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SUMMARY 
 

 

We focus on the Fisher information matrix used for design evaluation and optimization in 

nonlinear mixed effects multiple response models. We evaluate the appropriateness of its 

expression computed by linearization as proposed for a single response model. Using a 

pharmacokinetic–pharmacodynamic (PKPD) example, we first compare the computation of 

the Fisher information matrix by approximation to one derived from the observed matrix on a 

large simulation using the stochastic approximation expectation–maximization algorithm 

(SAEM). The expression of the Fisher information matrix for multiple responses is also 

evaluated by comparison to empirical information obtained through a replicated simulation 

study using the first order linearization estimation methods implemented in the NONMEM 

software (FO, FOCE) and the SAEM algorithm in the MONOLIX software. The predicted 

errors given by the approximated information matrix are close to those given by the 

information matrix obtained without linearization using SAEM and to the empirical ones 

obtained with FOCE and SAEM. The simulation study also illustrates the accuracy of both 

FOCE and SAEM estimation algorithms when jointly modelling multiple responses and the 

major limitations of the FO method. This study highlights the appropriateness of the 

approximated Fisher information matrix for multiple responses, which is implemented in 

PFIM 3.0, an extension of the R function PFIM dedicated to design evaluation and 

optimization. It also emphasizes the use of this computing tool for designing population 

multiple response studies, as for instance in PKPD studies or in PK studies including the 

modelling of the PK of a drug and its active metabolite. 

 

KEYWORDS: nonlinear mixed effects models; multiple responses; Fisher information 

matrix; population design; first order approximation; PFIM 
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1 Introduction 
 
Nonlinear mixed effects models (NLMEM) are widely used to analyze various biological 

processes described by longitudinal data. Since the primary models developed by Sheiner et 

al. [1] in pharmacokinetic (PK) and pharmacodynamic (PD), NLMEM are become widely 

used for modelling of biological processes. NLMEM, also called the population approach, 

allow estimation of the mean value of the parameters in the studied population and their 

interindividual variability, or population characteristics. NLMEM are also now commonly 

used for the joint modelling of several biological responses such as the PK of parent drugs 

and of their active metabolite. NLMEM allow a sparse sampling design with few data points 

per individual in a large set of individuals. This can be particularly useful in studies in specific 

populations such as children or patients with serious diseases, where classical studies with a 

large number of samples are often limited for ethical or physiological reasons.   

Estimation of the parameters in NLMEM is commonly performed by maximum likelihood. 

However, due to the nonlinearity of the regression function, an analytical expression of the 

log-likelihood in nonlinear mixed effects models cannot be provided. To solve this issue 

several methods for estimating the parameters have been proposed, based on an 

approximation of the log-likelihood such as the First Order method (FO) or the First Order 

Conditional Estimate (FOCE) method proposed by Linsdstrom and Bayes [2]. Both methods 

use a linearization of the structural model either around the expectation of the random effects 

parameter (FO) or around individual estimates of the random effects (FOCE). These methods 

have been implemented in the NONMEM software [3, 4] but also in the nlme function of 

Splus and R software [5]. Compared to FO, the FOCE method provides less biased estimates 

and, in the context of joint modelling of multiple responses, is more appropriate with fewer 

problems of convergence or of inter-individual variance estimation [6, 7]. Alternative 

methods have also been proposed to maximize the likelihood using a stochastic 

approximation of the integrals, such as the Gaussian quadrature [8] or the Adaptative 

Gaussian quadrature methods implemented in the NLMIXED procedure of SAS. Recently, 

the Stochastic Approximation Expectation–Maximization algorithm (SAEM) has been 

developed and implemented in the MONOLIX software [9, 10]. It uses a stochastic 

approximation version of the standard expectation–maximization (EM) algorithm [11, 12]. 

The convergence and the consistence of the estimates have been proved by the authors. In this 

algorithm, the EM algorithm is used for finding maximum likelihood estimates of parameters 
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in models, where the model depends on unobserved variables corresponding to the random 

effects in the NLMEM.  

An appropriate choice of experimental design for estimating parameters in NLMEM is 

required. Called a population design in this framework, a design is defined as a group of 

elementary designs; each elementary design is composed of a set of sampling times to be 

performed in several individuals. Determining a population design involves identifying both 

the allocation of the sampling times and the whole group structure, that is to say the number 

of elementary designs, the number of samples per elementary design and the proportion or the 

number of individuals in each elementary design according to a fixed total number of 

samples. Simulation studies have shown that the precision of estimation of the parameters 

depends on the choice of the design [13, 14] and that an appropriate choice can thus 

substantially improve the efficiency of studies.  In the context of NLMEM with sparse 

designs, the challenge is then to determine the trade-off between few sampling times and 

informative data to obtain correct parameter estimates.  

To evaluate population designs, the theory of optimum experimental design described for 

instance by Atkinson and Donev [15] or by Walter and Pronzato [16] in classical nonlinear 

models, has been extended to NLMEM. This theory uses criteria based on the Fisher 

information matrix (MF). It comes from the Cramer-Rao inequality; indeed, the inverse of MF 

is the lower bound of the variance covariance matrix of any unbiased estimators of the 

parameters. As the likelihood has no closed form in our framework, a linearization of the 

model around the expectation of the random effects has been proposed by Mentré et al. [17] 

and extended by Retout et al. [18] to derive an approximate expression of MF. Accuracy of 

this approximation was first shown by simulation of an example based on a real PK study [18, 

19], and was confirmed by comparison of the predicted SE computed from this approximate 

MF to those given by an evaluation of MF without linearization obtained by stochastic 

approximation using the SAEM algorithm of MONOLIX [20]. The approximated expression 

of MF has been implemented in R functions PFIM and PFIMOPT for population design 

evaluation and optimization, respectively [21-23]. Recently, PFIM Interface 2.1, a graphical 

user interface version, has been developed, allowing both evaluation and optimization in the 

same tool [21]. However, currently, these tools only allow evaluation and optimization of 

population designs of single response models. For multiple response models, the same 

linearization method around the expectation of the random effects as for single response 

models has been proposed to approximate the population MF [24-27]. In those papers, 

illustrations of this development were provided using either a PKPD model or a joint PK 
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model of a drug and its metabolite. However, the accuracy of the development of MF by 

linearization for multiple responses has not yet been evaluated. Even if the same linearization 

as in the single response is used, computation can become more complicated for multiple 

responses. Indeed, some parameters can be included in several responses and the information 

on those parameters is therefore obtained from each of those response profiles. This is usual 

in the PKPD context where PD response depends on the PK parameters. Moreover, as noted 

previously, use of the linearization around the expectation of the random effects appears to be 

inadequate for joint estimation of multiple response models [6, 7]. The appropriateness of its 

use in the context of design evaluation is thus also questionable and should be investigated.  

The objective of this study was therefore to evaluate the first order approximation to compute 

the Fisher information matrix in NLMEM with multiple responses. To do this, we considered 

a PKPD simulation example associated with a population design. Then, we compared the 

predicted standard errors (SE), computed from the approximated expression of MF to those 

given by the evaluation of MF without linearization obtained by stochastic approximation 

using the SAEM algorithm of MONOLIX. We also performed another evaluation by 

comparison of those predicted SE to the empirical ones, obtained by estimation on simulated 

datasets using three different estimation algorithms: FO and FOCE (with NONMEM); SAEM 

(with MONOLIX). Based on those simulations, we also compared the performance of those 

three estimation methods in the same simultaneous analysis of this PKPD model.   

In Section 2, we introduce the notations, describe the PKPD example and present the 

methodology used to evaluate MF and to compare the estimation methods. Section 3 describes 

the results of the evaluation and the comparison. Discussion of the results is provided in 

Section 4. The development of MF for multiple responses is given in detail in the Appendix.  
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2 Methods 
 

2.1 Notation  
 
In the nonlinear mixed effect multiple response model, an “elementary” design iξ  for one 

individual i  is defined by in sampling times. It is composed of several sub-designs such that 

( )1 2, , ,i i i iKξ ξ ξ ξ= K , with ikξ  being the sub-design associated with the thk  response, 

1, ,k K= K . ikξ  is defined by ( )1 2, , ,
ikik ik iknt t tK , the vector of the ikn  sampling times for the 

observations of the thk  response, so that 
1

K

i ik
k

n n
=

=∑ .  

For N individuals, we define a “population design” composed of the N  allocated elementary 

designs iξ , 1, ,= Ki N .  A population design is therefore described by the N  elementary 

designs for a total number n of observations such that 
1

N

i
i

n n
=

=∑ : 

{ }1, ,Ξ = K Nξ ξ   (1) 

 

Usually population designs are composed of a limited number Q of groups of individuals with 

identical design within each group. Each of these groups is defined by an elementary 

design qξ , 1, ,= Kq Q , which is composed, for the thk response, of qkn  sampling times 

( )1 2, , ,
qkqk qk qknt t tK  to be performed in a number qN  of individuals. The population design can 

then be written as follows:  

 

[ ] [ ]{ }1 1 2 2, ; , ; ; ,Q QN N Nξ ξ ξ Ξ =  K  (2) 

 
 
A nonlinear mixed effects multiple response model or a multiple response population model is 

defined as follows. The vector of observations iY  for the ith individual is defined as the vector 

of the K different responses: 

  

1 1, , ,
TT T T

i i i iKY y y y =  K   (3) 
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where iky , 1, ,k K= K , is the vector of observations for the kth  response. Each of these 

responses is associated with a known function  fk  which defines the nonlinear structural 

model. The K functions  fk  can be grouped in a vector of multiple response models F, such as: 

 

( ) ( ) ( )1 1 2 2( , ) , , , , , ,
TT T T

i i i i i i K i iKF f f fθ ξ θ ξ θ ξ θ ξ =
  

K  (4) 

 

where iθ  is the vector of all the individual parameters needed for all the response models in 

individual i. The vector of individual parameters iθ  depends on β, the p-vector of the fixed 

effects parameters and on ib  the vector of the p random effects for individual i. The relation 

between iθ  and ( ), ibβ  is modelled by a functiong , ( ),i ig bθ β= , which is usually additive, 

so that = +i ibθ β , or exponential so that ( )exp=i ibθ β .  It is assumed that ib ∼ ( )0,N Ω with 

Ω  defined as a p p× -diagonal matrix, for which, each diagonal element2
rω , 1, ,r p= K

,  

represents the variance of the thr component of the vector bi. 

The statistical model is thus given by:  

 

( )( ), ,i i i iY F g bβ ξ ε= +  (5) 

 

where iε  is the vector composed of the K vectors of residual errors ikε , 1, ,k K= K ,  

associated with the K responses. We also suppose ikε ∼ ( )0, ikN Σ  with ikΣ  a ik ikn n× -diagonal 

matrix such that 

 

 ( ) ( )( )( )2

int int, , , , , ,ik i erk slopek ik erk slopek k i ikb diag f g bβ σ σ ξ σ σ β ξΣ = +   (6) 

 

where int erkσ  and slopekσ  qualify the model for the variance of the residual error of the 

thk response.  The case 0slopekσ =  returns a homoscedastic error model, whereas the case 

int 0erkσ =  returns a constant coefficient of variation error model. The general case where the 

two parameters differ from 0 is called a combined error model. We then note 

( )int, , , ,i i er slope ibβ σ σ ξΣ  the variance of iε , over the K responses, such that iΣ  is a i in n× -
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diagonal matrix composed of each diagonal element of ikΣ  with 1, ,k K= K . slopeσ  and int erσ  

are two vectors of the K components int erkσ  and slopekσ , 1, , ,k K= K  respectively. Finally, 

conditionally on the value of bi, we assume that the errors iε  are independently distributed. 

Let Ψ be the vector of population parameters to be estimated such as 

2 2
1 int( , , , , , )T T T T

p er slopeβ ω ω σ σΨ = K  and let λ be the vector of variance 

terms 2 2
1 int( , , , , )T T T

p er slopeλ ω ω σ σ= K , so that ( ),T T Tβ λΨ = . 

 
 

2.2 Population Fisher information matrix for multiple response models 
 

The population Fisher information matrix for a population design Ξ  (see Equation (1)), is 

defined as the sum of the N elementary Fisher information matrices ( ),F iM ξΨ  for each 

individual i: 

 

( ) ( )
1

, ,
N

F F i
i

M M ξ
=

Ψ Ξ = Ψ∑       (7) 

 

In the case of a limited number Q of groups, as in Equation (2), it is expressed by:  

 

( ) ( )
1

, ,
Q

F q F q
q

M N M ξ
=

Ψ Ξ = Ψ∑   (8)  

 

The expression of an elementary Fisher information matrix for multiple responses has been 

extended by Hooker et al. [25] using the same development as for single response models 

with a first Taylor expansion of the model as in Mentré et al. [17] and Retout et al. [22]. 

Its expression is given below for one individual i and depends on the approximated marginal 

expectation iE  and variance iV of the observationsiY  [28]. Details of this development are 

given in the Appendix.  

 

( ) 1 1 11
,

2

T
i i i i

F i i
m l m l

E E V V
M V tr V Vξ − − − ∂ ∂ ∂ ∂Ψ = +  ∂Ψ ∂Ψ ∂Ψ ∂Ψ 

  with m  and ( )1, ,diml = ΨK . (9) 
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with,   

 

( ) ( ( ,0), )i i iE Y E F g β ξ≅ =        (10) 

 

( ) ( )( ) ( )( ) ( )int

,0 , ,0 ,
,0, , ,

T
i i

i i er slope iT

F g F g
Var Y V

b b

β ξ β ξ
β σ σ ξ

   ∂ ∂
≅ = Ω + Σ   

   ∂ ∂   
  (11) 

 

 

This expression has been implemented in an extension of the R function PFIM, PFIM 3.0. 

This function has been developed for R 2.4.1 and higher versions. The implementation of the 

population Fisher information matrix assumes that the variance of the observations with 

respect to the mean parameters is constant (see Appendix). PFIM 3.0 evaluates population 

designs in NLMEM with multiple responses and thus returns the expected standard errors, 

defined as the square roots of the diagonal elements of the inverse of MF, on the population 

parameters with the design evaluated. To use PFIM 3.0, some prior information has to be 

supplied by the user such as the structural model, its parameterization and a priori values of 

the parameters. PFIM 3.0 can also optimize population designs with different optimization 

options. More details are available in an extensive document that can be freely downloaded 

with the function PFIM 3.0 on the PFIM website [21].  

 

2.3 PKPD simulation example 
 

In this paper, we use a simple and typical PKPD model as an example to evaluate MF  by 

simulation. It is derived from the one used by Hooker et al. [25] to illustrate the development 

of the Fisher information matrix for a multiple response model. The PK model for drug 

concentration is a one compartment with bolus input and first order elimination given as 

follows for the sampling time tPK:  

 

expPK PK PK PK
C C

dose Cl
f (θ , t ) ( t )

V V
= −   (12) 

 

where ( ),
T

PK CCl Vθ = is the vector of the PK parameters with Cl and VC, the clearance and the 

volume in the central compartment, respectively.  
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The PD model for drug effect is a simple maxE  model with baseline, expressed as a function 

of the predicted concentrationsPKf , and given as follows for the sampling times PDt  : 

 

( ) ( )max
0

50

,
, ,

( , )
PK PK PD

PD PK PD PD
PK PK PD

E f t
f t E

C f t

θ
θ θ

θ
= +

+
 (13) 

 

where ( )0 max 50, ,
T

PD E E Cθ =  is the vector of the PD parameters with 0E , maxE  and 50C , the 

effect at baseline, the maximum effect and the concentration needed to observe half of the 

maximum effect, respectively.  

We assumed an exponential model of the random effects for both the PK and the PD 

parameters. We associated a proportional error model with the PK model characterized by the 

parameter slopePKσ  and a homoscedastic error model with the PD model characterized by the 

parameter int erPDσ . Thus, the vector of population parameters Ψ  is described by the vector of 

the fixed effects ( )
0 max 50

, , , ,
C

T
Cl V E E Cβ β β β β β=  and  by Tλ  the vector composed by the 

variance of the random effects and by the parameters for the error models such that 

( )
0 max 50

2 2 2 2 2
int, , , , , ,

C

T
Cl V E E C slopePK erPDλ ω ω ω ω ω σ σ= . The dose was fixed to 1 and the parameter 

values used in this paper are given in Table 1. 

We determined a population design associated with this PKPD example. This determination 

was empirical, without any optimization. The population design was composed of one group 

of 100N =  individuals. They all had 3 sampling times at 0.166, 6 and 12 for PK and 4 

sampling times for PD at 0.166, 6, 12 and 20 hours. Therefore, we had one elementary design 

( ),PK PDξ ξ  with ( )0.166, 6,12PKξ =  and ( )0.166, 6,12,20PDξ = . The population design was 

thus defined by ( ){ }, ,PK PD Nξ ξ Ξ =   . The curve profiles of the PK and the PD model for the 

fixed effects are displayed in Figure 1; the sampling times for each response are overlaid. 

 

2.4 Evaluation of MF for multiple responses  

2.4.1 Comparison of MF  with and without linearization 

 
In this section, we propose to compare the predicted SE obtained from the approximate MF for 

multiple responses computed by PFIM 3.0 to the SE obtained from more “exact” approaches 

using the SAEM estimation algorithm. This latter algorithm was used by Retout et al. [20] 
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and Samson et al. [29] to show the appropriateness of this approximation in a single response 

model. This SAEM algorithm allows the observed population Fisher information matrix to be 

computed according to two approaches. The first approach was developed by Samson et al. 

[29]  and has been used to evaluate an “exact” population Fisher information matrix using the 

Louis’s principle [30]. It does not require any linearization and can thus be considered as the 

“true” population Fisher information matrix. The second approach evaluates the Fisher 

information matrix using a linearization of the model around the conditional expectation of 

the individual parameters previously estimated by SAEM without any linearization.  

To perform this comparison, we first computed the predicted MF for the population design 

associated with the PKPD example using PFIM 3.0, based on the linearization. We then 

simulated a dataset of PK and PD observations for 10 000 individuals in order to achieve 

asymptotic properties using the software R 2.4.1. To do that, we used the parameter values 

given in Table 1 and the sampling times shown in Figure 1, defining the PKPD example 

(section 2.3).  For each individual i, we simulated a vector of random effects  ib  in ( )0,N Ω , 

where the diagonal elements of Ω  are the variance of the random effects, and we calculated 

the individual parameters using ( )expi ibθ β= . We then calculated the individual PK 

concentrations PK PK PKf (θ , t )  predicted by the model at each time PKt of PKξ . We also 

computed the individual PK concentrations at each time PDt  of PDξ  to derive the 

concentration ( ),PK PK PDf tθ  for the PD response using Equation (13). PD observations 

( ), ,PD PK PD PDf tθ θ  were then generated. Finally, for each response, we simulated the random 

errors PKε and PDε  from a normal distribution with zero mean and variance derived from 

Equation (6) using the parameters slopePKσ  and int erPDσ , respectively. Those errors were added 

to the previously generated PK and PD data to form the simulated observations for the PK and 

the PD response respectively.  

Using MONOLIX (Version 2.1) with SAEM as the estimation algorithm, we estimated the 

parameters using this simulated dataset and we then derived the observed population Fisher 

information matrix with the Louis’s principle procedure and the linearization method of 

SAEM. For these two Fisher information matrices, we then transformed the observed SE for 

each component of the population vector Ψ obtained with a simulation of 10000simN =  

individuals into predicted SE of a population of 100N =  individuals to be adapted to the 

design of the example using ( ) ( ) /
simN i N i simSE SE N NΨ = Ψ , for the thi component of  Ψ.  
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For estimation with the SAEM algorithm, we used an initial set of parameters with the values 

( )0.2, 0.05,1.2, 5,1.5 for the fixed effects, ( )1,1,1,1, 0.5 for the variance of the random effects 

and ( )0.5, 0.5  for the residual errors. The default values for the algorithm were used except 

for the number of Markov chains, which was set to 4, and the number of iterations with two 

different steps sizes, which was set to 1000 and 1000 to ensure good convergence.  

The predicted SE obtained by linearization with PFIM 3.0 were designated PFIM. The 

notations SAEM_LO and SAEM_LI denote the predicted SE obtained with the SAEM 

algorithm using the Louis’s principle and the linearization method, respectively. 

 

2.4.2 Comparison of MF  to empirical information through replicated simulation   

 
Another objective was to compare the predicted SE of MF computed from PFIM 3.0 to the 

empirical SE obtained by the FO method, the FOCE method and the SAEM algorithm on 

simulated datasets. To do that, we simulated 1000 datasets of 100 individuals with the 

software R 2.4.1 using the same PKPD model and population design described previously. 

Datasets were simulated using a similar method as in section 2.4.1, using the same parameter 

values and the same sampling times.  

For each simulated data file, we estimated the population parameters for the PKPD model 

using first the FO method and the FOCE with interaction method  implemented in NONMEM 

software version V and then, using the SAEM algorithm in MONOLIX (Version 2.1).  

For the estimations using the FO and FOCE methods, two sets of initial parameters were 

defined. The first corresponded to the value of the parameters used for the simulation (Table 

1). The second one was used only in the case of lack of convergence with the first set. The 

values of the second set of initial parameters were for the fixed effects: ( )0.08, 0.1,1.5, 3, 0.8; 

the values of the variance of the random effects and the variance of the residual errors were 

the same as for the first set of initial parameters. The initial values of the parameters and the 

different elements required to use the SAEM algorithm were identical to those described in 

section 2.4.1. 

For each parameter of the PKPD model, we compared the predicted SE using the three 

evaluations of MF with PFIM, SAEM_LO and SAEM_LI, to the empirical SE obtained with 

the FO method, the FOCE method and the SAEM algorithm, denoted FO, FOCE, and SAEM, 

respectively. These empirical SE are defined as the sample estimate of the standard deviation 
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from the parameter estimates for each method, considering only the subset of datasets 

fulfilling all convergence conditions.  

We were also interested in comparing the distribution of the observed SE provided by each of 

the estimation methods to the empirical SE and to the predicted SE. In this case, we 

considered only the subset of datasets for which both the convergence and the variance–

covariance matrix of estimation were obtained. For the distribution of the SE provided by the 

SAEM algorithm, we considered both methods of computation of the SE, the Louis’s 

principle and the linearization. 

 
2.5 Comparison of results for estimation methods with and without linearization 

 

Using the previous simulations, we also compared the three methods of estimation: FO, 

FOCE and the SAEM algorithm. For each parameter, the relative bias as well as the relative 

RMSE were computed for the S datasets fulfilling convergence conditions( )1000S ≤ , which, 

for lΨ , the thl  parameter of the population vectorΨ , are given by: 

 

( )
0

0
1

ˆ1 sS
l l

l
s l

Bias
S =

 Ψ − ΨΨ =   Ψ 
∑  (14) 

 

( )
2

0

0
1

ˆ1 sS
l l

l
s l

RMSE
S =

 Ψ − ΨΨ =   Ψ 
∑  (15) 

 

with ˆ s
lΨ  the estimated value of lΨ   for the ths simulated datasets and 0lΨ  the true value. 

3 Results 
3.1 Comparison of MF  with and without linearization 

 

The SE predicted through the use of the SAEM algorithm on a large dataset (SAEM_LI and 

SAEM_LO) and those predicted by PFIM 3.0 are reported in Table 2 as relative SE, i.e. SE 

divided by the true value of the parameter, noted RSE and expressed in %. Overall, whatever 

the method, the RSE of the population parameters were very close for the fixed effects with a 

difference of at most 1.3% for 
50Cβ  between the SE predicted by PFIM and the one given by 

SAEM_LO. Regarding the variance parameters, RSE were also very close, except for 
50

2
Cω  for 
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which PFIM seemed to slightly overestimate the parameter estimate precision with a 

difference of about 10% compared to the SAEM approaches.  

This evaluation shows the appropriateness of the extension of the population Fisher 

Information matrix for multiple response models using the first order approximation. 

 

3.2 Comparison of MF  to empirical information through replicated simulation   
 

Convergence was achieved for all datasets and the variance–covariance estimates were 

obtained for 997 datasets among the 1000 simulated datasets with the FO method. 

Convergence with the FOCE method of NONMEM was obtained for only 853 sets. Among 

those 853 sets, the variance–covariance matrix of estimation was obtained for only 798 sets. 

Finally, with the SAEM procedure, no problem of convergence or covariance–variance matrix 

was noted for any of the 1000 datasets.  

For each parameter the empirical RSE obtained with the three estimation methods and the 

predicted RSE of SAEM_LI, SAEM_LO and PFIM are displayed in Figure 2. Concerning the 

FO method, the empirical RSE were much larger than the RSE of PFIM, SAEM_LI and 

SAEM_LO except for the PK parameters. This difference is above all important for the PD 

parameter 2

50Cω  with a RSE close to 200%. In contrast, the empirical RSE for FOCE and 

SAEM were very close to the RSE predicted with SAEM_LI, SAEM_LO and PFIM. 

The distribution of observed RSE from the three estimation methods, including both methods 

of computation of MF with the SAEM algorithm, are reported as boxplots in Figure 3, part (A) 

and part (B), for the mean and the variance parameters, respectively. For the FO method, the 

range of the observed RSE was much larger than for those obtained with the FOCE method or 

both SAEM procedures. However, the observed RSE of FO were concordant with the 

empirical ones. For all the parameters, the RSE predicted with PFIM were consistent with the 

distribution of the RSE observed with FOCE and the two SAEM procedures but not for FO. 

The range of the observed RSE for FOCE, SAEM and the corresponding empirical RSE were 

also concordant. However, for most parameters, the RSE computed using the Louis’s 

principle of SAEM had a broader distribution than by using linearization, with values for 

several datasets being outliers (Figure 3). This problem occurred in particular for the RSE on  

50

2
Cω  parameter.  

In this example, the RSE predicted by PFIM, computed by the first order linearization, were 

thus concordant with the empirical ones and the observed RSE obtained from the simulation 

study.  
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3.3 Comparison of three estimation methods  
 

The relative bias and relative RMSE obtained with the three estimation methods are presented 

in Table 3. Convergence was not achieved for 15% of the simulated datasets using the FOCE 

method whereas the FO method and the SAEM algorithm converged for all datasets. 

Regarding the FO method, bias and RMSE were large especially for the parameters of the PD 

model (fixed effects, random effects and residual errors) whereas FOCE and SAEM provided 

reasonable bias and RMSE for all the parameters. For the fixed effects, slightly lower bias and 

RMSE were observed for the SAEM procedure compared to FOCE. We observed important 

RMSE ( )40%>  for the parameter  
50

2
Cω  whatever the estimation method. This is in agreement 

with the large RSE obtained for that parameter previously. 

4 Discussion 
 
We evaluated the expression of the population Fisher information matrix  for multiple 

response models using a linearization of the model [25], as for single response models. Note 

that our evaluation focused on the case of multiple responses, in which some parameters are 

involved in several responses. For cases in which parameters differ across responses, the same 

information would be obtained using MF  either for a single response or multiple responses. 

The expression of MF for multiple response models has been implemented in PFIM 3.0, an 

extension of the R function PFIM, dedicated to population design evaluation and optimization 

[21-23]. Using a PKPD model, we have shown the appropriateness of the predicted RSE 

obtained with MF computed by PFIM 3.0 by comparison to those computed without any 

linearization by the SAEM algorithm implemented in the MONOLIX software (see Section 

3.1). The predicted RSE were indeed all very close except for a slight discrepancy in the RSE 

for C50 variability. 

The simulation study on the PKPD example showed the concordance between the RSE 

predicted by PFIM and the empirical RSE computed from estimation results with the FOCE 

or the SAEM algorithm using simulated datasets (see Section 3.2). Regarding results using the 

FO algorithm, the empirical RSE were much larger than those predicted by PFIM or obtained 

with FOCE or SAEM, in particular regarding the variability of the PD parameters. The 

distribution of the RSE obtained with FO, FOCE and SAEM from the simulated data files are 

in accordance with their respective empirical ones.  
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Regarding the comparison of the estimation methods for multiple response models, no 

problems of convergence were apparent with SAEM or the FO method for the 1000 simulated 

data files (see Section 3.3). However, it was difficult to fulfill convergence conditions with 

the FOCE method for which convergence was observed for only 853 of 1000 datasets. The 

simulation study illustrated the accuracy of the SAEM algorithm in the simultaneous 

approach, the parameter estimates being unbiased and with small RMSE. Similar results were 

observed for the FOCE method, but conclusions must be made with caution due to problems 

of convergence, as noted previously. Regarding FO, the large bias and RMSE already 

observed in the context of single response models [31] was also observed in this context of 

multiple response models with simultaneous estimation. The FO method produced larger RSE 

on all PD parameters compared to those computed with the FOCE method. This is in 

accordance with the recommendation to use the FOCE method instead of the FO method in 

this simultaneous estimation context [6, 7]. This apparent difference can be explained by 

considering the difference between FO and FOCE approximations. The FO method 

approximates the likelihood by linearizing the population model in its random effects about a 

value of zero whereas FOCE is defined by a linearization of the model around individual 

estimates of the random effects. The FOCE method uses more information than the FO 

method, which is an advantage for estimation in multiple response models. Although the 

estimation method FO performed badly, the same first order approximation in the 

computation of MF to predict SE performed well. The limitations of this first order 

approximation around the expectation of the random effects thus differ for design evaluation 

where derivatives of log-likelihood are computed and for parameter estimation. 

Several studies have considered the single response, stressing the limitations of this 

linearization for design evaluation. Using a simple model with few random effects, Han [32] 

found that MF was quite different when computed by linearization than by an adaptative 

Gaussian quadrature method. Merlé et al. [33] compared the Fisher information matrix 

computed by linearization to one computed by stochastic simulation and showed that the 

linearization seems to have no impact on the population D-optimal designs obtained but only 

on the true efficiency of the designs. Whether via adapative Gaussian quadrature or via 

stochastic simulation, the evaluation of the Fisher information matrix without linearization is 

computationally intensive and is also limited to a matrix of small dimensions. Finally, in the 

context of Bayesian design where prior distributions are used, Han et al. [34] proposed an 

attractive solution to compute MF; however, it is also time consuming. 
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Another alternative to the linearization method is to compute the expected Fisher information 

matrix using the SAEM estimation algorithm, as proposed here. A large dataset is simulated 

to be close to the asymptotic properties. The observed MF is then estimated for the estimation 

performed in this dataset using one of the two methods of deriving MF proposed for SAEM. 

This simulation study shows a broader distribution of the observed RSE when MF is 

computed by the Louis’s principle [30] compared to the RSE observed with the linearization 

procedure. Nevertheless, correct results are obtained from both methods. Although the 

approach using the SAEM algorithm of MONOLIX version 2.1 can be applied for problems 

with a large number of random effects, it is time consuming (hours) compared to PFIM 

(seconds). It may be required in specific cases such as when design evaluation is used to 

predict the power of a test to detect covariates [20]. The appropriateness of the RSEs of PFIM 

combined with its fast execution emphasizes its advantage in cases of design optimization 

where a large number of MF often have to be computed. Moreover, in design evaluation and 

optimization for nonlinear models, some a priori values of the parameters are required. Often, 

they are not precisely known, and therefore the need to use exact methods to predict MF is 

questionable.  

In this study, we empirically determined a population design associated with a simple PKPD 

example for which the dose was equal to 1. No change in the dose was envisaged because the 

main purpose of this work was to evaluate MF for a PKPD model associated with one 

population design. However, it would be interesting to study the influence of dose on the 

population design and thus to plan dose optimization in order to have a better understanding 

of the relationship between the PK and the PD model. 

In the present study, we considered only the case of a diagonal Ω matrix with no correlation 

between the random effects of the PK and the PD parameters. This could be extended by 

exploring the appropriateness of MF when the PK parameters are directly correlated with the 

PD parameters, and thus the development of MF for a full Ω matrix. This development was 

performed by Mentré et al. [17] for the correlation of the random effects parameters of single 

response models and recently by Ogungbenro et al. [26] for multiple response models. 

Furthermore, the population Fisher information matrix implemented in PFIM 3.0 is 

approximated by a block diagonal matrix assuming that the variance of the observations with 

respect to the mean parameters is constant (see Appendix). It would therefore be interesting to 

investigate the influence of this assumption on the computation of the Fisher information 

matrix.  
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In conclusion, the comparison of RSE predicted by PFIM to RSE computed without any 

linearization by SAEM as well as to RSE obtained from the simulation study, supports the 

appropriateness of the approximated Fisher information matrix for multiple response models. 

Its implementation in PFIM 3.0 provides a useful computing tool for design evaluation and 

optimization in the development of PKPD or PK studies. 
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APPENDIX: Technical details in the development of MF in NLMEM for multiple responses 
 

The population Fisher information matrix ( ),F iM ξΨ  for multiple response models for the 

individual i  with design iξ  is given by  

 

( ) ( )2 ;
, i i

F i T

L Y
M Eξ

 ∂ Ψ
Ψ = −  ∂Ψ ∂Ψ 

  (16) 

 

where ( );i iL YΨ  is the log likelihood of the vector of observations iY  of that individual for the 

population parameters Ψ . Because F  is nonlinear, there is no analytical expression for the 

log-likelihood ( );i iL YΨ , and we use the first-order Taylor expansion of the model 

( ) ( )( ), , ,i i i iF F g bθ ξ β ξ= , around the expectation of ib , that is to say around 0: 

 

( )( ) ( ( ,0), )
, , ( ( ,0), )

T
i

i i i

F g
F g b F g b

b

β ξβ ξ β ξ
 ∂≅ +  ∂ 

.  (17) 

 

With this approximation, the Equation (5) can be written as: 

 

( ( ,0), )
( ( ,0), )

T
i

i i i

F g
Y F g b

b

β ξβ ξ ε
 ∂≅ + + ∂ 

,  (18) 

 

Therefore, the approximated marginal expectation iE  and variance iV  of  iY  are given by :  

 

( ) ( ( ,0), )i i iE Y E F g β ξ≅ =    (10) 

 

( ) ( )( ) ( )( ) ( )int

,0 , ,0 ,
,0, , ,

T
i i

i i er slope iT

F g F g
Var Y V

b b

β ξ β ξ
β σ σ ξ

   ∂ ∂
≅ = Ω + Σ   

   ∂ ∂   
  (11)  
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The log-likelihood iL  is thus approximated by:  

( ) ( ) ( ) ( ) ( )12 ; ln 2 ln
T

i i i i i i i i iL Y n V Y E V Y Eπ −− Ψ ≅ + + − −   (19) 

 

Note that in this approximation, for sake of simplicity we have assumed that the variance of 

the error model is not linked to the random effects of the individual but only to the mean 

parameters. Based on this expression of the log-likelihood iL , we can derive the expression of 

an elementary Fisher information matrix for a multiple response model. For the sake of 

simplicity, we have omitted the indice i  for the individual in the following. MF is a block 

matrix depending on the approximated marginal expectation E  and variance V of the 

observations:   

 

( ) ( ) ( )
( ) ( )

, ,1
,

, ,2F T

A E V C E V
M

C E V B E V
ξ

 
Ψ ≅  

 
   (20) 

 

where                               

  

1 1 1( ( , )) 2 ( )
T

ml
m l l m

E E V V
A E V V tr V V

β β β β
− − −∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂
 with m  and 1, ,l p= K  

 

1 1( ( , )) ( )ml
m l

V V
B E V tr V V

λ λ
− −∂ ∂=

∂ ∂
  with m  and ( )1, ,diml λ= K  

 

1 1( ( , )) ( )ml
l m

V V
C E V tr V V

λ β
− −∂ ∂=

∂ ∂
 with ( )1, ,diml λ= K  and 1, ,m p= K  

 

In this paper, we consider that the variance of the observations with respect to the mean 

parameters is constant, i.e.( , ) 0mlC E V = .  
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LIST OF FIGURES 

 

Figure 1. Concentration (left) and effect (middle) profiles versus time for the mean parameter 

values used in the PKPD example. PK sampling times (left) and PD sampling times (middle) 

are represented by ●. The right hand graph describes the effect versus concentration.  

 

Figure 2. Barplot of predicted and empirical RSE (%) for the fixed effects, the variances of 

the random effects and the residual errors of the PKPD example. The empirical RSE 

computed by the FO, FOCE methods and the SAEM algorithm on 1000, 853 and 1000 

replicates are denoted FO, FOCE and SAEM, respectively. The predicted RSE (%) computed 

by SAEM and by PFIM are denoted SAEM_LO (for SE obtained by the Louis’s principle), 

SAEM_LI (for SE obtained by linearization) and PFIM, respectively. 

 

Figure 3. Boxplots of the RSE (%) for fixed effects (A) and for the variance components (B) 

estimated from 997, 758 and 1000 replicates respectively by the FO, FOCE INTER methods 

and the SAEM algorithm. SLO denotes the observed RSE of SAEM computed by the Louis’s 

principle whereas SLI denotes the observed RSE of SAEM computed by linearization. The 

dotted line represents the RSE predicted by PFIM for each parameter and the star (   ) 

represents the empirical RSE obtained for each method. Some outliers have been omitted with 

respect to the Y scale for clarity of the figure. 
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Table 1. Population parameters values used for the simulated example 

Parameters Clβ  
CVβ  

0Eβ  
maxEβ  

50Cβ  2
Clω  2

CVω  
0

2
Eω  

max

2
Eω  

50

2
Cω  slopePKσ  int erPDσ  

Values 0.05 0.2 1 4 1 0.25 0.25 0.09 0.09 0.09 0.3 0.15 

 



 25

Table 2. Comparison of the relative standard errors (RSE in %) predicted by the SAEM algorithm implemented in MONOLIX V2.1 with both 

methods of computation of the SE (noted SAEM_LO for Louis’s principle and SAEM_LI for the linearization method) and predicted by PFIM 

for the PKPD example. 

 

 Parameters 

Methods Clβ  
CVβ  

0Eβ  
maxEβ  

50Cβ  2
Clω  2

CVω  
0

2
Eω  

max

2
Eω  

50

2
Cω  slopePKσ  int erPDσ  

PFIM 5.3 5.6 3.5 3.2 4.6 15.7 17.7 18.9 15.4 34.8 6.5 7.4 

SAEM_LO 5.3 5.9 3.8 3.6 5.9 15.9 15.3 21.4 15.8 44.3 6.6 6.4 

SAEM_LI 5.3 5.6 3.9 3.3 5.7 15.3 16.2 20.6 15.8 43.2 6.7 6.5 
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Table 3. Relative bias (%) and relative RMSE (%) of parameter estimates for datasets with fulfilling convergence conditions (denoted S) using 

the FO and the FOCE INTER methods implemented in NONMEM V software and the SAEM algorithm implemented in the MONOLIX V2.1 

software.  

 
 

 
 
 

 
 

   Parameters 

 Methods 

method 

S  Clβ  
CVβ  

0Eβ  
maxEβ  

50Cβ  2
Clω  2

CVω  
0

2
Eω  

max

2
Eω  

50

2
Cω  slopePKσ  int erPDσ  

Bias (%) 

 

FO 1000 -0.5 0.6 34.5 72.4 131.6 -10.9 -6.9 2.3 -1.7 29.8 -0.3 23.5 

 FOCE 

 

853 0.3 1.3 1.9 -3.5 -7.3 -0.9 -1.1 -0.5 -0.1 -1.4 1.9 -0.1 

 SAEM 1000 0.0 -0.1 -0.1 -0.8 0.5 -0.4 -1.0 0.3 -0.1 -0.1 1.3 -0.1 

               

RMSE (%) FO 1000 11.7 7.4 35.1 19.5 135.1 15.9 33.4 48.8 34.5 367.1 26.0 156.8 

 FOCE 

 

853 9.2 8.8 4.4 3.4 9.1 15.8 18.1 20.9 16.2 43.5 12.4 27.7 

 SAEM 1000 5.3 5.6 5.3 3.3 4.0 17.8 16.4 21.7 16.7 41.5 7.8 6.0 
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