

The impact of medicinal drugs on traffic safety: a systematic review of epidemiological studies.

Ludivine Orriols, Louis-Rachid Salmi, Pierre Philip, Nicholas Moore, Bernard

Delorme, Anne Castot, Emmanuel Lagarde

▶ To cite this version:

Ludivine Orriols, Louis-Rachid Salmi, Pierre Philip, Nicholas Moore, Bernard Delorme, et al.. The impact of medicinal drugs on traffic safety: a systematic review of epidemiological studies.. Pharma-coepidemiology and Drug Safety, 2009, 18 (8), pp.647-58. 10.1002/pds.1763. inserm-00370537

HAL Id: inserm-00370537 https://inserm.hal.science/inserm-00370537

Submitted on 11 May 2009 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE IMPACT OF MEDICINAL DRUGS ON TRAFFIC SAFETY: A SYSTEMATIC REVIEW OF EPIDEMIOLOGICAL STUDIES

Ludivine Orriols, *MSc*¹, Louis-Rachid Salmi, *MD*, *PhD*¹, Pierre Philip, *MD*, *PhD*², Nicholas Moore, *MD*, *PhD*³, Bernard Delorme, *MD*, *PhD*⁴, Anne Castot, *MD*⁴, Emmanuel Lagarde, *PhD*¹

¹ Equipe Avenir prévention et prise en charge des traumatismes, Centre de recherche
INSERM U897 "Epidémiologie et Biostatistiques", Université Victor Segalen Bordeaux 2,
France, ² Clinique du sommeil, Hôpital Pellegrin, Bordeaux, France, ³ Département de
Pharmacologie, Université Victor Segalen Bordeaux 2, France, ⁴ Agence Française de
Sécurité Sanitaire des Produits de Santé, Saint-Denis, France

Correspondance to: Ludivine Orriols, <u>ludivine.orriols@isped.u-bordeaux2.fr</u>

Equipe Avenir prévention et prise en charge des traumatismes, Centre de recherche INSERM U897 "Epidémiologie et Biostatistiques", Université Victor Segalen Bordeaux 2, Case 11, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France Tel/Fax: +(33) 5 57 57 15 04

Keywords: road traffic crashes, medicinal drugs, methodology

Word count: 2991

Key points:

- Taking benzodiazepines has been identified as a risk for road traffic crashes in several epidemiological studies. However, data are missing for other medicinal drugs.
- Main methodological issues are confounding by indication and grouping of drugs with different properties.
- Exposure assessment methods are heterogeneous, partly explaining the inconsistent literature results.

ABSTRACT

Purpose: To evaluate the quality of epidemiological research into effects of medicinal drugs on traffic safety and the current knowledge in this area.

Data sources: The bibliographic search was done in Medline electronic database using the keywords: ((accident* or crash*) and traffic and drug*) leading to 1141 references. Additional references were retrieved from the Safetylit website and the reference lists of selected studies. Original articles published in English or French, between April 1st, 1979 and July 31st, 2008, were considered for inclusion. We excluded descriptive studies, studies limited to alcohol or illicit drug involvement, and investigations of injuries other than from traffic crashes. Studies based on laboratory tests, driving simulators or on-the-road driving tests were also excluded. Eligible studies had to evaluate the causal relationship between the use of medicinal drugs and the risk of traffic crashes. Study quality was assessed by two independent experts, according to a grid adapted from the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement.

Results: 22 studies of variable methodological quality were included. Definition of drug exposure varied across studies and depended on the data sources. Potential confounding due to the interaction between the effects of the medicinal drug and disease-related symptoms was often not controlled. The risk of motor-vehicle crashes related to benzodiazepines has been amply studied and demonstrated. Results for other medicinal drugs remain controversial. *Conclusion*: There is a need for large studies, investigating the role of individual substances in the risk of road traffic crashes.

INTRODUCTION

Traffic crashes are a common cause of death in many countries. Among the numerous risk factors (eg, speed, alcohol, talking on cell phones, road infrastructures), the effect of medicinal drugs has not received sufficient attention. Assessment of effects of medicinal drugs on driving ability by laboratory tests, driving simulators or on-the-road driving tests provides helpful insights on potential impact, but only partially assesses the impact in "real life" conditions where driver behaviour, health status, and road traffic environment interact. Reports on the state of knowledge about drugs and driving were published in 1999⁻¹ and 2003², showing an increase concern about the role medicinal drug use may play in road traffic crashes. In 2003, a European Safety Action program was set up to encourage research on the effects of medicinal drugs, in order to establish a European classification regarding road safety ³. Two literature reviews, focusing on a few medicinal drugs (benzodiazepines, opioids, antihistamines and antidepressants), concluded that benzodiazepines represent a major traffic safety problem but remained cautious about other medicinal drugs ⁴⁵. The aim of this article is to review available epidemiological studies, their results and methodological issues, in order to make recommendations for further research.

METHODS

Search strategy

The bibliographic search was done in Medline electronic database using the keywords: ((accident* or crash*) and traffic and drug*). We updated the search using the Safetylit website which provides an updated literature on injury prevention with a special section on "alcohol and other drugs". The reference lists of papers considered for inclusion were scanned for any further potentially eligible studies. Original articles published in English or French, between April 1st 1979 (oldest article we included) and July 31st, 2008 (end of inclusion period), were considered for inclusion. We excluded descriptive studies, studies limited to involvement of alcohol or illicit drugs, and studies of injury risk other than in traffic crashes. Studies based on laboratory tests, driving simulators or on-the-road driving tests were also excluded. Eligible studies were those that evaluated the causal relationship between the use of medicinal drugs and the risk of traffic crashes.

Quality assessment

A reading grid was adapted from the STROBE statement (Strengthening the Reporting of Observational Studies in Epidemiology) ⁶ and from the quality assessment checklists published by Salmi ⁷ (see Appendix 1). Criteria covered methods of selecting participants, data collection regarding outcomes, exposures and potential confounders, statistical methods and reported results, as well as discussion content.

Participant selection was evaluated according to the relevance of eligibility and exclusion criteria to reflect a general population of drivers, the choice of sources, the independence of selection from the event or the drug exposure, and the comparability of the reference group. We considered the way medicinal drug exposure was assessed. In studies on medicinal drug consumption and crash risk, several potential confounders should be measured and controlled in analyses. Apart from subjects' age and gender, interaction between disease-related symptoms and the effects of the medicinal drug used to treat the disease, which can both modulate the risk of crash, should be addressed. Other important variables to be measured are the number of kilometres driven in each group and the consumption of alcohol or other drugs. We assessed the relevance of statistical methods and results presentation and discussion. Two authors (EL and LO) reviewed the selected studies independently according to the grid criteria. Disagreements were referred to a third reviewer (LRS) and resolved by discussion.

RESULTS

Bibliographic search retrieved 1141 references from which 16 eligible studies were selected on the basis of their title and abstract. An additional six studies were found either from a Safetylit website search or from the reference lists of the initial 16 studies. This process led us to select 22 epidemiological studies of the impact of medicinal drugs on the risk of traffic crashes ⁸⁻²⁹. Their methodology and main results are presented in Table 1.

Quality of available research

Two sources for the outcome variable (the crash) are described in these studies. In eight studies, case selection was based on emergency admission to hospital for injuries related to the crash ¹⁶ ¹⁸ ²⁰ ²¹ ²³ ²⁶ ²⁸. Accident record databases represented the most frequent source for identification of subjects involved in traffic crashes ⁸⁻¹⁵ ¹⁷ ¹⁹ ²² ²⁵ ²⁹. Drummer *et al* ¹¹ focused on fatal crashes while two other studies only considered non-fatally injured drivers ¹⁸ ²⁷. Case-control was the most frequent design ¹⁰ ¹³ ¹⁵ ¹⁷ ²⁰ ²³ ²⁵ ²⁷. Two strategies were used to select an appropriate control group, composed of drivers who have not been involved in a crash. The first method consisted of random selection from moving traffic or at petrol stations ¹⁶ ²⁰. Selection was therefore done on a voluntary basis, which can lead to a selection bias. In the second method, control subjects were selected from the source of case data, such as health insurance records ¹⁷, driver licence records ¹⁰ ¹³ ¹⁵ ¹⁹ ²⁵, general practitioner records ²³ or hospital admissions ²⁷. Depending on the characteristics of the source population, extrapolation to the general driver population must be done with caution, especially if there is no indication that these controls actually drive.

Among selected epidemiological studies, five were responsibility studies ^{11 18 19 24 26} which can be viewed as a particular case-control study. The main principle is that if a medicinal drug contributes to crash causation, it would be over-represented in drivers whose responsibility in the crash was demonstrated compared to non-responsible drivers. Responsibility analysis, based on police records, must be objective and independent of data related to medicinal drug consumption. A standardized method to determine the level of driver responsibility was described by Robertson and Drummer ³⁰ and applied in studies by Drummer *et al* ¹¹ and Longo *et al* ¹⁸. The responsibility determination criteria were not described precisely in the other three studies ^{19 24 26}.

Barbone *et al* ⁸ and Ray *et al* ²² used a case-crossover design, where the exposure risk to a given medicinal drug in a period immediately before the crash was compared with the exposure risk in an earlier period. Each subject was his own control and confounding due to all fixed characteristics was therefore eliminated, including genetics, personality, education, lifestyle and chronic diseases. This design, appropriate to study the effects of episodic exposure on the risk of acute events ³¹, is not adapted to chronic exposure.

Exposed/non-exposed studies have also been conducted, in which users and non-users are followed up for subsequent road traffic crashes ⁹¹²¹⁴²¹²²²⁸²⁹. Unlike case-crossover designs, these studies ensure independence of subject selection from outcome and can address chronic consumption. This is not always true in case-control studies.

Available data about medicinal drug prescription (eg, dose, treatment duration) depended on national records. The link between prescription and actual consumption is estimated in various ways. Exposure periods can be estimated according to the date of dispensation and the number of defined daily doses (DDDs) dispensed ^{9 12 25 29} or according to the prescribed duration of treatment when known ^{8 15}. Sensitivity to definition of consumption period has been tested, comparing the results obtained for a presumed exposure of seven days with fourteen days, starting the day after dispensing ^{9 12 14}. Incident use was defined as exposure after a non-use period to assess the effect of treatment initiation ^{9 14 15 21 25 28 29}, as opposed to chronic consumption defined by repeated exposure ^{10 13 28}.

Drug exposure assessment was performed by the analysis of urine or blood samples in six studies ^{11 16 18 20 24 27}. This method measures actual use and offers the advantage of accounting for non-prescribed medicinal drugs. The main limits are the small number of substances tested and the time period between crash and sampling which may be critical for some medicinal drugs.

McGwin *et al*¹⁹ collected medicinal drug exposure data during a telephone interview, leading to possible bias due to self-reporting. Indeed, Honkanen *et al*¹⁶ showed that only half of the patients in whom benzodiazepines were detected by serum analysis reported having taken these medicinal drugs.

Another issue relates to the grouping of drugs according to therapeutic class, often for reasons of statistical power. As an example, all benzodiazepines were assessed as a single class of exposure ⁸¹¹¹⁷⁻²⁰²²²⁷, whereas, in this class, drugs can have different pharmacokinetic properties: benzodiazepines with longer half-lives are probably more likely to be associated with an associated risk of road traffic crash ¹⁵.

Concomitant consumption of non-medicinal psychoactive substances was sometimes controlled in the analysis: illicit drugs in two studies ^{11 18}, alcohol in five studies ^{11 18 20 21 24}. The frequency of driving was measured and accounted for in statistical models in only two studies ^{17 19}. A few studies considered the potential interaction with medical conditions ^{10 13 15} ^{17 19 25}. McGwin *et al* ¹⁹ estimated the risk for angiotensin-converting enzyme inhibitors and anticoagulants adjusted for the conditions for which they are prescribed, and the same strategy was used for nonsteroidal anti-inflammatory drugs and arthritis. In the study of the effect of warfarin, adjustment was made for cardiovascular events and strokes ¹⁰. Other studies adjusted for a summary chronic disease score based on selected prescription medications used in the management of chronic conditions ^{13 15 17 25}.

- 7 -

The effects of medicinal drugs on road safety

Benzodiazepines

The impact of benzodiazepines on the risk of car crashes has been extensively considered in several studies^{8 11 12 14-24 26-28}. The strength of the associations and the consistency between studies indicate that benzodiazepines are a cause of car crash risk, although part of the effect could result from the indication of benzodiazepines (sleep problems). The effects of benzodiazepines on the risk of crash have been demonstrated in the elderly ¹⁵ ²², but also among younger drivers ^{8 14 21 28}. The effects of treatment initiation have been explored ^{14 15 21} ²⁸. A cohort study about the risk of hospitalisation for traffic crash injuries showed a diminished risk with elapsed time from the new prescription fill-date²¹, probably reflecting tolerance to medicinal drug effects or decreasing doses or use over time. In the case-crossover study, a dose-response relationship between benzodiazepine consumption and crash risk was described⁸. Benzodiazepine hypnotics and anxiolytics have been studied separately^{8 12 21}, as well as long and short half-life benzodiazepines¹⁵ and individual drugs (eg, zopiclone, zolpidem, diazepam, lorazepam)^{14,28}. Four studies did not find any significant relationship. Two of them lacked sufficient statistical power¹¹¹⁷, and in the third information was obtained via self-report¹⁹. In the last study, the authors note that the assay used to detect blood benzodiazepines measures certain benzodiazepines poorly, especially triazolam²⁴.

Antidepressants

Two studies conducted in older drivers found a significant association between the risk of being involved in a car crash and the consumption of tricyclic antidepressants (relative risk= $2.2 [1.3-3.5]^{22}$ and odds ratio= $2.3 [1.1-4.8]^{17}$). Bramness *et al* found an increased risk for drivers who had received a prescription for any antidepressant, slightly higher for young drivers (18-34 years old), but without adjusting for the use of other narcotics and without

being able to distinguish between the effects of the medicinal drugs and depression ²⁹. Two other studies showed no association, probably because of insufficient statistical power ^{19 20}. However, despite a study population of 410 306 people aged at least 18 years, Barbone *et al* ⁸ found no relationship with the risk of traffic crash, for selective serotonin-receptor inhibitors or for tricyclic antidepressants, suggesting the risk to be specific to older drivers.

Lithium

In a nested case-control study, the risk of being involved in an injurious motor vehicle crash for elderly people who use lithium was found to be increased two-fold. Carbamazepine, another common mood stabiliser, also used in epilepsy, was not associated with the risk of traffic crashes ¹³.

Opioids

Engeland *et al* ¹² found that the risk of road traffic crashes was increased in users of natural opium alkaloids such as codeine, morphine and oxycodone (SIR=2 [1.7-2.4]), and that the risk was higher in the 18-54 age group. In the case-control study by Leveille *et al* ¹⁷, opioid analgesic use was also associated with an elevated crash risk in older drivers (OR=1.8 [1-3.4]). Mura *et al* ²⁷ also found the association significant, but no distinction was made between licit and illicit use of opiates as only biological samples were used for their detection. No significant association was found by three studies which may have lacked statistical power ^{11 20 23}, and by Ray *et al* ²². A longitudinal study from a cohort of 13 548 French workers suggested that pain and pain treatment could be associated with the risk of crash. The authors noted, however, that severe pain is more likely to be treated and may itself be associated with poorer driving performance ³².

H1 antihistamines

A few studies explored the association between H1 antihistamines and car crashes. Skegg *et al* identified only 3 antihistamine users (5.3%) among a small sample of 57 cases ²³. In the studies by Leveille *et al* ¹⁷ and by Ray *et al* ²², both conducted in the elderly, the association was not significant. Nevertheless, Howard *et al* ³³ showed that histaminergic consumption was associated with the risk of traffic crashes in professional drivers. There is a lack of epidemiological data on impact of the different generations of antihistamines which have different ability to cross the blood-brain barrier and induce sedation.

Diabetic treatment

The risk of crashes for diabetic drivers is linked to degenerative complications and to hypoglycaemic seizures related to treatment. Inconsistent results have been published about the role of diabetes and its treatment in causing traffic crashes, probably because of the heterogeneity in treatment regimes ³⁴⁻³⁷. A responsibility study conducted in the elderly did not find any association between diabetes and at-fault crash involvement and no interaction with treatment type ^{19 36}. Traffic injury risk has been reported to be 2.6-fold higher in older diabetic drivers, especially those treated with insulin (OR=5.8 [1.2-28.7]) but not in those using oral hypoglycaemic agents ³⁵. Hemmelgarn *et al* ²⁵ found the rate ratios for current users of insulin monotherapy were 1.4 [1.0-2.0] and 1.3 [1.0-1.7] for sulfonylurea and metformin combined. The authors note the difficulty of distinguishing between medicinal drug effects and diabetes-related complications since treatment is strongly correlated with disease progression.

Cardiovascular drugs

Among the medicinal drugs considered in epidemiological studies, calcium channel blockers were not associated with an increased risk of crashes ¹², and were associated with a reduced risk of at-fault crash involvement, as well as vasodilators ¹⁹. In the latter study, anticoagulants and angiotensin-converting enzyme inhibitors were positively associated with being at-fault for a crash but the odds ratios were no longer significant after adjustment for concomitant diseases ¹⁹. In a recent case-control study, the use of warfarin, an anticoagulant, was not associated with an elevated rate of injurious motor vehicle crash ¹⁰.

Carbamates

Carisoprodol, a muscle relaxing drug, has been considered in a pharmacoepidemiological study because of its central nervous system depressant potential. The standardised incidence ratio for being involved in a crash having been prescribed carisoprodol was 3.7 [2.9-4.8] ⁹.

Nonsteroidal anti-inflammatory drugs

Recently, Engeland *et al* ¹² raised the question of nonsteroidal anti-inflammatory drug (NSAID) effects in the central nervous system, as they found a significant association with the risk of traffic crash (OR=1.5 [1.3-1.9]). This result could be an indicator of clinical disability in some arthritic conditions. McGwin *et al* found that NSAID association with an increased risk of at-fault involvement in crashes persisted after adjustment for arthritis which was also independently associated with crash risk in females. The authors note however that some NSAID users may be undiagnosed for musculoskeletal impairments ¹⁹.

Discussion

The 22 studies included in this systematic review were of variable methodological quality. Several different research methods were used, leading to difficulties to compare them. The sample populations were different, ranging from victims of road traffic crashes with personal injury, victims hospitalized for road traffic crash injury to fatally injured drivers. Drug exposure assessment was heterogeneous, mostly depending on available retrospective data or on the molecule selection for biological testing.

Another identified issue was related to potential confounding. Particularly, alcohol or illicit drugs interact with medicinal drugs in impairing driving abilities and were not always taken into account. Driving conditions such as weekday, time of the day, road environment are important factors too, so is the number of miles driven. These latter factors were rarely assessed and included in risk modelling. Finally, the main issue of confounding by indication is addressed in a few studies only. Consequently, it often remains unclear whether crashes occur as a result of medicinal drug consumption or of the underlying disease, a concern highlighted in a literature review on benzodiazepines and driving ³⁸.

This systematic review highlights several fields where more epidemiological data are needed. There is a need for large studies, investigating the individual and combined role of substances in the risk of road traffic crashes. The differential effect of the older generations of medicinal drugs versus newer ones must be compared to adapt patient care. The impact on crash risk of dose changes, beginning or end of treatment, must be further investigated. As described above, some non-psychoactive medicinal drugs may alter driving abilities due to their action on physiological functions or regarding central side effects. The impact of these medicinal drugs on road traffic crash risk has hardly been assessed in epidemiological studies so far. Other studies should also be designed to assess the relative roles of disease and medication in the risk of road traffic crashes. Quantifying the risk in patients who may be under-represented in the general driving population is also of interest as they may be at high risk due to the disease itself, and to the medicinal drugs used to treat the condition (eg Parkinson's disease and dopamine agonists ³⁹).

- 12 -

Conflicts of interest

The authors declare that they have no conflicts of interest.

REFERENCES

- 1. European Monitoring Centre for Drugs and Drug Addiction. Literature review on the relation between drug use, impaired driving and traffic accidents. (CT.97.EP.14) Lisbon: EMCDDA, February 1999.
- 2. Jones R, Shinar D, Walsh JM. State of the knowledge of drug impaired driving. (DOT HS 809 642). National Highway Traffic Safety Administration, September 2003.
- 3. Commission of the European Communities. European Road Safety Action Programm 2003-2010. Halving the number of road accidents victims in European Union by 2010: a shared responsibility (COM (2003)311), 2003.
- 4. Morland J. Driving under the influence of non-alcoholic drugs. Forensic sci Rev 2000;12(1/2):79-104.
- 5. Walsh JM, de Gier JJ, Christopherson AS, Verstraete AG. Drugs and driving. *Traffic Inj* Prev 2004;5(3):241-53.
- 6. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008;61(4):344-9.
- 7. Salmi LR. Lecture critique et rédaction médicale scientifique. Comment lire, rédiger et publier une étude clinique ou épidémilogique? Paris: Elsevier, 1998.
- 8. Barbone F, McMahon AD, Davey PG, Morris AD, Reid IC, McDevitt DG, et al. Association of road-traffic accidents with benzodiazepine use. *Lancet* 1998;352(9137):1331-6.
- 9. Bramness JG, Skurtveit S, Morland J, Engeland A. The risk of traffic accidents after prescriptions of carisoprodol. *Accid Anal Prev* 2007;39(5):1050-5.
- 10. Delaney JA, Opatrny L, Suissa S. Warfarin use and the risk of motor vehicle crash in older drivers. *Br J Clin Pharmacol* 2006;61(2):229-32.
- 11. Drummer OH, Gerostamoulos J, Batziris H, Chu M, Caplehorn J, Robertson MD, et al. The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes. Accid Anal Prev 2004;36(2):239-48.
- 12. Engeland A, Skurtveit S, Morland J. Risk of road traffic accidents associated with the prescription of drugs: a registry-based cohort study. *Ann Epidemiol* 2007;17(8):597-602.
- 13. Etminan M, Hemmelgarn B, Delaney JA, Suissa S. Use of lithium and the risk of injurious motor vehicle crash in elderly adults: case-control study nested within a cohort. *BMJ* 2004;328(7439):558-9.
- 14. Gustavsen I, Bramness JG, Skurtveit S, Engeland A, Neutel I, Morland J. Road traffic accident risk related to prescriptions of the hypnotics zopiclone, zolpidem, flunitrazepam and nitrazepam. *Sleep Med* 2008.
- 15. Hemmelgarn B, Suissa S, Huang A, Boivin JF, Pinard G. Benzodiazepine use and the risk of motor vehicle crash in the elderly. *JAMA* 1997;278(1):27-31.
- 16. Honkanen R, Ertama L, Linnoila M, Alha A, Lukkari I, Karlsson M, et al. Role of drugs in traffic accidents. *Br Med J* 1980;281(6251):1309-12.
- 17. Leveille SG, Buchner DM, Koepsell TD, McCloskey LW, Wolf ME, Wagner EH. Psychoactive medications and injurious motor vehicle collisions involving older drivers. *Epidemiology* 1994;5(6):591-8.
- 18. Longo MC, Hunter CE, Lokan RJ, White JM, White MA. The prevalence of alcohol, cannabinoids, benzodiazepines and stimulants amongst injured drivers and their role in

driver culpability: part ii: the relationship between drug prevalence and drug concentration, and driver culpability. *Accid Anal Prev* 2000;32(5):623-32.

- 19. McGwin G, Jr., Sims RV, Pulley L, Roseman JM. Relations among chronic medical conditions, medications, and automobile crashes in the elderly: a population-based case-control study. *Am J Epidemiol* 2000;152(5):424-31.
- 20. Movig KL, Mathijssen MP, Nagel PH, van Egmond T, de Gier JJ, Leufkens HG, et al. Psychoactive substance use and the risk of motor vehicle accidents. *Accid Anal Prev* 2004;36(4):631-6.
- 21. Neutel CI. Risk of traffic accident injury after a prescription for a benzodiazepine. Ann Epidemiol 1995;5(3):239-44.
- 22. Ray WA, Fought RL, Decker MD. Psychoactive drugs and the risk of injurious motor vehicle crashes in elderly drivers. *Am J Epidemiol* 1992;136(7):873-83.
- 23. Skegg DC, Richards SM, Doll R. Minor tranquillisers and road accidents. Br Med J 1979;1(6168):917-9.
- 24. 'Benzodiazepine/Driving' Collaborative Group. Are benzodiazepines a risk factor for road accidents? . Drug Alcohol Depend 1993;33(1):19-22.
- 25. Hemmelgarn B, Levesque LE, Suissa S. Anti-diabetic drug use and the risk of motor vehicle crash in the elderly. *Can J Clin Pharmacol* 2006;13(1):e112-20.
- 26. Jick H, Hunter JR, Dinan BJ, Madsen S, Stergachis A. Sedating drugs and automobile accidents leading to hospitalization. *Am J Public Health* 1981;71(12):1399-400.
- 27. Mura P, Kintz P, Ludes B, Gaulier JM, Marquet P, Martin-Dupont S, et al. Comparison of the prevalence of alcohol, cannabis and other drugs between 900 injured drivers and 900 control subjects: results of a French collaborative study. *Forensic Sci Int* 2003;133(1-2):79-85.
- 28. Neutel I. Benzodiazepine-related traffic accidents in young and elderly drivers. *Hum Psychopharmacol Clin Exp* 1998;13:115-123.
- 29. Bramness JG, Skurtveit S, Neutel CI, Morland J, Engeland A. Minor Increase in Risk of Road Traffic Accidents After Prescriptions of Antidepressants: A Study of Population Registry Data in Norway. *J Clin Psychiatry* 2008:e1-e5.
- 30. Robertson MD, Drummer OH. Responsibility analysis: a methodology to study the effects of drugs in driving. *Accid Anal Prev* 1994;26(2):243-7.
- 31. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. *Am J Epidemiol* 1991;133(2):144-53.
- 32. Lagarde E, Chastang JF, Lafont S, Coeuret-Pellicer M, Chiron M. Pain and pain treatment were associated with traffic accident involvement in a cohort of middle-aged workers. *J Clin Epidemiol* 2005;58(5):524-31.
- 33. Howard ME, Desai AV, Grunstein RR, Hukins C, Armstrong JG, Joffe D, et al. Sleepiness, sleep-disordered breathing, and accident risk factors in commercial vehicle drivers. *Am J Respir Crit Care Med* 2004;170(9):1014-21.
- 34. Harsch IA, Stocker S, Radespiel-Troger M, Hahn EG, Konturek PC, Ficker JH, et al. Traffic hypoglycaemias and accidents in patients with diabetes mellitus treated with different antidiabetic regimens. *J Intern Med* 2002;252(4):352-60.
- 35. Koepsell TD, Wolf ME, McCloskey L, Buchner DM, Louie D, Wagner EH, et al. Medical conditions and motor vehicle collision injuries in older adults. J Am Geriatr Soc 1994;42(7):695-700.
- 36. McGwin G, Jr., Sims RV, Pulley L, Roseman JM. Diabetes and automobile crashes in the elderly. A population-based case-control study. *Diabetes Care* 1999;22(2):220-7.
- 37. Hansotia P, Broste SK. The effect of epilepsy or diabetes mellitus on the risk of automobile accidents. *N Engl J Med* 1991;324(1):22-6.

- 38. Fridel B, Staak M. Benzodiazepines and driving. *Rev Contemp Pharmacother* 1992;3:415-74.
- 39. Avorn J, Schneeweiss S, Sudarsky LR, Benner J, Kiyota Y, Levin R, et al. Sudden uncontrollable somnolence and medication use in Parkinson disease. Arch Neurol 2005;62(8):1242-8.

Study	Design and period	Population/ Sample	Outcome variable (sources, definition)	Drug exposure (sources, assessment)	Adjustment/ Stratification/ Controlled variables	Main studied agent(s)	Results	Overall quality
Engeland <i>et</i> <i>al</i> , 2007 ¹²	Cohort Apr 2004-	3.1 millions 18-69 years	Registry Crash with	Registry Exposed:	Age Gender	natural opium alkaloids BZD tranquilizers	SIR=2.0 [1.7-2.4] SIR=2.9 [2.5-3.5]	Good
Norway	Sept 2005	old	personal injury	 7 or 14 days starting the day after dispensing number of DDDs dispensed <u>Unexposed</u>: unexposed or not previously exposed to the drug or to any prescribed drug 	Other prescribed drugs	BZD hypnotics NSAIDs	SIR=3.3 [2.1-4.7] SIR=1.5 [1.3-1.9]	
Gustavsen <i>et</i> <i>al</i> , 2008 ¹⁴ Norway	Cohort Jan 2004- Sept 2006	3.1 millions 18-69 years old	Registry Crash with personal injury	Registry Exposed: - 7 or 14 days starting the day after dispensing - incident use: washout period=180 days - concurrent use allowed or not <u>Unexposed</u> : - to the drug or to other prescribed psychoactive drugs	Age Gender Other prescribed drugs	zopiclone + zolpidem nitrazepam flunitrazepam	SIR=2.3 [2.0-2.7] SIR=2.7 [1.8-3.9] SIR=4.0 [2.4-6.4]	Good
Bramness et	Cohort	3.1 millions	Registry	Registry	Age	carisoprodol	SIR=3.7 [2.9-4.8]	Good

al, 2007 ⁹	Apr 2004-	18-69 years	Crash with	Exposed:	Gender	diazepam	SIR=2.8 [2.2-3.6]	
Norway	Sept 2005	old	personal injury	- prevalent use:	Other prescribed	salbutamol	SIR=1.1 [0.6-1.8]	
				exposure within 7 days	drugs			
				starting the day after				
				dispensing				
				- incident use: washout				
				period=180 days				
				- concurrent use				
				allowed or not				
				- DDD				
				<u>Unexposed</u> :				
				- within the study				
				period				
				- within the washout				
				period				
Bramness et	Cohort	3.1 millions	Registry	Registry	Age	Cyclic, sedating	SIR=1.4 [1.2-1.6]	Average
al, 2008 ²⁹	Apr 2004-	18-69 years	Crash with	Exposed:	Gender	antidepressants		
Norway	Sept 2006	old	personal injury	- prevalent use: any		Newer, nonsedating	SIR=1.6 [1.5-1.7]	
				exposure within study		antidepressants		
				- incident use: washout				
				period=180 days				
				- DDD				
				Unexposed:				
				- within the study				
				period				
				- within the washout				
				period				
Neutel et al,	Cohort	323,658	Registry	Registry	Age	BZD hypnotics	OR=6.5 [1.9-22.4]	Average
1995 ²¹	1979-1986	> 20 years old	Hospitalization for	Exposed:	Gender	BZD anxiolytics	OR=5.6 [1.7-18.4]	

Saskatchewan,			crash injury	- incident use: washout	History of alcohol			
Canada				period=6 months	abuse			
				Unexposed:	Other prescribed			
				Absence of a	drugs			
				prescription in the 6				
				months before				
				simulated index				
				prescription				
Neutel, 1998	Cohort	323,658	Registry	Registry	Age	BZDs	OR=3.1 [1.5-6.2]	Average
28	1979-1986	> 20 years old	Hospitalization for	Exposed:	Gender	Triazolam	OR=3.2 [1.4-7.3]	
Saskatchewan,			crash injury	- incident use: washout	Other prescribed	Flurazepam	OR=5.1 [2.3-11.6]	
Canada				period=6 months	drugs	Oxazepam	OR=1.0 [0.3-3.7]	
				- repeat users: 3		Lorazepam	OR=2.4 [1.0-6.3]	
				prescriptions within 5		Diazepam	OR=3.1 [1.4-6.5]	
				months				
				Unexposed:				
				Absence of a				
				prescription in the 6				
				months before				
				simulated index				
				prescription				
Ray et al,	Cohort +	16,262	Registry	Registry	Age	BZDs	RR=1.5 [1.2-1.9]	Good
1992 ²²	Case-crossover	65-84 years	Crash with	-current use (dose and	Gender	cyclic antidepressants	RR=2.2 [1.3-3.5]	
Tennessee,	1984-1988	old	personal injury	duration)	Race	antihistamines	RR=1.2 [0.6-2.4]	
USA				- indeterminate use	Residence	opioid analgesics	RR=1.1 [0.5-2.4]	
				- former use	Year			
				- non use	Use of medical			
					care			
					Non-psychoactive			

					drugs			
Barbone et al,	Case-crossover	410,306	Registry	Registry	All fixed	tricyclic antidepressants	OR=0.93 [0.72-1.21]	Good
1998 ⁸	1992-1995	\geq 18 years old	19 386 drivers	Exposure assessment:	characteristics	selective serotonin-	OR=0.85 [0.55-1.33]	
Tayside			involved in a first	dose and duration	Crash	reuptake inhibitors		
Region, UK			road-traffic crash		characteristics	BZDs	OR=1.62 [1.24-2.12]	
						zopiclone	OR=4.00 [1.31-12.2]	
Leveille et al,	Case-control	234 cases	Registry	Registry	Age	BZDs	OR=0.9 [0.4-2.0]	Outstanding
1994 ¹⁷	1987-1988	447 controls	Cases: treatment	Exposure assessment:	Gender	antidepressants	OR=2.3 [1.1-4.8]	
Puget Sound,		\geq 65 years old	for motor vehicle	- probability quotient	Residence	opioids	OR=1.8 [1.0-3.4]	
USA			crash within 7	(quantity/days)	Chronic disease	antihistamines	OR=0.7 [0.3-1.7]	
			days of crash	- current use: within 60	score and medical			
			Controls: no crash	days	history			
			injury during one	- past use: within 2-6	Driving habits			
			year	months	Race			
				- number of	Marital status			
				psychoactive prescribed	Education			
				drugs within 6 month	Diabetic receiving			
					treatment			
Etminan <i>et al</i> ,	Case-control	5579 cases	Registry	Registry	Age	Lithium	Rate Ratio=2.08	Good
2004 13	nested within a	13,300	Cases: drivers in	Exposure assessment:	Gender		[1.11-3.90]	
Quebec	cohort	controls	crashes with at	- any use the year	Residence	carbamazepine	Rate Ratio=0.83	
	Jun 1990-	67-84 years	least one personal	before	Previous crash		[0.48-1.44]	
	May 1993	old	injury	- number of	Other prescribed			
			Controls: random	prescriptions	drugs			
			sample of the	- current use: within 60	Chronic disease			
			cohort	days	score			
Delaney et al,	Case-control	5579 cases	Registry	Registry	Age	warfarin	Rate Ratio=	Good
2006 10	nested within a	12,911	Cases: drivers in	Exposure assessment:	Gender		0.74 [0.55-1.05]	

Quebec	cohort	controls	crashes with at	- any use in the 30 days	Residence			
	Jun 1990-	67 - 84 years	least one personal	before	Previous crash			
	May 1993	old	injury	- any use in one year	Chronic disease			
			Controls: random	- frequent use: ≥ 5	score			
			sample of the	prescriptions	Other prescribed			
			cohort		drugs			
					CV events and			
					strokes			
Hemmelgarn	Case-control	5579 cases	Registry	Registry	Age	long half-life BZDs	Rate Ratio=	Good
<i>et al</i> , 1997 ¹⁵	nested within a	55,790	Cases: drivers in	Exposure assessment:	Gender		1.45 [1.04-2.03]	
Quebec	cohort	controls	crashes with at	duration of treatment	Residence	short half-life BZDs	Rate Ratio=	
	Jun 1990-	67-84 years	least one personal	New use: washout	Previous crash		1.04 [0.81-1.34]	
	May 1993	old	injury	period=3 days	Other prescribed			
			Controls: random		drugs			
			sample of the		Chronic disease			
			cohort		score			
Hemmelgarn	Case-control	5579 cases	Registry	Registry	Age	Insulin alone	Rate Ratio=	Good
<i>et al</i> , 2006 ²⁵	nested within a	13,300	Cases: drivers in	Exposure assessment:	Gender		1.4 [1.0-2.0]	
Quebec	cohort	controls	crashes with at	- use during the one-	Residence	oral hypoglycaemics alone	Rate Ratio=	
	Jun 1990-	67-84 years	least one personal	year time window	Previous crash		1.0 [0.9-1.2]	
	May 1993	old	injury	preceding	Chronic disease	Insulin + oral	Rate Ratio=	
			Controls: random	- current exposure: use	score	hypoglycaemics	1.0 [0.5-2.0]	
			sample of the	during the 30 days	Other prescribed	Sulfonylureas	Rate Ratio=	
			cohort	before	drugs		1.0 [0.8-1.1]	
				- DDD and dose		Metformin	Rate Ratio=	
				response			1.0 [0.7 - 1.6]	
						Sulfonylureas + metformin	Rate Ratio=	
							1.3 [1.0-1.7]	
						Sulfonylureas + metformin	Rate Ratio=	

						(high dose)	1.4 [1.0-2.0]	
Skegg et al,	Case-control	57 cases	Registry	Registry	Age	sedatives and tranquilizers	RR=5.2 [2.2-12.6]	Average
1979 ²³	Mar 1974-	1425 controls	Cases: hospital	Exposure assessment:	Gender	minor tranquilizers	RR=4.9 [1.8-13.0]	
Oxford, UK	Feb 1976		admissions or	Medicinal drugs	Residence			
			deaths for injuries	dispensed in the 3				
			due to crash	month before				
			Controls:					
			randomly selected					
			from the same					
			practice					
Movig et al,	Case-control	110 cases	ER	Urine/blood samples	Age	BZDs	OR=5.05 [1.82-	Average
2004 ²⁰	May 2000-	816 controls	Cases: injured car		Gender	opiates	14.04]	
Netherlands	Aug 2001		or van drivers		Blood alcohol		OR=2.35 [0.87-6.32]	
			Controls:		concentration			
			randomly selected		Other prescribed			
			from moving		drugs			
			traffic		Season			
					Time of day			
Honkanen et	Case-control	201 cases	ER	Blood samples +	Weekday	diazepam	found more	Average
al, 1980 ¹⁶	1977 (16 weeks)	325 controls	Cases: injured	interview	Hour of day		commonly in patients	
Helsinki,			drivers in ER		Location		than in controls	
Finland			within 6 hours				p=0.03	
			Controls:					
			randomly selected					
			in petrol stations					
BZDand	Responsibility	3147 subjects	Hospital centres	Blood samples	Age	BZDs	No association	Average
driving	May 1989-	2852 complete	Injured drivers		Gender			
collaborative	July 1990	files	examined less		Alcohol			
group, 1993 ²⁴		> 16 years old	than 6h after the					

France			crash	crash									
Mura <i>et al</i> ,	Case-control	900 cases	ER	Blood and urine (or	Age	Opiates (licit and illicit)	OR=8.2 [2.5-27.3]	Average					
2003 ²⁷	Jun 2000-	900 controls	Cases: involved in	sweat) samples	Gender	BZDs	OR=1.7 [1.2-2.4]						
France	Sept 2001		a non-fatal road										
			crash										
			Controls: having a										
			driving licence										
			and attended for										
			any non-traumatic										
			reason										
Jick et al,	Responsibility	244 people	Registry	Registry	Age	Sedating drugs	No association	Poor					
1981 ²⁶	Jan 1977 -	with an	Hospitalization for	Exposure assessment:	Gender								
Seattle, USA	Dec 1978	automobile	injurious car crash	At least one									
		crash		prescription within 3									
		15-64 years		months									
		old											
Longo et al,	Responsibility	2500 non-	Hospital crash and	Blood samples	Alcohol and illicit	Benzodiazepines	Significant increase	Average					
2000^{18}	Apr 1995-Aug	fatally injured	emergency unit		drugs		in culpability						
South	1995	drivers	Non fatal road										
Australia	Dec 1995- Aug		crashes victims										
	1996		who survive >30										
			days										
Drummer et	Responsibility	3398	Registry	Forensic toxicology	Age	BZDs	OR=1.27 [0.5-3.3]	Good					
<i>al</i> , 2004 ¹¹	1990-1999		Fatally-injured		Gender	Opiates (licit and illicit)	OR=1.41 [0.7-2.9]						
3 states of			drivers		Alcohol and illicit	Other psychoactive	OR=3.78 [1.3-11]						
Victoria,					drugs	medicinal drugs							
Australia					Type of crash								
					Location								

					Year			
McGwin et al,	Responsibility +	901 drivers	Registry	Questionnaire	Age	BZDs	OR=5.2 [0.9-30.0]	Average
2000 19	Case-control	\geq 65 years old	Responsibility:		Gender	antidepressants	OR=0.3 [0.1-1.0]	
Alabama, US	1996		subjects involved		Other prescribed	NSAIDs	OR=1.7 [1.0-2.6]	
			in at least one		drugs	ACE inhibitors	OR=1.6 [1.0-2.7]	
			automobile crash		Annual mileage	anticoagulants	OR=2.6 [1.0-7.3]	
			Case-control:		Associated	calcium channel blockers	OR=0.5 [0.2-0.9]	
			comparison with		diseases	vasodilators	OR=0.3 [0.1-1.0]	
			drivers not			oral hypoglycaemics	OR=1.3 [0.7-2.4]	
			involved in			insulin	OR=0.9 [0.4-1.8]	
			crashes					

DDD=defined daily dose, BZD=benzodiazepine, SIR=standardized incidence ratio, OR=odds ratio, RR=relative risk

Table 1: Epidemiological studies of traffic crash risk and medicinal drug consumption: methodology and main results

Appendix 1: Reading grid

Criteria	Y	Ι	Ν	NA	DNK	Comment
Study design Objectives are clearly stated						
Key elements of study design are provided						
Location and dates are specified						
Participants						
<i>Cohort study</i> Eligibility criteria are defined and						
appropriate Exclusion criteria are defined and appropriate						
Sources are described and appropriate						
Selection method is described and appropriate						
Selection is independent from risk of collision						
Follow-up period is defined and long enough						
Compared exposures are described						
Reference group is appropriate Selection procedures are identical in all						
exposure groups						
Case-control study						
Eligibility criteria are defined and appropriate						
Exclusion criteria are defined and appropriate						
Sources are described and appropriate						
Selection is independent of drug exposure						
Definition of cases is appropriate Controls are selected from same						
population as cases Control group is appropriate						
Selection procedures are identical in						
cases and controls Matching is appropriate						
Variables						
<i>Drug exposure</i> Data sources are described and appropriate						
Choice of studied drugs is justified						
Drug exposure assessment method is described and justified						

Case/control status is masked when assessing exposure		
<i>Collision data</i> Data sources are described and appropriate Collision characteristics are accounted for		
Accounting for potential confounders Age Gender Associated diseases Number of kilometres/miles driven Alcohol and other drugs		
Statistical methods Sample size calculation Appropriate estimates and models Control for confounding Sensitivity analysis		
Results Number of subjects reported Number of refusals reported Description of all groups Reported confidence intervals or p		
Discussion Key results/study objective Limitations and possible biases discussed		

(Y=Yes, I=Incomplete, N=No, NA= Not Applicable, DNK=Do Not Know)

Conclusion	
Quality	
Outstanding	
Good	
Average	
Poor	

Discussion