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PSA is a biomarker routinely and repeatedly measured on prostate cancer patients treated by radiation therapy. It was shown recently that its whole pattern over time rather than just its current level was strongly associated with prostate cancer recurrence. To more accurately guide clinical decision-making, monitoring of PSA after radiation therapy would be aided by dynamic powerful prognostic tools that incorporate the complete post-treatment PSA evolution.

In this work, we propose a dynamic prognostic tool derived from a joint latent class model, and provide a measure of variability obtained from the parameters asymptotic distribution. To validate this prognostic tool, we consider predictive accuracy measures and provide an empirical estimate of their variability. We also show how to use them in the longitudinal context to compare the dynamic prognostic tool we developed with a proportional hazard model including either baseline covariates or baseline covariates and the expected level of PSA at the time of prediction in a landmark model. Using data from three large cohorts of patients treated after the diagnosis of prostate cancer, we show that the dynamic prognostic tool based on the joint model reduces the error of prediction and offers a powerful tool for individual prediction.

Introduction

Prostate Specific Antigen (PSA) is a commonly used biomarker to monitor patients after treatment who received radiation therapy (RT) for localized prostate cancer. A rise of post-treatment PSA is highly predictive of clinical recurrence [START_REF] Sartor | Rate of psa rise predicts metastatic versus local recurrence after definitive radiotherapy[END_REF][START_REF] D'amico | Prostate specific antigen doubling time as a surrogate end point for prostate cancer specific mortality following radical prostatectomy or radiation therapy[END_REF] and definitions of biochemical recurrence have been suggested based on PSA crossing a threshold [START_REF] Roach | Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference[END_REF].

Recently, [START_REF] Thompson | Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower[END_REF] argued that the rise of PSA above a given threshold was not a satisfactory surrogate for detecting a clinical recurrence, that PSA was a continuous marker of disease progression and that its whole trajectory over time should be considered. In practice, detecting early signs of a recurrence is of major importance to assist in the patient's care and may facilitate the decision to initiate further treatment, such as salvage androgen deprivation therapy.

To more accurately guide clinical decision-making, monitoring of PSA after RT would be aided by dynamic powerful prognostic tools that incorporate the complete post-treatment PSA pattern. In this paper we refer to the pattern of PSA values for a subject as they evolve over time as the PSA trajectory. [START_REF] Tsiatis | Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS[END_REF] stressed the importance of incorporating the complete biomarker information as a time-continuous process in order to avoid biases due to the periodically measured biomarker and measurement errors [START_REF] Prentice | Covariate measurement errors and parameter estimation in cox's failure time regression model[END_REF].

Joint modeling of repeated measures of PSA and time-to-recurrence provides such modeling in an efficient way by combining a mixed model for the change over time of the marker and a survival model that describes the associated risk of the event [START_REF] Henderson | Joint modelling of longitudinal measurements and event time data[END_REF]. In the prostate cancer context, using a shared randomeffect model, [START_REF] Pauler | Predicting time to prostate cancer recurrence based on joint models for non-linear longitudinal biomarkers and event time outcomes[END_REF] demonstrated that accounting for the trajectory of PSA improved the fit of the data compared to including only a summary measure of PSA dynamics in the Cox model. [START_REF] Yu | Joint longitudinal-survival-cure models and their application to prostate cancer[END_REF] showed that a joint model of longitudinal PSA measures and risk of recurrence could reduce the bias of the time-to-event parameters due to informative censoring, and that the posterior distribution of the probability of event could be used to monitor progression of the disease [START_REF] Taylor | Individualized predictions of disease progression following radiation therapy for prostate cancer[END_REF]. However, the numerical complexity of joint models has so far limited their application as a prognostic tool [START_REF] Pauler | Predicting time to prostate cancer recurrence based on joint models for non-linear longitudinal biomarkers and event time outcomes[END_REF]. The joint latent class model (JLCM), a different type of joint model, avoids many of the numerical complexities of the shared randomeffects model [START_REF] Lin | Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer[END_REF][START_REF] Proust-Lima | Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach[END_REF]. The JLCM assumes that the dependency between the risk of event and the trajectory of the biomarker is entirely captured by a latent class structure rather than by individual random effects. This class of models is particularly useful for heterogeneous populations, such as encountered in the study of recurrence of prostate cancer [START_REF] Sartor | Rate of psa rise predicts metastatic versus local recurrence after definitive radiotherapy[END_REF].

Using the JLCM as a computationally attractive example of a joint model, this paper builds a dynamic prognostic tool for early detection of prostate cancer recurrence and assesses its predictive ability on two large cohorts of patients treated by RT for prostate cancer. We specifically evaluate whether accounting for posttreatment PSA measures via a JLCM reduces the error of prediction compared to models with only pre-treatment prognostic factors. We also compare its predictive performance with those of a landmark (or conditional) model [START_REF] Van Houwelingen | Dynamic prediction by landmarking in event history analysis[END_REF][START_REF] Zheng | Partly conditional survival models for longitudinal data[END_REF][START_REF] Schoop | Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates[END_REF] that can also incorporate post-treatment PSA measures.

In section 2, we describe the JLCM, the dynamic prognostic tool that is derived from this model and the computation of its standard error, as well as alternative predictive tools. Section 3 focuses on predictive accuracy measures used to compare predictive abilities of the tools. In section 4, we build the prognostic tool on a large cohort of patients, illustrate its use on individual patients, and show that the dynamic prognostic tool from the JLCM has better predictive accuracy compared to simpler prognostic tools on two independent large cohorts. Finally, we discuss the methodology and the results.

Dynamic prognostic tool from a joint model

Joint latent class model

Latent class structure

Following the model formulation of [START_REF] Lin | Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer[END_REF] and [START_REF] Proust-Lima | Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach[END_REF], we assume that the population of patients after RT can be divided into G latent classes. The latent class membership is defined by a categorical latent variable c i . The probability π ig that subject i (i = 1, ..., N ) belongs to latent class g (g = 1, ..., G) is related to covariates X pi in a multinomial logistic regression model:

π ig = P (c i = g|X pi ) = e ξ 0g +X T pi ξ 1g G l=1 e ξ 0l +X T pi ξ 1l (1)
where ξ 0g is the intercept for class g and ξ 1g is the vector of class-specific parameters associated with the vector of time-independent covariates X pi . For identifiability, ξ 01 = 0 and ξ 11 = 0. In the JLCM, the latent class structure is assumed to capture the entire dependency between the biomarker trajectory and the risk of the event so that, as shown also in the directed graph in Figure S1 of Supplementary Material (http://biostatistics.oxfordjournals.org), PSA trajectory and risk of recurrence are independent given the latent class membership.

Pattern of PSA changes

Let Y * i (t) be the value of PSA at time t for subject i, i = 1, ..., N , whose times of measurements are t ij , j = 1, ..., n i . The PSA trajectory is described by a linear mixed model [START_REF] Laird | Random-effects models for longitudinal data[END_REF] specific to class g on the logarithm scale:

Y i (t) | c i =g = ln(Y * i (t) + 0.1) = (u 0ig + β 0 X 0i ) + (u 1ig + β 1 X 1i )f 1 (t) + (u 2ig + β 2 X 2i )f 2 (t) + i (t) (2) 
The parametric functions f 1 and f 2 were chosen in a preliminary analysis of 5 large cohorts of patients that described the progression of PSA after RT (Proust-Lima et al., 2008). The function f 1 represents the initial decline of PSA after the end of RT. Using a profile maximum likelihood technique for the transformation family defined by f 1 (t, η) = ((1+t) η -1), we found that η = -1.5 provided the best fit. The function f 2 represents the long-term rise in PSA after the end of radiation.

By considering the profile likelihood for the family of functions f 2 (t, ν) = t ν+1 /((t+ 1) ν ), we found that f 2 (t, 0) = t gave the best fit over the cohorts of patients.

We note that this corresponds to a long term exponential rise in PSA, which has been previously used [START_REF] Pauler | Predicting time to prostate cancer recurrence based on joint models for non-linear longitudinal biomarkers and event time outcomes[END_REF]Finkelstein, 2002, Yu et al., 2004). The vector of class-specific random-effects u ig = (u 0ig , u 1ig , u 2ig ) T follows a multivariate Gaussian distribution with mean vector µ g = (µ 0g , µ 1g , µ 2g ) T and unstructured variance-covariance matrix ω 2 g B, where ω 1 = 1 for identifiability. The vector µ g represents the mean trajectory of ln(PSA+0.1) over time in latent class g. The vectors X 0i , X 1i and X 2i are subvectors of X i , the total vector of covariates, and are associated with PSA trajectory through the regression parameters β 0 , β 1 and β 2 .

For the application, we chose those effects to be common over the classes. Finally, i (t) are independent Gaussian measurement errors with mean 0 and variance σ 2 .

Risk of recurrence

Let T * i be the time-to-recurrence and C i the censoring time. The observed event time is

T i = min(T * i , C i ). The indicator of recurrence E i equals 1 if T * i ≤ C i and 0 if C i < T * i .
We describe the risk of the event in latent class g by a proportional hazard model:

λ(t | c i = g, X ri ; ζ g , δ) = λ 0g (t; ζ g )e X ri (t)δ (3)
where X ri (t) is a vector of covariates that can be time-dependent. We assumed that the effect of covariates on the risk of recurrence was common over the latent classes, but class-specific effects could also be specified. Finally, λ 0g (t; ζ g ) is the baseline hazard in latent class g; in our application we used either a Weibull or a piecewise constant risk function. The latent class structure captures all the dependency between the biomarker evolution and the time-to-recurrence through λ 0g (t; ζ g ), so that neither the current value of the biomarker nor any other function of the random-effects appears in the survival model.

Maximum likelihood estimates

We denote by θ the vector of all the parameters. The log-likelihood of the observed data is

L(θ) = N i=1 ln G g=1 π ig f (y i | c i = g; θ)λ(T i | c i = g; θ) E i S(T i | c i = g; θ) (4) 
where π ig = P (c i = g; θ) is defined in (1) and S(T i | c i = g; θ) is the survival function derived from (3). The density f (y i | c i = g; θ) of the vector of PSA measures y i in latent class g is the multivariate Normal density φ g (ỹ i ; θ) with mean and variance-covariance matrix described in [START_REF] Proust-Lima | Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach[END_REF]. For a given number of latent classes, maximum likelihood estimates are computed from (4) using a modified Marquardt algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]. Convergence is assessed by stringent criteria based on the second derivatives of the log-likelihood and by using a grid of initial values. The optimal number of latent classes is determined using the Bayes Information Criterion (BIC) [START_REF] Schwartz | Estimating the dimension of a model[END_REF], as is typical in mixture models [START_REF] Hawkins | Determining the number of components in mixtures of linear models[END_REF]). An estimate of the variancecovariance matrix V (θ) of the parameters θ is given by the inverse of the Hessian matrix at the point estimate.

Posterior probability of recurrence

A posterior probability of recurrence can be easily derived from the JLCM and its parameters θ. This probability, which can be computed for a new subject using his available data at the current time, constitutes a dynamic prognostic tool of recurrence.

Dynamic prognostic tool derived from the joint model

Consider a new subject i free of recurrence at time s for whom the vector of repeated measures until s is denoted by Y (s) i

= {Y i (u), u ≤ s} and all the covariates X i included in (1), ( 2) and (3) are available. Let T * i denote the time of recurrence for subject i. Then, the posterior probability of recurrence between s and s + t for the parameter value θ can be easily computed:

P d i (s, t; θ) = P (T * i ≤ s + t | T * i ≥ s, Y (s) i , X i ; θ) = = G g=1 P (T * i ≤ s + t | T * i ≥ s, c i = g, X i ; θ)P (c i = g | T * i ≥ s, Y (s) i , X i ; θ) (5) 8 inserm-00367752,
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The latent class structure entirely captures the dependence between the trajectory of the marker and the risk of recurrence. The predicted probability in ( 5) is the sum over the classes of the product of the class-specific conditional probability of the event that does not involve the marker measurements Y i (s)

P (T * i ≤ s + t | T * i ≥ s, c i = g, X i ; θ) = S(s|c i = g, X i , θ) -S(s + t|c i = g, X i , θ) S(s|c i = g, X i , θ) , (6) 
and the posterior probability of class-membership given by

P (c i = g | T * i > s, Y (s) i , X i ; θ) = π ig f (y i | c i = g, X i ; θ)S(s|c i = g, X i , θ) G l=1 π il f (Y (s) i | c i = l, X i ; θ)S(s|c i = l, X i , θ
) .

(7)

Posterior probability of recurrence in simpler models

The standard proportional hazard model can be viewed as a specific case of the JLCM. If G = 1, the risk of recurrence is independent of the evolution of the biomarker, and the posterior probability of recurrence given in (5) reduces to:

P 0 i (s, t; θ) = P (T i ≤ s + t | T i ≥ s, X i ; θ) (8) 
where X i are baseline covariates and θ the vector of parameters from the proportional hazard model given in (3) with G = 1.

When interest is in the prediction of an event after a certain time s, given the history of the event and covariates until that time, a model for the residual time distribution is required. A landmark (or partly conditional) model that does not specify the longitudinal process can be used [START_REF] Shi | Replacing time since HIV infection by marker values in predicting residual time to AIDS diagnosis[END_REF][START_REF] Zheng | Partly conditional survival models for longitudinal data[END_REF][START_REF] Van Houwelingen | Dynamic prediction by landmarking in event history analysis[END_REF][START_REF] Schoop | Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates[END_REF]. This approach consists of fitting a survival model only to subjects still at risk at time s with covariates collected until s, specifically the repeated measures of the marker. It is common to reduce this general model and use only the value of the marker at time s. In our case, this reduces to a proportional hazard model fitted on subjects free of recurrence at time s with covariates X i and Y i (s). A different vector of parameters θ s is obtained for each time s and the predictive probability of recurrence is

P la i (s, t; θ s ) = P (T i ≤ s + t | T i ≥ s, X i ; Y i (s); θ s ). (9) 
In practice, PSA is measured at discrete times, so that Y i (s) is not observed for all s. We considered two landmark models that differed in the imputation of Y i (s).

First we considered a "naive" landmark model that includes the last measure of PSA before s to approximate the value at time s. Although [START_REF] Prentice | Covariate measurement errors and parameter estimation in cox's failure time regression model[END_REF] showed that using the last measure of the marker to approximate the current marker value could induce bias, we used that approach because we wanted to provide a very simple model that included information about PSA. Second we instead extrapolated the value of the marker at the landmark point s using a two-stage approach [START_REF] Tsiatis | Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS[END_REF].This method first estimates the mixed model for PSA evolution described in (2) with G = 1 on a training sample, and then uses the estimates to compute the empirical Bayes estimates of the random effects and to estimate the PSA level at time s for any new subject based on his PSA repeated measures before s.

We note that the landmark analysis does require a separate estimation of θ s for any time s needed for prognosis. A more complex approach proposed by Van Houwelingen (2007) defines θ s as a parametric function of s so that θ s can be 10 inserm-00367752, version 1 -12 Mar 2009 obtained at any s.

Estimate and measure of variability

For each of the prognostic tools given by ( 5), ( 8) or ( 9), the predictive probability of recurrence for patient i before time s + t given that he was free of recurrence before time s can be computed using the vector of parameters θ previously estimated on a sample, as P i (s, t) = P i (s, t; θ). Equivalently the predictive probability of being free of recurrence is denoted by S i (s, t) = 1-P i (s, t; θ). These are point estimates. To give a measure of their variability, we approximated the Bayesian posterior distribution of P i (s, t). Vectors (θ d ) d=1,...,D were drawn from the Normal approximation of the asymptotic distribution of θ, N θ, V ( θ) , so that the standard error could be estimated from the empirical standard deviation,

SE(s, t) = D -1 D d=1 (P i (s, t; θ d ) -P i (s, t)) 2
. This method does not involve any further estimation procedure. It requires only the point estimate θ and the variance V ( θ) computed once from the training sample. It avoids the need for a computationally intensive bootstrap resampling scheme and it is not model-specific in comparison to the ∆-method. However, it can only be used for parametric models. The 95% confidence bands of P i (s, t) can also be obtained as the 2.5 and 97.5 percentiles of P i (s, t; θ d ). The method can be extended to calculate standard errors of summary measures of predictive accuracy presented in Section 3 on testing samples. In that case, the calculation also involves bootstrapping the testing data.

Validation of predictive tools using predictive accuracy measures

When validating and comparing predictive rules in a survival context, there is no agreement in the literature about which measures should be preferred [START_REF] Pencina | Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond[END_REF]. One can be interested either in the discriminative power of the predictive rule and use concordance measures derived from ROC methodology [START_REF] Heagerty | Survival model predictive accuracy and roc curves[END_REF]Zheng and Heagerty, 2007) or in the predictive accuracy of the rule [START_REF] Schemper | Predictive accuracy and explained variation in cox regression[END_REF]. In this work, we chose to focus on predictive accuracy measures that compare the actual value of predictions with the observed data. We used summary measures derived from the error of prediction (EP), err L;

X (t) = E[L(η(t) -Ŝ(t | X))],
where Ŝ(t | X) is the predictive rule regarded as fixed, η(t) the event status at time t, L is a loss function and the expectation is with respect to the joint distribution of T and X. Several estimators of EP were proposed either for time-independent rules [START_REF] Schemper | Predictive accuracy and explained variation in cox regression[END_REF]Henderson, 2000, Graf et al., 1999) or for dynamic rules [START_REF] Henderson | Identification and efficacy of longitudinal markers for survival[END_REF][START_REF] Schoop | Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates[END_REF]. They differ in the loss function and the method used to account for censoring. In this work, we chose to focus on the estimate of absolute error of prediction proposed by [START_REF] Henderson | Identification and efficacy of longitudinal markers for survival[END_REF] that we found had the best properties in a simulation study.

For a dynamic rule Ŝ(s + t|X i (s)), the estimator of absolute error of prediction is computed at time s+t given information collected at time s and earlier:

ê rr X,s (s + t) = 1 N s Ns i=1 I(T i > s + t) 1 -Ŝ(s + t|T i > s, X i (s)) + E i I(T i ≤ s + t) 0 -Ŝ(s + t|T i > s, X i (s)) + (1 -E i )I(T i ≤ s + t) × [ 1 -Ŝ(s + t|T i > s, X i (s)) Ŝ(s + t|T i > s, X i (s)) Ŝ(T i |T i > s, X i (s)) + 0 -Ŝ(s + t|T i > s, X i (s)) 1 - Ŝ(s + t|T i > s, X i (s)) Ŝ(T i |T i > s, X i (s)) ] ( 10 
)
where N s is the number of subjects still at risk at time s.

In the dynamic prognosis context, the error of prediction is a two-dimensional curve so that summary measures are useful. We used two summary measures over a [0, τ ] window for a given time s: the absolute error of prediction at horizon τ (EP (τ )) and the weighted average absolute error of prediction (WAEP) over [0, τ ],

as proposed by [START_REF] Henderson | Identification and efficacy of longitudinal markers for survival[END_REF]. This weighted average integrates the absolute error of prediction over [0, τ ] using weights that correct for the reduction in the number of observed events at longer times due to censoring. The estimator of WAEP is:

ÎW AEP X,s (s + t) = n (s) τ k=1 d (s) k ( Ĝ(s)/ Ĝ(t k )) ê rr X,s (t k ) n (s) τ k=1 d (s) k ( Ĝ(s)/ Ĝ(t k )) (11) 
where

d (s)
k is the number of events at time t k among subjects still at risk at time s and Ĝ(t k ) and Ĝ(s) are the Kaplan-Meier estimates of the censoring distribution at times t k and s.

Whatever the predictive accuracy measure of interest (EP(τ ) or WAEP over [0, τ ]), a relative measure of predictive accuracy can be developed that is analogous 13 inserm-00367752, version 1 -12 Mar 2009 to R 2 in linear regression: the proportion of predictive accuracy explained by covariates. For example, the proportion of predictive accuracy at time t added when using covariates X 1 and X 2 rather than X 1 alone would be (err L;X 1 (t)err L;X 1 ,X 2 (t))/err L;X 1 (t).

Application to Prostate Cancer

Three cohort studies

We considered data from three large prospective cohorts of patients treated by external beam radiation therapy for localized prostate cancer. The three cohorts were from University of Michigan (UM) [START_REF] Taylor | Individualized predictions of disease progression following radiation therapy for prostate cancer[END_REF], William Beaumont Hospital (WBH) [START_REF] Kestin | Defining biochemical cure for prostate carcinoma patients treated with external beam radiation therapy[END_REF] and Radiation Therapy Oncology Group (RTOG9406) [START_REF] Roach | Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: findings from a prospective, multiinstitutional, phase i/ii doseescalation study[END_REF]. Patients were included in the analysis if they had a clinical stage T1-4 and neither positive nodes or metastases, they had at least one year follow-up without clinical recurrence or salvage androgen deprivation therapy (SADT), and they had at least two repeated measures of PSA before the end of the follow-up. The endpoint of interest was the first clinical recurrence so that all the PSA measures collected after the end of RT and before this point were included unless a SADT was received, in which case measures after SADT were deleted. Clinical recurrence was defined as any of the following: distant metastases, nodal recurrence, any palpable or biopsy-detected local recurrence 3 years or later after radiation; any local recurrence within 3 years of RT if the most recent PSA was >2ng/mL; death from prostate cancer. This definition was to allow for the possibility of residual local disease up to 3 years after RT.

Three pre-treatment prognostic factors were considered: Gleason score category (2-6,7,8-10), T-stage category (1,2,3-4) and the pre-treatment level of PSA (iPSA) transformed to ln(iPSA+0.1). As the risk of recurrence should be markedly reduced after SADT, a time-dependent indicator of SADT, equal to 0 before the time of SADT and 1 after, was included in the hazard model. The three cohorts are described in Table 1.

[Table 1 about here.] A prognostic tool should be validated on external data, that is data not used for the creation of the prognostic tool. Following the validation strategy suggested by [START_REF] Altman | What do we mean by validating a prognostic model?[END_REF], we developed the prognostic tool on WBH, the largest cohort, and evaluated its predictive performances on two external samples, UM and RTOG9406. Although they are different cohorts, WBH and UM were comparable in terms of pre-treatment covariates (T-stage, Gleason and iPSA) and proportion of recurrences, whereas subjects in RTOG9406 were usually in a earlier stage of the disease with a larger proportion of subjects with T-stage 1 and Gleason below 7. The number of recurrences in RTOG9406 was also smaller (6.8% vs. 16.9% and 15.0% in WBH and UM). classes differed mainly by their long-term rise of PSA and the risk of recurrence, a higher long term increase of PSA being associated with a higher risk of recurrence.

Classes 1 and 2, which were relatively close in terms of trajectory and risk of recurrence, were different in terms of class-membership parameters.

[Figure 1 about here.]

Dynamic prediction of prostate cancer recurrence

To illustrate the use of the posterior probabilities of recurrence at time s + t given the information collected until time s, we show in Figure 2 the predicted probability of recurrence for two patients from the UM cohort. For each one, the predicted cumulative risk of recurrence was computed using the joint latent class model (denoted 5LCM), the proportional hazard model with baseline covariates and a 5-step risk function (denoted Baseline), and the two-stage landmark model with a 5-step risk function (denoted PSA(s)). Predicted probabilities using the naive landmark model with the latest PSA measure were very similar to the twostage landmark model. 95% confidence bands were computed as described in Section 2.3.3 using 2000 draws. Predictions were made up to three years ahead, which is a reasonable time horizon in this clinical setting.

[Figure 2 

about here.]

For the subject on the left who recurred within the first 4 years, updated risk of recurrence was computed every 6 months from 1 to 3.5 years after end of RT. The PSA pattern for this patient is characteristic of an early recurrence with a drop of PSA the first year after the end of RT and a subsequent rise of PSA. However, levels of PSA are relatively low. The 5-LCM-based prediction that accounts for the shape of the PSA trajectory rather than the level of PSA captures the high risk of recurrence, while the PSA(s) level based prediction remains relatively low.

In Supplementary Material, Figure S2 and S3 show predictions for 3 other patients (Rec2, Rec3, Rec4) with different PSA profiles who recurred. For each of them the 5-LCM model detects higher risk of recurrence earlier after the end of RT.

For the subject on the right who did not experience any recurrence within 6 years after RT, the updated risk of recurrence was computed every year from 1 to 6 years. This subject has a PSA trajectory characteristic of a cured patient.

However, as he has relatively bad prognostic factors (T-stage=3, Gleason=8 and iPSA=62.4 ng/mL), the prediction based on baseline covariates predicts a high probability of recurrence while the two dynamic prognostic tools update the risk of recurrence according to the PSA trajectory so that, as soon as 3 years after RT, the probabilities of recurrence they provide become very low. In Supplementary Material, predictions for a second cured patient (Cens1 in Figure S4) also show how accounting for PSA repeated measures allows a better understanding of the cancer progression.

These individual predictions underline the usefulness of dynamic prognostic tools that can adapt to the PSA trajectory. In the next section, we used predictive accuracy measures to corroborate these suggestions at a population level on the UM and RTOG datasets.

Validation of the prognostic tool on UM and RTOG

We evaluated the predictive accuracy of the prognostic tool based on the JLCM four times a year from s=1 year to s=6 years after the end of RT for a time horizon of 3 years. For each s, we computed the absolute error of prediction curves and display three summary measures: the weighted averaged error of prediction (WAEP) over 3 years, and the error of prediction (EP) at 1 and 3 year horizons.

The 5-latent class model (denoted 5LCM) performances were compared to those of a proportional hazard model including baseline covariates and a 5-step risk function (denoted Baseline), a proportional hazard model with a 5-step risk function but without any covariate (denoted No covariate) and two landmark models with a 5-step risk function (denoted either PSA(s) or Last PSA depending on how the level of PSA at time s was computed). The summary measures for cohort UM and RTOG are displayed in Figure 3. The estimates and standard errors of WAEP in the 5LCM model for UM and RTOG cohorts were 0.0816 (SE=0.0090) and 0.0422 (SE=0.0068) respectively after 1-year follow-up and 0.0614 (SE=0.0095) and 0.0472 (SE=0.0074) respectively after 3-year follow-up. Table 2 gives the relative gain in WAEP for the two landmark models and the JLCM compared to the model including only baseline information.

[Figure 3 about here.]

[Table 2 

about here.]

For UM, whatever the summary measure, inclusion of baseline covariates improved the predictive accuracy for prostate cancer recurrence only when using information from the first 3 years (s ≤ 3). After that point, the model without covariates gave similar predictive accuracy even though covariates effects were highly significant. Accounting for the PSA measures in addition to the baseline covariates using either a joint model or a landmark model reduced markedly the absolute error of prediction in the first 6 years with relative gain in WAEP varying from 3% to close to 20% (see Table 2). Moreover, the joint model improved the predictive accuracy more than the landmark models when using information from 1 year (11.7% vs. 3.3% of gain compared to baseline information) to 2 years (15.3% vs. 7.7% of gain) after RT while the landmark models gave a better predictive accuracy at s=6 (gain of >19.5% vs. 7.3% for JLCM). This means that in the first 2 years, the expected PSA at time of landmark was not sufficiently predictive while later, the level of PSA mainly drove the predictions for UM.

For the RTOG cohort, the baseline covariates improved the predictive accuracy during the whole follow-up. Furthermore, accounting for PSA repeated measures improved markedly the predictive accuracy by reducing the absolute error during the whole follow-up and especially in the first 2 years, as seen also in Table 2 with gain in WAEP of 18.4% or 24.9% at 1 and 2 years vs. <4.8% and <9.2% for the landmark models. In this cohort, which included earlier stages of the disease, the landmark models did not capture all the predictive value of the PSA trajectory, underlining the relevance of models like JLCM that include the whole trajectory.

For the two cohorts, the two landmark models gave similar predictiveness.

From a specific time of prediction, the curve of EP describes the change in EP over horizon of prediction (Figure 4). At 1 year after RT, including the post-treatment PSA measures in the JLCM substantially reduced the error of prediction for the UM cohort at any horizon compared to the proportional hazard model including baseline covariates (e.g. 19% improvement at 3 year horizon while including the expected PSA(s) value improved the predictive accuracy by only 5% at 3 year horizon). In contrast, when using information until 3 years after RT, the landmarking analysis EP approached or surpassed the joint model EP suggesting that after a time, the level of PSA may be sufficient for determining the risk of recurrence for UM. Conversely, for RTOG cohort, both from 1 year and 3 years after RT, the joint model reduced markedly the error of prediction at any horizon compared to the landmarking analysis.

[Figure 4 about here.]

Discussion

Although it is well known that PSA is highly predictive of prostate cancer recurrence, its use for monitoring progression of the disease is still rather limited and typically restricted to a binary summary of the PSA dynamics. Joint models offer an efficient framework to quantify the probability of recurrence utilizing the repeated measures of PSA. We have shown how a joint latent class model (JLCM) could be used to provide a dynamic prognostic tool of recurrence that can be updated for each new measurement of PSA. The methodology would be similar for a shared random effects model, except that the computations would be more burdensome [START_REF] Pauler | Predicting time to prostate cancer recurrence based on joint models for non-linear longitudinal biomarkers and event time outcomes[END_REF]Finkelstein, 2002, Yu et al., 2004). The JLCM relies on the conditional independence of the PSA repeated measures and the recurrence of prostate cancer given the latent classes. The practical advantages of this are that the log-likelihood has a closed form, and that the predictive tool can be computed analytically. The construction of the tool requires the estimation of the parameters on a single population only once. The prognostic tool can then be computed analytically for any new subject, using any information about PSA repeated measures and at any time. Moreover, to aid the user in evaluating the variability of the prediction, standard error and confidence bands are computed using an approximation of the Bayesian posterior distribution. This technique can be used for parametric rules whenever the ∆-method is not straightforward and a bootstrap is too computationally intensive. One limitation of the JLCM would be that the number of latent classes cannot be directly estimated and has to be selected according to a criterion, commonly the BIC. We note that using BIC to choose the number of classes has become standard practice in mixture modeling (e.g. [START_REF] Hawkins | Determining the number of components in mixtures of linear models[END_REF]). Furthermore we found that the predictive accuracy was not markedly impacted by the choice of the number of latent classes.

For example, the gain in predictive accuracy compared to the PHM with baseline covariates was roughly the same for 4, 5 and 6 latent classes (e.g. gain in WAEP for RTOG: 16.5%, 17.5%, 22.5%, 21.6% and 19.8% for G=2,3,4,5 and 6).

The validation of prognostic tools on different cohorts is of primary importance in the process of developing a prognostic tool, especially when using a complex statistical model. Indeed, a complex model can be fine-tuned for the dataset on which it is estimated but have a poor fit on new data. Following the [START_REF] Altman | What do we mean by validating a prognostic model?[END_REF] hierarchy of increasingly stringent validation strategies, we directly validated our model on different datasets, from other centers and other investigators. That gave us a good appreciation of whether a prognostic tool based on a relatively complex model may improve the predictive accuracy in practice.

We found that the landmark approaches gave similar predictive accuracy as a joint model for one dataset, but its predictive accuracy was lower for the other dataset, suggesting its potential lack of generalizability. For these two datasets, we found consistently that updating the risk of recurrence using the trajectory of PSA was an important refinement and that, at least in the first years, the level of PSA at time of prognosis could not capture the whole predictiveness of the PSA trajectory.

There are many choices for how to validate a model [START_REF] Pencina | Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond[END_REF].

We chose predictive accuracy measures that focus on predictiveness rather than discrimination. Measures of predictive accuracy have been criticized because of their lack of interpretation. We showed through the application that our chosen measures give an easily interpretable assessment of the relative gain by quantifying the gain in predictiveness of a new model compared to a standard one.

To conclude, joint modeling of a marker trajectory and a clinical outcome is an attractive approach for developing powerful prognostic tools that can help clinical decision making in chronic diseases. Predictive accuracy measures offer an umbrella of criteria on which a prognostic tool can be validated and compared to other existing rules. 

4. 2

 2 Estimation of the joint latent class model on WBH The three baseline covariates were included in both the survival model and the latent class membership model. For the mixed model, as recommended by Proust-Lima et al. (2008), Gleason was only included in the long-term rise part of the model while T-stage was included in both short-term and long-term parts, and iPSA was included in all three terms in equation (2). The hazard was defined by a class-specific Weibull function since the Akaike criterion was systematically better compared to a 5-step hazard function. The JLCM was fitted for different numbers of classes. The values of BIC as the number of classes varied from 2 to 6 were 13514.5, 13386.2, 13347.6, 13327.1 and 13354.5 respectively, and the associated numbers of parameters were 39, 51, 63, 75 and 87. The class-specific predicted mean trajectories and survival functions are displayed in Figure 1. The latent
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 1234 Figure 1. Predicted mean evolution (A) and survival function (B) in the 5 latent classes of the selected joint latent class model on WBH data (N=1268). Predictions given for a subject with T-stage=2, Gleason=7 and iPSA=10n/mL

Table 1

 1 Description of the three cohorts BM (N=1268) UM (N=503) and RTOG (N=615), categorical variable shown as number (frequency), and continuous variables as mean (standard deviation)

	Variable		BM	UM	RTOG
			(N=1268)	(N=503)	(N=615)
	Event		190 (15.0)	85 (16.9)	42 (6.8)
	T-stage	1	431 (34.0) 163 (32.4) 348 (56.6)
		2	792 (62.5) 290 (57.7) 253 (41.1)
		3,4	45 (3.5)	50 (9.9)	14 (2.3)
	Gleason	<7	902 (71.1) 276 (54.9) 421 (68.4)
		7	252 (19.9) 188 (37.4) 156 (25.4)
		>7	114 (9.0)	39 (7.7)	38 (6.2)
	Hormonal Therapy		170 (13.4)	44 (8.8)	47 (7.6)
	ln(iPSA+0.1) (ln(ng/mL))	2.16 (0.84) 2.23 (0.92) 2.00 (0.61)
	Age (years)		72.7 (6.5)	69.0 (7.1)	68.0 (7.0)
	Time-to-recurence (years)	5.03 (2.71) 3.82 (2.49) 4.61 (2.00)
	Time-to-last-contact (years) 5.91 (3.30) 6.21 (3.41) 5.92 (2.03)

Table 2

 2 Relative gain (in %) of WAEP over 3 years of forecast for the two landmark models (Last PSA and PSA(s)) and the 5-class JLCM compared to the proportional hazard model with baseline information. Gain in WAEP are computed from s=1 to s=6 years after RT, and are given for each cohort UM and RTOG

	Cohort Time Landmark models	JLCM
		s	Last PSA PSA(s)	
	UM	1	3.2	3.3	11.7
		2	7.7	7.7	15.3
		3	17.6	19.5	13.7
		4	7.2	11.3	8.9
		5	5.9	9.5	8.4
		6	19.9	19.5	7.3
	RTOG 1	4.8	4.2	18.4
		2	9.2	9.0	24.9
		3	19.2	25.1	26.7
		4	17.4	20.0	24.7
		5	12.6	8.9	14.8
		6	3.1	1.5	12.8
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