3 5.7 15.3 16.2 20.6 15.8 243. 6.7 6.5
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Table 3. Relative bias (%) and relative RMSE (%) of paramettimates for datasets with fulfilling convergeroonditions (denoted S) using

the FO and the FOCE INTER methods implemented ilNMEM V software and the SAEM algorithm implemeniadthe MONOLIX V2.1

software.
Parameters
Methods S Bo B, B L. B, af, o ok Wk k. Oypex Tinaro
Bias(%) FO 1000 -05 06 345 724 1316 -109 -69 23 7-1. 298 -0.3 23.5
FOCE 853 03 13 19 35 -7.3 -09 -11 -05 -01 -1.4 1.9 -0.1
SAEM 1000 00 -01 -01 -08 0.5 -04 -1.0 03 1-0. -01 1.3 -0.1
RMSE (%) FO 1000 117 74 351 195 1351 159 33488 345 367.1 26.0 156.8
FOCE 853 92 88 44 34 9.1 15.8 181 20.9 162 435 .412 27.7
SAEM 1000 53 56 53 3.3 4.0 17.8 164 21.7 16.7415 7.8 6.0
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