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Abstract: PSA is a biomarker routinely and repeatedly measured on prostate

cancer patients treated by radiation therapy. It was shown recently that its whole

pattern over time rather than just its current level was strongly associated with

prostate cancer recurrence. To more accurately guide clinical decision-making,

monitoring of PSA after radiation therapy would be aided by dynamic power-

ful prognostic tools that incorporate the complete post-treatment PSA evolution.

In this work, we propose a dynamic prognostic tool derived from a joint latent

class model, and provide a measure of variability obtained from the parameters

asymptotic distribution. To validate this prognostic tool, we consider predictive

accuracy measures and provide an empirical estimate of their variability. We

also show how to use them in the longitudinal context to compare the dynamic

prognostic tool we developed with a proportional hazard model including either

baseline covariates or baseline covariates and the expected level of PSA at the

time of prediction in a landmark model. Using data from three large cohorts of

patients treated after the diagnosis of prostate cancer, we show that the dynamic

prognostic tool based on the joint model reduces the error of prediction and offers

a powerful tool for individual prediction.

Keywords: Joint latent class model; Mixed model; Predictive accuracy; Error of

prediction ; Posterior probability; Prostate cancer prognosis
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1. Introduction

Prostate Specific Antigen (PSA) is a commonly used biomarker to monitor pa-

tients after treatment who received radiation therapy (RT) for localized prostate

cancer. A rise of post-treatment PSA is highly predictive of clinical recurrence

(Sartor et al., 1997; D’Amico et al., 2004) and definitions of biochemical recur-

rence have been suggested based on PSA crossing a threshold (Roach et al., 2006).

Recently, Thompson et al. (2005) argued that the rise of PSA above a given

threshold was not a satisfactory surrogate for detecting a clinical recurrence, that

PSA was a continuous marker of disease progression and that its whole trajectory

over time should be considered. In practice, detecting early signs of a recurrence

is of major importance to assist in the patient’s care and may facilitate the deci-

sion to initiate further treatment, such as salvage androgen deprivation therapy.

To more accurately guide clinical decision-making, monitoring of PSA after RT

would be aided by dynamic powerful prognostic tools that incorporate the com-

plete post-treatment PSA pattern. In this paper we refer to the pattern of PSA

values for a subject as they evolve over time as the PSA trajectory.

Tsiatis et al. (1995) stressed the importance of incorporating the complete

biomarker information as a time-continuous process in order to avoid biases due

to the periodically measured biomarker and measurement errors (Prentice, 1982).

Joint modeling of repeated measures of PSA and time-to-recurrence provides such

modeling in an efficient way by combining a mixed model for the change over time

of the marker and a survival model that describes the associated risk of the event

(Henderson et al., 2000). In the prostate cancer context, using a shared random-

effect model, Pauler and Finkelstein (2002) demonstrated that accounting for the

trajectory of PSA improved the fit of the data compared to including only a
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summary measure of PSA dynamics in the Cox model. Yu et al. (2004) showed

that a joint model of longitudinal PSA measures and risk of recurrence could

reduce the bias of the time-to-event parameters due to informative censoring, and

that the posterior distribution of the probability of event could be used to monitor

progression of the disease (Taylor et al., 2005). However, the numerical complexity

of joint models has so far limited their application as a prognostic tool (Pauler

and Finkelstein, 2002). The joint latent class model (JLCM), a different type of

joint model, avoids many of the numerical complexities of the shared random-

effects model (Lin et al., 2002;Proust-Lima et al., 2009). The JLCM assumes that

the dependency between the risk of event and the trajectory of the biomarker is

entirely captured by a latent class structure rather than by individual random

effects. This class of models is particularly useful for heterogeneous populations,

such as encountered in the study of recurrence of prostate cancer (Sartor et al.,

1997).

Using the JLCM as a computationally attractive example of a joint model, this

paper builds a dynamic prognostic tool for early detection of prostate cancer re-

currence and assesses its predictive ability on two large cohorts of patients treated

by RT for prostate cancer. We specifically evaluate whether accounting for post-

treatment PSA measures via a JLCM reduces the error of prediction compared to

models with only pre-treatment prognostic factors. We also compare its predictive

performance with those of a landmark (or conditional) model (Van Houwelingen,

2007; Zheng and Heagerty, 2005; Schoop et al., 2008) that can also incorporate

post-treatment PSA measures.

In section 2, we describe the JLCM, the dynamic prognostic tool that is derived

from this model and the computation of its standard error, as well as alternative
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predictive tools. Section 3 focuses on predictive accuracy measures used to com-

pare predictive abilities of the tools. In section 4, we build the prognostic tool

on a large cohort of patients, illustrate its use on individual patients, and show

that the dynamic prognostic tool from the JLCM has better predictive accuracy

compared to simpler prognostic tools on two independent large cohorts. Finally,

we discuss the methodology and the results.

2. Dynamic prognostic tool from a joint model

2.1 Joint latent class model

2.1.1 Latent class structure

Following the model formulation of Lin et al. (2002) and Proust-Lima et al.

(2009), we assume that the population of patients after RT can be divided into

G latent classes. The latent class membership is defined by a categorical latent

variable ci. The probability πig that subject i (i = 1, ..., N) belongs to latent class

g (g = 1, ..., G) is related to covariates Xpi in a multinomial logistic regression

model:

πig = P (ci = g|Xpi) =
eξ0g+XT

piξ1g

∑G
l=1 eξ0l+XT

piξ1l

(1)

where ξ0g is the intercept for class g and ξ1g is the vector of class-specific parame-

ters associated with the vector of time-independent covariates Xpi. For identifia-

bility, ξ01 = 0 and ξ11 = 0. In the JLCM, the latent class structure is assumed to

capture the entire dependency between the biomarker trajectory and the risk of

the event so that, as shown also in the directed graph in Figure S1 of Supplemen-

tary Material (http://biostatistics.oxfordjournals.org), PSA trajectory

and risk of recurrence are independent given the latent class membership.
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2.1.2 Pattern of PSA changes

Let Y ∗

i (t) be the value of PSA at time t for subject i, i = 1, ..., N , whose times

of measurements are tij, j = 1, ..., ni. The PSA trajectory is described by a linear

mixed model (Laird and Ware, 1982) specific to class g on the logarithm scale:

Yi(t) |ci=g = ln(Y ∗

i (t) + 0.1)

= (u0ig + β0X0i) + (u1ig + β1X1i)f1(t) + (u2ig + β2X2i)f2(t) + εi(t)

(2)

The parametric functions f1 and f2 were chosen in a preliminary analysis of 5

large cohorts of patients that described the progression of PSA after RT (Proust-

Lima et al., 2008). The function f1 represents the initial decline of PSA after the

end of RT. Using a profile maximum likelihood technique for the transformation

family defined by f1(t, η) = ((1+t)η−1), we found that η = −1.5 provided the best

fit. The function f2 represents the long-term rise in PSA after the end of radiation.

By considering the profile likelihood for the family of functions f2(t, ν) = tν+1/((t+

1)ν), we found that f2(t, 0) = t gave the best fit over the cohorts of patients.

We note that this corresponds to a long term exponential rise in PSA, which

has been previously used (Pauler and Finkelstein, 2002, Yu et al., 2004). The

vector of class-specific random-effects uig = (u0ig, u1ig, u2ig)
T follows a multivariate

Gaussian distribution with mean vector µg = (µ0g, µ1g, µ2g)
T and unstructured

variance-covariance matrix ω2
gB, where ω1 = 1 for identifiability. The vector µg

represents the mean trajectory of ln(PSA+0.1) over time in latent class g. The

vectors X0i, X1i and X2i are subvectors of Xi, the total vector of covariates, and are

associated with PSA trajectory through the regression parameters β0, β1 and β2.

For the application, we chose those effects to be common over the classes. Finally,
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εi(t) are independent Gaussian measurement errors with mean 0 and variance σ2.

2.1.3 Risk of recurrence

Let T ∗

i be the time-to-recurrence and Ci the censoring time. The observed

event time is Ti = min(T ∗

i , Ci). The indicator of recurrence Ei equals 1 if T ∗

i ≤

Ci and 0 if Ci < T ∗

i . We describe the risk of the event in latent class g by a

proportional hazard model:

λ(t | ci = g, Xri; ζg, δ) = λ0g(t; ζg)e
Xri(t)δ (3)

where Xri(t) is a vector of covariates that can be time-dependent. We assumed

that the effect of covariates on the risk of recurrence was common over the latent

classes, but class-specific effects could also be specified. Finally, λ0g(t; ζg) is the

baseline hazard in latent class g; in our application we used either a Weibull or

a piecewise constant risk function. The latent class structure captures all the

dependency between the biomarker evolution and the time-to-recurrence through

λ0g(t; ζg), so that neither the current value of the biomarker nor any other function

of the random-effects appears in the survival model.

2.2 Maximum likelihood estimates

We denote by θ the vector of all the parameters. The log-likelihood of the observed

data is

L(θ) =
N
∑

i=1

ln

(

G
∑

g=1

πigf(yi | ci = g; θ)λ(Ti | ci = g; θ)EiS(Ti | ci = g; θ)

)

(4)

where πig = P (ci = g; θ) is defined in (1) and S(Ti | ci = g; θ) is the survival

function derived from (3). The density f(yi | ci = g; θ) of the vector of PSA
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measures yi in latent class g is the multivariate Normal density φg(ỹi; θ) with

mean and variance-covariance matrix described in Proust-Lima et al. (2009). For

a given number of latent classes, maximum likelihood estimates are computed from

(4) using a modified Marquardt algorithm (Marquardt, 1963). Convergence is

assessed by stringent criteria based on the second derivatives of the log-likelihood

and by using a grid of initial values. The optimal number of latent classes is

determined using the Bayes Information Criterion (BIC) (Schwartz, 1978), as is

typical in mixture models (Hawkins et al., 2001). An estimate of the variance-

covariance matrix V̂ (θ) of the parameters θ is given by the inverse of the Hessian

matrix at the point estimate.

2.3 Posterior probability of recurrence

A posterior probability of recurrence can be easily derived from the JLCM and its

parameters θ. This probability, which can be computed for a new subject using

his available data at the current time, constitutes a dynamic prognostic tool of

recurrence.

2.3.1 Dynamic prognostic tool derived from the joint model

Consider a new subject i free of recurrence at time s for whom the vector

of repeated measures until s is denoted by Y
(s)
i = {Yi(u), u ≤ s} and all the

covariates Xi included in (1), (2) and (3) are available. Let T ∗

i denote the time of

recurrence for subject i. Then, the posterior probability of recurrence between s

and s + t for the parameter value θ can be easily computed:

P d
i (s, t; θ) = P (T ∗

i ≤ s + t | T ∗

i ≥ s, Y
(s)
i , Xi; θ) =

=
G
∑

g=1

P (T ∗

i ≤ s + t | T ∗

i ≥ s, ci = g, Xi; θ)P (ci = g | T ∗

i ≥ s, Y
(s)
i , Xi; θ)

(5)
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The latent class structure entirely captures the dependence between the trajec-

tory of the marker and the risk of recurrence. The predicted probability in (5) is

the sum over the classes of the product of the class-specific conditional probability

of the event that does not involve the marker measurements Yi(s)

P (T ∗

i ≤ s + t | T ∗

i ≥ s, ci = g, Xi; θ) =
S(s|ci = g, Xi, θ) − S(s + t|ci = g, Xi, θ)

S(s|ci = g, Xi, θ)
,

(6)

and the posterior probability of class-membership given by

P (ci = g | T ∗

i > s, Y
(s)
i , Xi; θ) =

πigf(yi | ci = g, Xi; θ)S(s|ci = g, Xi, θ)
∑G

l=1 πilf(Y
(s)
i | ci = l, Xi; θ)S(s|ci = l, Xi, θ)

.

(7)

2.3.2 Posterior probability of recurrence in simpler models

The standard proportional hazard model can be viewed as a specific case of

the JLCM. If G = 1, the risk of recurrence is independent of the evolution of the

biomarker, and the posterior probability of recurrence given in (5) reduces to:

P 0
i (s, t; θ) = P (Ti ≤ s + t | Ti ≥ s, Xi; θ) (8)

where Xi are baseline covariates and θ the vector of parameters from the

proportional hazard model given in (3) with G = 1.

When interest is in the prediction of an event after a certain time s, given

the history of the event and covariates until that time, a model for the residual

time distribution is required. A landmark (or partly conditional) model that does

not specify the longitudinal process can be used (Shi et al., 1996; Zheng and

Heagerty, 2005; Van Houwelingen, 2007; Schoop et al., 2008). This approach
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consists of fitting a survival model only to subjects still at risk at time s with

covariates collected until s, specifically the repeated measures of the marker. It

is common to reduce this general model and use only the value of the marker

at time s. In our case, this reduces to a proportional hazard model fitted on

subjects free of recurrence at time s with covariates Xi and Yi(s). A different

vector of parameters θs is obtained for each time s and the predictive probability

of recurrence is

P la
i (s, t; θs) = P (Ti ≤ s + t | Ti ≥ s, Xi; Yi(s); θs). (9)

In practice, PSA is measured at discrete times, so that Yi(s) is not observed for

all s. We considered two landmark models that differed in the imputation of Yi(s).

First we considered a “naive” landmark model that includes the last measure of

PSA before s to approximate the value at time s. Although Prentice (1982)

showed that using the last measure of the marker to approximate the current

marker value could induce bias, we used that approach because we wanted to

provide a very simple model that included information about PSA. Second we

instead extrapolated the value of the marker at the landmark point s using a

two-stage approach (Tsiatis et al., 1995).This method first estimates the mixed

model for PSA evolution described in (2) with G = 1 on a training sample, and

then uses the estimates to compute the empirical Bayes estimates of the random

effects and to estimate the PSA level at time s for any new subject based on his

PSA repeated measures before s.

We note that the landmark analysis does require a separate estimation of θs

for any time s needed for prognosis. A more complex approach proposed by

Van Houwelingen (2007) defines θs as a parametric function of s so that θs can be
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obtained at any s.

2.3.3 Estimate and measure of variability

For each of the prognostic tools given by (5), (8) or (9), the predictive prob-

ability of recurrence for patient i before time s + t given that he was free of

recurrence before time s can be computed using the vector of parameters θ̂ previ-

ously estimated on a sample, as Pi(s, t) = Pi(s, t; θ̂). Equivalently the predictive

probability of being free of recurrence is denoted by Si(s, t) = 1−Pi(s, t; θ̂). These

are point estimates. To give a measure of their variability, we approximated the

Bayesian posterior distribution of Pi(s, t). Vectors (θd)d=1,...,D were drawn from

the Normal approximation of the asymptotic distribution of θ, N
(

θ̂, V̂ (θ̂)
)

, so

that the standard error could be estimated from the empirical standard deviation,

SE(s, t) =
√

D−1
∑D

d=1(Pi(s, t; θd) − Pi(s, t))2. This method does not involve any

further estimation procedure. It requires only the point estimate θ̂ and the vari-

ance V̂ (θ̂) computed once from the training sample. It avoids the need for a com-

putationally intensive bootstrap resampling scheme and it is not model-specific

in comparison to the ∆-method. However, it can only be used for parametric

models. The 95% confidence bands of Pi(s, t) can also be obtained as the 2.5 and

97.5 percentiles of Pi(s, t; θ
d). The method can be extended to calculate standard

errors of summary measures of predictive accuracy presented in Section 3 on test-

ing samples. In that case, the calculation also involves bootstrapping the testing

data.
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3. Validation of predictive tools using predictive accuracy

measures

When validating and comparing predictive rules in a survival context, there is no

agreement in the literature about which measures should be preferred (Pencina

et al., 2008). One can be interested either in the discriminative power of the

predictive rule and use concordance measures derived from ROC methodology

(Heagerty and Zheng, 2005; Zheng and Heagerty, 2007) or in the predictive ac-

curacy of the rule (Schemper and Henderson, 2000). In this work, we chose to

focus on predictive accuracy measures that compare the actual value of predic-

tions with the observed data. We used summary measures derived from the error

of prediction (EP), errL;X(t) = E[L(η(t) − Ŝ(t | X))], where Ŝ(t | X) is the pre-

dictive rule regarded as fixed, η(t) the event status at time t, L is a loss function

and the expectation is with respect to the joint distribution of T and X. Several

estimators of EP were proposed either for time-independent rules (Schemper and

Henderson, 2000, Graf et al., 1999) or for dynamic rules (Henderson et al., 2002,

Schoop et al., 2008). They differ in the loss function and the method used to

account for censoring. In this work, we chose to focus on the estimate of absolute

error of prediction proposed by Henderson et al. (2002) that we found had the

best properties in a simulation study.

For a dynamic rule Ŝ(s+ t|Xi(s)), the estimator of absolute error of prediction

is computed at time s+t given information collected at time s and earlier:
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ˆerrX,s(s + t) =
1

Ns

Ns
∑

i=1

I(Ti > s + t)
∣

∣

∣
1 − Ŝ(s + t|Ti > s, Xi(s))

∣

∣

∣

+ EiI(Ti ≤ s + t)
∣

∣

∣
0 − Ŝ(s + t|Ti > s, Xi(s))

∣

∣

∣

+ (1 − Ei)I(Ti ≤ s + t) × [
∣

∣

∣
1 − Ŝ(s + t|Ti > s, Xi(s))

∣

∣

∣

Ŝ(s + t|Ti > s, Xi(s))

Ŝ(Ti|Ti > s, Xi(s))

+
∣

∣

∣
0 − Ŝ(s + t|Ti > s, Xi(s))

∣

∣

∣

(

1 −
Ŝ(s + t|Ti > s, Xi(s))

Ŝ(Ti|Ti > s, Xi(s))

)

]

(10)

where Ns is the number of subjects still at risk at time s.

In the dynamic prognosis context, the error of prediction is a two-dimensional

curve so that summary measures are useful. We used two summary measures over

a [0, τ ] window for a given time s: the absolute error of prediction at horizon τ

(EP (τ)) and the weighted average absolute error of prediction (WAEP) over [0, τ ],

as proposed by Henderson et al. (2002). This weighted average integrates the

absolute error of prediction over [0, τ ] using weights that correct for the reduction

in the number of observed events at longer times due to censoring. The estimator

of WAEP is:

ÎWAEPX,s
(s + t) =

∑n
(s)
τ

k=1 d
(s)
k (Ĝ(s)/Ĝ(tk)) ˆerrX,s(tk)

∑n
(s)
τ

k=1 d
(s)
k (Ĝ(s)/Ĝ(tk))

(11)

where d
(s)
k is the number of events at time tk among subjects still at risk at time s

and Ĝ(tk) and Ĝ(s) are the Kaplan-Meier estimates of the censoring distribution

at times tk and s.

Whatever the predictive accuracy measure of interest (EP(τ) or WAEP over

[0, τ ]), a relative measure of predictive accuracy can be developed that is analogous
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to R2 in linear regression: the proportion of predictive accuracy explained by

covariates. For example, the proportion of predictive accuracy at time t added

when using covariates X1 and X2 rather than X1 alone would be (errL;X1(t) −

errL;X1,X2(t))/errL;X1(t).

4. Application to Prostate Cancer

4.1 Three cohort studies

We considered data from three large prospective cohorts of patients treated by

external beam radiation therapy for localized prostate cancer. The three cohorts

were from University of Michigan (UM) (Taylor et al., 2005), William Beaumont

Hospital (WBH) (Kestin et al., 1999) and Radiation Therapy Oncology Group

(RTOG9406) (Roach et al., 2004). Patients were included in the analysis if they

had a clinical stage T1-4 and neither positive nodes or metastases, they had at

least one year follow-up without clinical recurrence or salvage androgen depriva-

tion therapy (SADT), and they had at least two repeated measures of PSA before

the end of the follow-up. The endpoint of interest was the first clinical recurrence

so that all the PSA measures collected after the end of RT and before this point

were included unless a SADT was received, in which case measures after SADT

were deleted. Clinical recurrence was defined as any of the following: distant

metastases, nodal recurrence, any palpable or biopsy-detected local recurrence 3

years or later after radiation; any local recurrence within 3 years of RT if the

most recent PSA was >2ng/mL; death from prostate cancer. This definition was

to allow for the possibility of residual local disease up to 3 years after RT.

Three pre-treatment prognostic factors were considered: Gleason score cate-

gory (2-6,7,8-10), T-stage category (1,2,3-4) and the pre-treatment level of PSA

(iPSA) transformed to ln(iPSA+0.1). As the risk of recurrence should be markedly
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reduced after SADT, a time-dependent indicator of SADT, equal to 0 before the

time of SADT and 1 after, was included in the hazard model. The three cohorts

are described in Table 1.

[Table 1 about here.]

A prognostic tool should be validated on external data, that is data not used

for the creation of the prognostic tool. Following the validation strategy suggested

by Altman and Royston (2000), we developed the prognostic tool on WBH, the

largest cohort, and evaluated its predictive performances on two external samples,

UM and RTOG9406. Although they are different cohorts, WBH and UM were

comparable in terms of pre-treatment covariates (T-stage, Gleason and iPSA)

and proportion of recurrences, whereas subjects in RTOG9406 were usually in a

earlier stage of the disease with a larger proportion of subjects with T-stage 1

and Gleason below 7. The number of recurrences in RTOG9406 was also smaller

(6.8% vs. 16.9% and 15.0% in WBH and UM).

4.2 Estimation of the joint latent class model on WBH

The three baseline covariates were included in both the survival model and the

latent class membership model. For the mixed model, as recommended by Proust-

Lima et al. (2008), Gleason was only included in the long-term rise part of the

model while T-stage was included in both short-term and long-term parts, and

iPSA was included in all three terms in equation (2). The hazard was defined by a

class-specific Weibull function since the Akaike criterion was systematically better

compared to a 5-step hazard function. The JLCM was fitted for different numbers

of classes. The values of BIC as the number of classes varied from 2 to 6 were

13514.5, 13386.2, 13347.6, 13327.1 and 13354.5 respectively, and the associated

numbers of parameters were 39, 51, 63, 75 and 87. The class-specific predicted
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mean trajectories and survival functions are displayed in Figure 1. The latent

classes differed mainly by their long-term rise of PSA and the risk of recurrence, a

higher long term increase of PSA being associated with a higher risk of recurrence.

Classes 1 and 2, which were relatively close in terms of trajectory and risk of

recurrence, were different in terms of class-membership parameters.

[Figure 1 about here.]

4.3 Dynamic prediction of prostate cancer recurrence

To illustrate the use of the posterior probabilities of recurrence at time s + t

given the information collected until time s, we show in Figure 2 the predicted

probability of recurrence for two patients from the UM cohort. For each one, the

predicted cumulative risk of recurrence was computed using the joint latent class

model (denoted 5LCM), the proportional hazard model with baseline covariates

and a 5-step risk function (denoted Baseline), and the two-stage landmark model

with a 5-step risk function (denoted PSA(s)). Predicted probabilities using the

naive landmark model with the latest PSA measure were very similar to the two-

stage landmark model. 95% confidence bands were computed as described in

Section 2.3.3 using 2000 draws. Predictions were made up to three years ahead,

which is a reasonable time horizon in this clinical setting.

[Figure 2 about here.]

For the subject on the left who recurred within the first 4 years, updated risk of

recurrence was computed every 6 months from 1 to 3.5 years after end of RT. The

PSA pattern for this patient is characteristic of an early recurrence with a drop

of PSA the first year after the end of RT and a subsequent rise of PSA. However,

levels of PSA are relatively low. The 5-LCM-based prediction that accounts for
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the shape of the PSA trajectory rather than the level of PSA captures the high

risk of recurrence, while the PSA(s) level based prediction remains relatively low.

In Supplementary Material, Figure S2 and S3 show predictions for 3 other patients

(Rec2, Rec3, Rec4) with different PSA profiles who recurred. For each of them

the 5-LCM model detects higher risk of recurrence earlier after the end of RT.

For the subject on the right who did not experience any recurrence within 6

years after RT, the updated risk of recurrence was computed every year from 1

to 6 years. This subject has a PSA trajectory characteristic of a cured patient.

However, as he has relatively bad prognostic factors (T-stage=3, Gleason=8 and

iPSA=62.4 ng/mL), the prediction based on baseline covariates predicts a high

probability of recurrence while the two dynamic prognostic tools update the risk

of recurrence according to the PSA trajectory so that, as soon as 3 years after RT,

the probabilities of recurrence they provide become very low. In Supplementary

Material, predictions for a second cured patient (Cens1 in Figure S4) also show

how accounting for PSA repeated measures allows a better understanding of the

cancer progression.

These individual predictions underline the usefulness of dynamic prognostic

tools that can adapt to the PSA trajectory. In the next section, we used predictive

accuracy measures to corroborate these suggestions at a population level on the

UM and RTOG datasets.

4.4 Validation of the prognostic tool on UM and RTOG

We evaluated the predictive accuracy of the prognostic tool based on the JLCM

four times a year from s=1 year to s=6 years after the end of RT for a time hori-

zon of 3 years. For each s, we computed the absolute error of prediction curves

and display three summary measures: the weighted averaged error of prediction
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(WAEP) over 3 years, and the error of prediction (EP) at 1 and 3 year horizons.

The 5-latent class model (denoted 5LCM) performances were compared to those of

a proportional hazard model including baseline covariates and a 5-step risk func-

tion (denoted Baseline), a proportional hazard model with a 5-step risk function

but without any covariate (denoted No covariate) and two landmark models with

a 5-step risk function (denoted either PSA(s) or Last PSA depending on how the

level of PSA at time s was computed). The summary measures for cohort UM and

RTOG are displayed in Figure 3. The estimates and standard errors of WAEP

in the 5LCM model for UM and RTOG cohorts were 0.0816 (SE=0.0090) and

0.0422 (SE=0.0068) respectively after 1-year follow-up and 0.0614 (SE=0.0095)

and 0.0472 (SE=0.0074) respectively after 3-year follow-up. Table 2 gives the

relative gain in WAEP for the two landmark models and the JLCM compared to

the model including only baseline information.

[Figure 3 about here.]

[Table 2 about here.]

For UM, whatever the summary measure, inclusion of baseline covariates im-

proved the predictive accuracy for prostate cancer recurrence only when using

information from the first 3 years (s ≤ 3). After that point, the model without

covariates gave similar predictive accuracy even though covariates effects were

highly significant. Accounting for the PSA measures in addition to the baseline

covariates using either a joint model or a landmark model reduced markedly the

absolute error of prediction in the first 6 years with relative gain in WAEP vary-

ing from 3% to close to 20% (see Table 2). Moreover, the joint model improved

the predictive accuracy more than the landmark models when using information
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from 1 year (11.7% vs. 3.3% of gain compared to baseline information) to 2 years

(15.3% vs. 7.7% of gain) after RT while the landmark models gave a better pre-

dictive accuracy at s=6 (gain of >19.5% vs. 7.3% for JLCM). This means that

in the first 2 years, the expected PSA at time of landmark was not sufficiently

predictive while later, the level of PSA mainly drove the predictions for UM.

For the RTOG cohort, the baseline covariates improved the predictive accuracy

during the whole follow-up. Furthermore, accounting for PSA repeated measures

improved markedly the predictive accuracy by reducing the absolute error during

the whole follow-up and especially in the first 2 years, as seen also in Table 2 with

gain in WAEP of 18.4% or 24.9% at 1 and 2 years vs. <4.8% and <9.2% for the

landmark models. In this cohort, which included earlier stages of the disease, the

landmark models did not capture all the predictive value of the PSA trajectory,

underlining the relevance of models like JLCM that include the whole trajectory.

For the two cohorts, the two landmark models gave similar predictiveness.

From a specific time of prediction, the curve of EP describes the change in

EP over horizon of prediction (Figure 4). At 1 year after RT, including the

post-treatment PSA measures in the JLCM substantially reduced the error of

prediction for the UM cohort at any horizon compared to the proportional hazard

model including baseline covariates (e.g. 19% improvement at 3 year horizon while

including the expected PSA(s) value improved the predictive accuracy by only 5%

at 3 year horizon). In contrast, when using information until 3 years after RT, the

landmarking analysis EP approached or surpassed the joint model EP suggesting

that after a time, the level of PSA may be sufficient for determining the risk of

recurrence for UM. Conversely, for RTOG cohort, both from 1 year and 3 years

after RT, the joint model reduced markedly the error of prediction at any horizon
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compared to the landmarking analysis.

[Figure 4 about here.]

5. Discussion

Although it is well known that PSA is highly predictive of prostate cancer re-

currence, its use for monitoring progression of the disease is still rather limited

and typically restricted to a binary summary of the PSA dynamics. Joint mod-

els offer an efficient framework to quantify the probability of recurrence utilizing

the repeated measures of PSA. We have shown how a joint latent class model

(JLCM) could be used to provide a dynamic prognostic tool of recurrence that

can be updated for each new measurement of PSA. The methodology would be

similar for a shared random effects model, except that the computations would

be more burdensome (Pauler and Finkelstein, 2002, Yu et al., 2004). The JLCM

relies on the conditional independence of the PSA repeated measures and the re-

currence of prostate cancer given the latent classes. The practical advantages of

this are that the log-likelihood has a closed form, and that the predictive tool can

be computed analytically. The construction of the tool requires the estimation of

the parameters on a single population only once. The prognostic tool can then

be computed analytically for any new subject, using any information about PSA

repeated measures and at any time. Moreover, to aid the user in evaluating the

variability of the prediction, standard error and confidence bands are computed

using an approximation of the Bayesian posterior distribution. This technique

can be used for parametric rules whenever the ∆-method is not straightforward

and a bootstrap is too computationally intensive. One limitation of the JLCM

would be that the number of latent classes cannot be directly estimated and has

to be selected according to a criterion, commonly the BIC. We note that using
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BIC to choose the number of classes has become standard practice in mixture

modeling (e.g. Hawkins et al. (2001)). Furthermore we found that the predictive

accuracy was not markedly impacted by the choice of the number of latent classes.

For example, the gain in predictive accuracy compared to the PHM with baseline

covariates was roughly the same for 4, 5 and 6 latent classes (e.g. gain in WAEP

for RTOG: 16.5%, 17.5%, 22.5%, 21.6% and 19.8% for G=2,3,4,5 and 6).

The validation of prognostic tools on different cohorts is of primary importance

in the process of developing a prognostic tool, especially when using a complex

statistical model. Indeed, a complex model can be fine-tuned for the dataset on

which it is estimated but have a poor fit on new data. Following the Altman

and Royston (2000) hierarchy of increasingly stringent validation strategies, we

directly validated our model on different datasets, from other centers and other

investigators. That gave us a good appreciation of whether a prognostic tool based

on a relatively complex model may improve the predictive accuracy in practice.

We found that the landmark approaches gave similar predictive accuracy as a

joint model for one dataset, but its predictive accuracy was lower for the other

dataset, suggesting its potential lack of generalizability. For these two datasets,

we found consistently that updating the risk of recurrence using the trajectory of

PSA was an important refinement and that, at least in the first years, the level of

PSA at time of prognosis could not capture the whole predictiveness of the PSA

trajectory.

There are many choices for how to validate a model (Pencina et al., 2008).

We chose predictive accuracy measures that focus on predictiveness rather than

discrimination. Measures of predictive accuracy have been criticized because of

their lack of interpretation. We showed through the application that our chosen
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measures give an easily interpretable assessment of the relative gain by quantifying

the gain in predictiveness of a new model compared to a standard one.

To conclude, joint modeling of a marker trajectory and a clinical outcome

is an attractive approach for developing powerful prognostic tools that can help

clinical decision making in chronic diseases. Predictive accuracy measures offer

an umbrella of criteria on which a prognostic tool can be validated and compared

to other existing rules.
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Figure 1. Predicted mean evolution (A) and survival function (B) in the 5
latent classes of the selected joint latent class model on WBH data (N=1268).
Predictions given for a subject with T-stage=2, Gleason=7 and iPSA=10n/mL
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Figure 2. Individual prediction of prostate cancer recurrence for two patients
from UM. On the left, the patient experienced a recurrence 3.8 years after RT.
Updated individual predictions are given every 6 months from 1 to 3.5 years. On
the right, the patient did not experience any recurrence within the first 6 years
after RT. Updated individual predictions are given every year from 1 to 6 years
after RT. The x are the PSA measures used for the prediction, the vertical solid
line is the time s of prediction and the vertical dashed line is the time of recurrence.
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years using the absolute loss function for UM cohort (on the left) and RTOG
cohort (on the right)
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Figure 4. Absolute error of prediction for UM cohort (on the left) and RTOG
cohort (on the right) based on information at s=1,2,3 and for a forecast up to 3
years in the future
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Table 1

Description of the three cohorts BM (N=1268) UM (N=503) and RTOG
(N=615), categorical variable shown as number (frequency), and continuous

variables as mean (standard deviation)

Variable BM UM RTOG
(N=1268) (N=503) (N=615)

Event 190 (15.0) 85 (16.9) 42 (6.8)
T-stage 1 431 (34.0) 163 (32.4) 348 (56.6)

2 792 (62.5) 290 (57.7) 253 (41.1)
3,4 45 (3.5) 50 (9.9) 14 (2.3)

Gleason <7 902 (71.1) 276 (54.9) 421 (68.4)
7 252 (19.9) 188 (37.4) 156 (25.4)

>7 114 (9.0) 39 (7.7) 38 (6.2)
Hormonal Therapy 170 (13.4) 44 (8.8) 47 (7.6)
ln(iPSA+0.1) (ln(ng/mL)) 2.16 (0.84) 2.23 (0.92) 2.00 (0.61)
Age (years) 72.7 (6.5) 69.0 (7.1) 68.0 (7.0)
Time-to-recurence (years) 5.03 (2.71) 3.82 (2.49) 4.61 (2.00)
Time-to-last-contact (years) 5.91 (3.30) 6.21 (3.41) 5.92 (2.03)
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Table 2

Relative gain (in %) of WAEP over 3 years of forecast for the two landmark
models (Last PSA and PSA(s)) and the 5-class JLCM compared to the

proportional hazard model with baseline information. Gain in WAEP are
computed from s=1 to s=6 years after RT, and are given for each cohort UM

and RTOG

Cohort Time Landmark models JLCM
s Last PSA PSA(s)

UM 1 3.2 3.3 11.7
2 7.7 7.7 15.3
3 17.6 19.5 13.7
4 7.2 11.3 8.9
5 5.9 9.5 8.4
6 19.9 19.5 7.3

RTOG 1 4.8 4.2 18.4
2 9.2 9.0 24.9
3 19.2 25.1 26.7
4 17.4 20.0 24.7
5 12.6 8.9 14.8
6 3.1 1.5 12.8
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