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Université Victor Segalen Bordeaux 2

146 rue Leo Saignat, 33076 Bordeaux Cedex, France

e-mail: benoit.liquet@isped.u-bordeaux2.fr

2 GREThA, UMR CNRS 5113
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ABSTRACT

To reduce the dimensionality of regression problems, sliced inverse regression approaches make

it possible to determine linear combinations of a set of explanatory variables X related to the

response variable Y in general semiparametric regression context. From a practical point of view,

the determination of a suitable dimension (number of the linear combination of X) is important. In

the literature, statistical tests based on the nullity of some eigenvalues have been proposed. Another

approach is to consider the quality of the estimation of the effective dimension reduction (EDR)

space. The square trace correlation between the true EDR space and its estimate can be used as

goodness of estimation. In this paper, we focus on the SIRα method and propose a näıve bootstrap

estimation of the square trace correlation criterion. Moreover, this criterion could also select the α

parameter in the SIRα method. We indicate how it can be used in practice. A simulation study is

performed to illustrate the behaviour of this approach.

Keywords: Bootstrap; Dimension Reduction; Sliced Inverse Regression.
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1 Introduction

Conventional parametric or nonparametric methods of curve fitting estimate the unknown rela-

tionship between an explanatory variable and a response variable. These methods work well when

the dimensionality of the data is low. In high dimensions, all data are sparse. Thus the number

of observations available to give information about the local behaviour of the regression function

becomes very small with large dimensions. Moreover, the complexity of the possible underlying

structure increases more than exponentially fast as the dimension increases, so enormous num-

bers of data are needed in order to decisively select one parametric model over another. This is

the so-called curse of dimensionality which quickly defeats parametric or nonparametric regression

analysis for fitting usefully predictive models. In the statistical literature, various strategies exist

to challenge its effect. One of them is to consider dimension reduction models.

In the following, we consider a high-dimensional data set with one response variable Y and

many predictor variables X1, . . . , Xp. Let X = (X1, . . . , Xp)
T denote the p-dimensional column

vector of explanatory variables. Parametric approaches such as linear and polynomial regression,

or more generally, transformation or generalized linear models, are examples of dimension-reduction

methods. Other methods aim to relieve the problem of the curse of dimensionality without requir-

ing assumptions as strong as those of the parametric ones. Such methods are nonparametric in

nature with a parametric part and are called semiparametric. Many dimension-reduction tools

are available. There are essentially based on two families of dimension-reduction models. In the

first, the effects of the p predictor variables are assumed to be additive: the generalized additive

models belong to this family, see for instance Hastie and Tibshirani (1986, 1990), Stone (1985,

1986) or Friedman and Silverman (1989). Among the well-known methods, there is the ACE (Al-

ternating Conditional Expectation) introduced in the Brieman and Friedman (1985) algorithm and

the MARS (Multivariate Adaptative Regression Splines) method described by Friedman (1991).

The second family assumes that the effects of the explanatory variable X can be captured in a K

(with K ≤ p) dimensional projection subspace, (XT β1, . . . ,X
T βK) where β1, . . . , βK ∈ ℜp. The

popular PPR (Projection Pursuit Regression) approach belongs to those projection-based models.

It was introduced by Friedman and Stuetzle (1981) and has been discussed by many authors, see

for instance Chen (1991) or Hall (1989) among others. However, most of the dimension reduc-

tion methods mentioned so far involve a backfitting (iterative) algorithm which needs a smoothing
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curve-fitting at each step. These methods generally are computing-intensive and may not converge.

Several methods which make it possible to estimate the directions βk first, without a smoothing

step of the link functions, have been proposed by Duan and Li (1991) and Li (1991, 1992). These

are the SIR (Sliced Inverse Regression) and PHD (Principal Hessian Direction) methods. They are

computationally simple, since they require only simple averaging and an eigenvalue decomposition.

In this paper, we will concentrate on the so-called SIR methods and more particulary on the SIRα

method.

The dimension-reduction assumption is the following: Y ⊥ X|XT β1, . . . ,X
T βK where the no-

tation U ⊥ V |W means that the random variable U and V are independent conditionally to the

random variable W . The underlying semiparametric regression model can be written as :

Y = f(XT β1, . . . ,X
T βK , ǫ), (1)

where the response variable Y is associated with the p-dimensional regressor X only through the

linear combinations XT βk and ǫ is a random error term independent of X. No assumption is

made about the functional form of the unknown link function f or the distribution of ǫ. Since

no structural conditions on f are imposed, the vectors βk are not identifiable, unlike the linear

subspace spanned by the βk’s. Li (1991) used this model to introduce the notion of EDR (Effective

Dimension Reduction) space, namely the linear subspace E of R
p spanned by the βk’s. Any vector

in E is called an EDR direction. This semiparametric regression model appears to be a reasonable

compromise between fully parametric and fully nonparametric modeling. Two estimation problems

in (1) clearly arise. The first is to recover the EDR space. The second consists in estimating the

link function f . Since {(XT β1, . . . ,X
T βK) : X ∈ R

p} theoretically captures all the information

on the distribution of Y given X and can be estimated first, one can then easily apply standard

nonparametric smoothing techniques (such as kernel, spline or wavelet regression) to estimate the

link function f . The goal of dimension reduction is thus achieved.

In this paper our main objective concerns dimension K of the EDR space. Obviously, in most

applications, dimension K is unknown and hence must be estimated from the data {(Xi, Yi), i =

1, . . . , n} with p < n. Several approaches have been proposed in the literature. For the original

approach introduced by Li (1991), named SIR-I in the following, and for SIR-II (see Scott, 1994),

the choice of dimension K is based on statistical nested test procedures. However, from a practical

point of view, such test procedures present two main drawbacks. First, the validity of these test
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approaches rely on normality distribution or elliptically symmetric distribution assumptions for

X. Secondly, the nested test procedures do not allow to control the overall level since knowledge

of the level at each step does not imply knowledge of the overall level because of the problem

of multiplicity of tests. Note that Bai and He (2004) studied the limiting distribution of the

test statistic for dimensionality without the normality assumption, and obtained a necessary and

sufficient condition for the chi-square limiting distribution to hold. However, this approach focused

on a variant of SIR-I, called CANCOR and introduced by Fung et al. (2002).

There is an alternative to the test approach: this kind of approach is based on the trace criterion

and was firstly developed by Ferré (1997,1998) in the Sliced Inverse Regression and Principal Hessian

direction context. In this paper, as in Ferré (1998), we prefer a model selection approach which does

not require the estimation of the link function f (depending itself on the selected dimension). Thus,

while a criterion based on the prediction of Y would be optimal, we only focus on the projections

to choose the dimension on the EDR space, without including the estimation of f .

We consider a sample s = {(Xi, Yi), i = 1, . . . , n} from the model (1). Let Σ = V(X) be

the covariance matrix of X, and let Σ̂ be the empirical covariance matrix of the Xi’s. Let B =

[β1, . . . , βK ] denote the p×K matrix of the true βk’s assumed to be linearly independent. Clearly,

when the true dimension is K, we have Span(B) = E. Let B̂ = [b̂1, . . . , b̂K ] denote the corresponding

estimated EDR directions matrix. Let us define Ê = Span(B̂) the estimated EDR space. To study

the closeness between two subspaces, the square trace correlation can be naturally used. The

corresponding risk function is defined by considering the following expectation:

Rk = E

[
Trace(PkP̂k)

]
/k, (2)

where Pk denotes the Σ-orthogonal projector onto the space spanned by the first k vector βl

of B and P̂k is the Σ̂-orthogonal projector onto the space spanned the first k vector b̂l of B̂.

More precisely, let Bk = [β1, . . . , βk] and B̂k = [b̂1, . . . , b̂k], then Pk = Bk(B
T
k ΣBk)

−1BT
k Σ and

P̂k = B̂k(B̂
T
k Σ̂B̂k)

−1B̂T
k Σ̂. Note that Rk is defined for any dimension k lower than or equal to K.

A value of Rk close to one indicates that the set of the k estimated linear combinations of

X is close to the ideal set. So in terms of dimensionality, k is a feasible solution. On the other

hand, a value of Rk perceptibly different from 1 means that this estimated set is slightly different

from the ideal one, so the solution for the dimension is greater than k. Since RK will converge

to one as n tends to infinity (for the true dimension K), then, for a fixed n, a reasonable way to
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assess whether an EDR direction is available is given by looking at how much Rk departs from

one. From a computational point of view, we require consistent estimates R̂k of Rk, so the feasible

solution for the dimension can be obtained by computing the values of R̂k for k = 1 to p and

observing how much it departs from one. In Ferré (1997, 1998), consistent estimators of Rk were

proposed. They were obtained from asymptotic expansions of the loss function Rk which require

the normality or the elliptically symmetric distribution of X. Moreover, the estimate is not easily

computable.To avoid complex computing, Ferré (1997) suggested considering the SIR approach of

Hsing and Carroll (1992) based on slices of cardinal 2 and to use a Jack-Knife (JK) method to

estimate Rk in this special case: the corresponding estimated loss function measuring how far the

estimated subspace obtained by deleting two observations (that is a slice) differs from the sample

estimated over the whole sample. However, Ferré mentioned that the Hsing and Carroll estimators,

which use slices with two observations, are unable to capture some relevant information, see also

Aragon and Saracco (1997) for a simulation study exhibiting the undersmoothing effect of these

estimators. Hence, the efficiency of the corresponding JK criterion to choose dimension K is not

really clear from a practical point of view.

In this paper, we use this criterion to determine a suitable dimension K using the SIRα approach.

The SIRα method (described in the next section) depends on a parameter α which controls the

combination of the SIR-I and the SIR-II methods. Therefore, the SIRα approach will be used to

define P̂k, which depends on the choice of α and will be henceforth denoted P̂k,α. The practical

choice of α can be based on the test approach proposed by Saracco (2001) which does not require

estimation of the link function. Two cross-validation criteria were also developed by Gannoun and

Saracco (2003b) to select the parameter α, but these criteria require kernel smoothing estimation

of the link function.

To determine the suitable α parameter and the suitable dimension K, we use the criterion

defined in (2), which now becomes Rk,α. Criterion Rk,α is precisely defined in (5). To compute

estimates for this risk function, computer intensive methods can be used. Note that Rk,α is sym-

metrically defined since its value is invariant under any permutation of the observations (Xi, Yi) of

s. We propose here to use a well-known resampling method, the bootstrap, which is a natural can-

didate for estimating Rk,α. In Section 2, we give an overview of the SIRα approach. The bootstrap

estimate of Rk,α is described in Section 3. Section 4 is devoted to a simulation study which was

conducted in order to show the efficiency of the proposed approach. A comparison with existing
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methods is also provided in Section 4.4. Finally, some concluding remarks are given in Section 5.

2 Overview of the SIRα approach

We give an overview of the univariate SIR approaches (that is when Y ∈ ℜ). While there are several

possible variations, the basic principle of SIR methods (SIR-I, SIR-II or SIRα) is to reverse the role

of Y and X. Instead of regressing the univariate response variable Y on the multivariate covariable

X, the explanatory variable X is regressed on the dependent variable Y . The SIR-I estimates,

based on the first moment E(X|Y ), were introduced by Duan and Li (1991) and Li (1991), and

have been studied extensively by several authors: see for instance Carroll and Li (1992), Hsing and

Carroll (1992), Zhu and Ng (1995), or Aragon and Saracco (1997). The estimation scheme and the

application of SIR-I have been discussed in detail by Chen and Li (1998). Asymptotic properties of

SIR have been investigated in several articles with emphasis on the convergence and the asymptotic

distribution of the estimator of the EDR space, see for instance Hsing and Carroll (1992), Koetter

(1996), Zhu and Fang (1996), Saracco (1997), Hsing (1999), among others.

However, this approach is “blind” for symmetric dependencies (see Cook and Weisberg (1991)

or Kötter (2000)). Therefore, SIR-II estimates based on the inverse conditional second moment

V(X|Y ) have been suggested, see for instance Li (1991), Cook and Weisberg (1991), Kötter (2000)

or Yin and Seymour (2005). Hence these two approaches concentrate on the use of the inverse

conditional moments E(X|Y ) or V(X|Y ) to find the EDR space. To increase the chance of discov-

ering all the EDR directions, the idea of the SIRα method is to conjugate the information provided

by SIR-I and SIR-II methods: if an EDR direction can only be marginally detected by SIR-I or

SIR-II, SIRα considers a mixture of these two methods (see the matrix Mα defined below) which

may provide all the EDR directions.

Let us now recall the geometric properties of model (1). In SIRα approach, Li (1991) considered,

for α ∈ [0, 1], the eigen-decomposition of the matrix

Σ−1Mα

where Mα = (1−α)MIΣ
−1MI +αMII . The matrices MI and MII are respectively the matrices used

in the usual SIR-I and SIR-II approaches. They are defined as follows: MI = V(E(X|T (Y ))) and

MII = E

{
(V(X|T (Y )) − E(V(X|T (Y ))))Σ−1 (V(X|T (Y )) − E(V(X|T (Y ))))T

}
where T denotes a
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monotonic transformation of Y . Specific transformations T are ordinarily used in order to simplify

the expression of the matrices MI and MII . The most usual one is the slicing function (defined

below and used in the rest of the paper). Note that the monotonicity of T is necessary in order

to avoid pathological case of SIR-I only due to a bad choice of T . It can be shown that, under

the linearity condition (3) and the constant variance assumption defined in Remark 2, and for any

monotonic transformation T , the eigenvectors associated with the largest K eigenvalues of Σ−1Mα

are some EDR directions. Note also that, when α = 0 (resp. α = 1), SIRα is equivalent to SIR-I

(resp. SIR-II).

Li (1991) proposed a transformation T , called a slicing, which categorizes the response Y into

a new response with H > K levels. The support of Y is partitioned into H non-overlapping slices

s1, . . . , sh, . . . , sH . With such a transformation T , the matrices of interest are now written as

MI =
H∑

h=1

ph(mh − µ)(mh − µ)T and MII =
H∑

h=1

ph

(
Vh − V

)
Σ−1

(
Vh − V

)
,

where µ = E(X), ph = P (Y ∈ sh), mh = E(X|Y ∈ sh), Vh = V(X|Y ∈ sh) and V =

H∑

h=1

phVh.

Therefore, it is straightforward to estimate these matrices by substituting empirical versions

of the moments for their theoretical counterparts, and therefore to obtain the estimation of the

EDR directions. Each estimated EDR direction converges to an EDR direction at rate
√

n, see for

instance Li (1991) or Saracco (2001). Asymptotic normality of the SIRα estimates has been studied

by Gannoun and Saracco (2003a).

Remark 1. The practical choice of the slicing function T is discussed in Li (1991), Kötter (2000)

and Saracco (2001). Note that the user has to fix the slicing strategy and the number H of slices,

then observations are assigned to slices by value. The SIR theory makes no assumption about the

slicing strategy. In practice, there are naturally two possibilities: to fix the width of the slices or

to fix the number of observations per slice. In their investigation of SIR-I, various researchers have

preferred the second approach. From the sampling point of view, the slices are such that the number

of observations in each slice is as close to each other as possible. To avoid artificial reduction of

dimension, H must be greater than K. Also, in order to have at least two cases in each slice, H must

be less than [n/2] where [a] denotes the integer part of a. Li (1991) noticed that the choice of the

slicing is less crucial than the choice of a bandwidth, as in kernel-based methods. Simulation studies
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(with p = 5 and 10) show that the influence of the “slicing parameter” is small when the sample

size is greater than 100. Note that, in order to avoid the choice of a slicing (the transformation T is

here the identity function and not the slicing function), the kernel-based estimate of SIR-I has been

investigated, see Zhu and Fang (1996) or Aragon and Saracco (1997). However, these methods are

hard to implement with regard to basic slicing one and are computationally slow. Moreover, Bura

(1997) and Bura and Cook (2001) proposed a parametric version of SIR-I.

Remark 2. Note that two crucial conditions for the theoretical succes of SIRα methods are the

following: a linearity condition

E(bTX|βT
1 X, . . . , βT

KX) is linear in βT
1 X, . . . , βT

KX; ∀b ∈ ℜp, (3)

and a constant variance condition

V(X|βT
1 X, . . . , βT

KX) is non-random. (4)

Condition (3) is satisfied when X has an elliptically symmetric distribution and (4) is satisfied when

X follows a multivariate normal distribution (which is an elliptically one): in this case, the linearity

condition is satisfied for any directions, even if they may not be in the EDR space. Note that it

is not possible to verify (3) since this involves the unknown directions βk, contrary to ellipticity

or normality condition which can be tested. Using the bayesian argument of Hall and Li (1993),

we can infer that (3) holds approximately for many high dimensional data sets. An interesting

and detailed discussion on the linearity condition can be found in Chen and Li (1998). Note that

when the distribution of X is far from being multinormal (or from conditions (3) and (4)), the

dimension reduction may not be possible with SIR approaches: that is the choice of K (based on

the eigenvalues or on Rk) will give K = p.

3 Bootstrap estimate of the risk function Rk,α

The risk function is defined by:

Rk,α = E

[
Trace(PkP̂k,α)

]
/k, ∀k = 1 . . . , K (5)

where P̂k,α is the Σ̂-orthogonal projector onto the space spanned by the first k vector b̂l,α of

B̂α = [b̂1,α, . . . , b̂K,α], with b̂l,α the eigenvector associated to the lth greater eigenvalues of Σ̂−1M̂α

the empirical version of Σ−1Mα which is obtained from the sample s = {(Xi, Yi), i = 1, . . . , n}.
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Let B be the number of bootstrap replications and let s(b) =
{

(X
(b)
i , Y

(b)
i ), i = 1, . . . , n

}
a non-

parametric bootstrap sample replication. According to Efron (1982), a näıve bootstrap estimate of

the mean square risk function is defined by:

R̂k,α =
1

B
B∑

b=1

R̂
(b)
k,α (6)

where R̂
(b)
k,α = Trace

(
P̂k,αP̂

(b)
k,α

)
/k and P̂

(b)
k,α is the projector onto the subspace spanned by the first

k eigenvectors of the matrix of interest, which is obtained from the bootstrap replication sample

s(b). Note that the practical criterion R̂k,α could be computed for all k = 1 . . . , p whereas the Rk,α

is only defined for k = 1, . . . ,K.

The aim is to find the dimension k of the model and to have a practical choice of α in the SIRα

method thanks to the bootstrap estimate. The proposed method consists in evaluating the R̂k,α for

all (k, α) ∈ {1, . . . , p}× [0, 1] and then in observing how much it departs from one. The best choice

will be a couple (K̂, α̂) which gives a value of R̂k,α close to one, such that K̂ << p. In practice,

there is no objective criteria in order to establish when a departure from one is close, but a visual

expertise of the plot of the R̂k,α versus k and α allows us to choose the best couple. This point will

be illustrated with simulations in the next section. Note that we only use Nα values in the interval

[0, 1] for α: we choose α̂ in the set SNα
= {αj = j/Nα, j = 0, 1, . . . , Nα − 1}.

4 Simulation study

To evaluate the performance of the proposed method, we generate simulated data from the following

regression model:

Y = (XT β1)
2 exp(XT β1/θ) + γ(XT β2)

2 exp(XT β2/θ) + ǫ, (7)

where X follows a p-dimensional standardized normal distribution and ǫ is standard normally

distributed. We take β1 = (1, 1, 1, 0, . . . , 0)T and β2 = (0, . . . , 0, 1, 1, 1)T . To visualize the data, we

simulate samples of n = 100 data points from this model for different levels of θ: 1, 5 and 100, and for

γ = 0. Figure 1 shows the plots of the response variable Y versus the index XT β1 for these different

values of θ. Clearly, the parameter θ has an influence on the form of the dependence between the

index XT β1 and Y . For γ = 0, when the value of θ is large (resp. small or medium), model (8)
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is a symmetric (resp. non symmetric or partially symmetric) dependent model. Therefore, the

parameter θ affects the choice of α in the SIRα method.
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Figure 1: Plots of Y versus the index XT β1 for different values of θ with γ = 0.

The parameter γ clearly has an influence on the choice of the dimension K: when γ = 0, only one

direction is used in model (8), whereas if γ is nonnull (for instance if γ is fixed at 1), we have two

directions.

The performance of the proposed method will be evaluated for different sample size (n = 300

or 500), various dimensions of the explanatory variable (p = 5 or 10), several choices of θ (=1, 5

or 100) and γ (=0 or 1). The number of slices used in the slicing step is given by the expression

H = max(
√

n, p). The number B of bootstrap replications is chosen to be equal to 50. In these

simulations, the parameter α varies in SNα
for Nα = 11.

In the next subsection, we detail our method applied on some simulated samples. Then, in

subsection 4.2, we comment a complete simulation study. In subsection 4.3, we evaluate the ro-

bustness of the approach when X does not have a multivariate normal distribution. Simulations

were performed with R. All the source codes are available from the authors by e-mail.

4.1 Simulated example

We consider here several samples corresponding to specific choices for the couple of parameters

(k, α).
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Symmetric dependent model (θ = 100) and one direction (γ = 0). We generate a sample

data of size n = 300 from the model (8) with p = 5. For each value of α ∈ SNα
and k = 1, . . . , 5,

we compute R̂k,α. For simplicity, we first investigate the effect of the parameter α on R̂k,α for

fixed values of k, then we investigate the behavior of k on R̂k,α for fixed values of α. Finally, the

influence of the couple (k, α) is simultaneously studied.

- Influence of α on SIRα estimates. Figure 2 gives the boxplots of the R̂
(b)
k,α and the plots of the

R̂k,α versus the values of α for several values of k (1, 2 and 3). Note that for α = 0, the SIRα

method fails (R̂k,α ≃ 0.6 for every values of k). When α > 0, R̂k,α provides greater values which

are close to one for k = 1, whereas the R̂k,α’s values are always lower than 0.8 when k = 2 or 3.
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Figure 2: Boxplots of the R̂
(b)
k,α’s values (above) and plots of R̂k,α (below) versus α, for k = 1, 2

and 3.

- Choice of dimension K in the SIRα method. Figure 3 gives the boxplots of the R̂
(b)
k,α’s and the

plots of R̂k,α versus the values of k for several values of α (0, 0.1 and 1). Note that for α = 0.1 and

α = 1, the R̂k,α’s are close to 1 when k = 1, and they decrease for k = 2 before slowly increasing

again.

- Choice of dimension K and α in the SIRα method. The 3D-graphic in Figure 4 exhibits the R̂k,α

values versus α and k. Note that the plots at the bottom of Figure 2 (resp. 3) are contained in the

3D-plot of Figure 4 if we focus only on the α-axis for a fixed k (resp. on the k-axis for a fixed α).

In view of these figures, we clearly choose the dimension K̂ = 1 and α̂ = 0.1.
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Figure 3: Boxplots of the R̂
(b)
k,α’s values (above) and plots of R̂k,α (below) versus k, for α = 0, 0.1

and 1.
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Figure 4: Plot of R̂k,α versus α and k.
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Symmetric dependent model (θ = 100) and two directions (γ = 1). First, we generate a

sample data of size n = 500 from the model (8) with p = 5. For each value of α and k = 1, . . . , 5,

we compute R̂k,α.

- Influence of α on SIRα estimates. Figure 5 gives the boxplots of the R̂
(b)
k,α’s and the plots of R̂k,α

versus the values of α for several values of k (1, 2 and 3). Note that for α = 0, the SIRα method

fails (R̂k,α = 0.68). For α > 0, R̂k,α gives greater values which are close to one for k = 1 and 2.

When k = 3, the values of R̂k,α are significantly lower than the previous ones.
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Figure 5: Boxplots of the R̂
(b)
k,α’s values (above) and plots of R̂k,α (below) versus α, for k = 1, 2

and 3.

- Choice of dimension K in the SIRα method. Figure 6 gives the boxplots of the R̂
(b)
k,α’s and the

plots of R̂k,α versus the values of k for several values of α (0, 0.1 and 1).Note that for α = 0.1 and

α = 1, the R̂k,α’s are close to 1 when k = 1 and 2, then they decrease for k = 3 and increase after.

- Choice of dimension K and α in the SIRα method. The 3-D graphic in Figure 7 shows the R̂k,α’s

values versus α and k. In view of Figures 5, 6 and 7, we can choose K̂ = 2 and α̂ = 0.1. In this

case, we observe a plateau in Figure 7 for α = 0.1. The explanation of this phenomenon is that

the estimated eigenvectors b̂1 (resp. b̂2) and b̂
(b)
1 , corresponding to the s(b) samples, (resp. b̂

(b)
2 )

are colinear (i.e. each direction appears to be individually identifiable); then the quality of the

estimated EDR space for k = 1 and k = 2 is good (close to one). Nevertheless, if we only keep the

first direction, we lose information provided by the second one (which is in the true two-dimensional
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Figure 6: Boxplots of the R̂
(b)
k,α’s values (above) and plots of R̂k,α (below) versus k for α = 0, 0.1

and 1.

EDR space).

4.2 Results of the simulation study

For each combination of θ (=1, 5 or 100), γ (=0 or 1), p (=5 or 10) and n(=300 or 500), we generate

N = 500 samples {(Xi, Yi), i = 1, . . . , n} from model (8). The EDR space has been estimated by

the SIRα method. For each sample, we evaluate the corresponding values of R̂α,k for k = 1, . . . , p

and α varying in SNα
. For concision, we show here only few results for several combinations of θ,

γ, p and n.

Single index (γ = 0) model. Table 1 shows the means of the R̂α,k’s over the N = 500 replica-

tions (denoted by R̂k,α) for n = 300 and p = 5. When there is no symmetric dependence (θ = 1)

in the model, the values 0 or 0.1 for α provide R̂α,k values close to 1 only for k = 1. When θ = 5

or 100 (symmetric dependent model), the SIR-I (α = 0) fails and we need to take α̂ > 0 in order

to get a R̂α,k value close to 1 for k = 1. When k > 1 and α > 0, the averages of the Rα,k’s values

are always smaller than those obtained with k = 1.
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Figure 7: Plot of R̂k,α versus α and k.

R̂k,α θ = 1 θ = 5 θ = 100

α k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

0 0.989 0.706 0.743 0.843 0.922 0.692 0.738 0.843 0.393 0.554 0.694 0.831

0.1 0.990 0.710 0.748 0.851 0.972 0.697 0.746 0.850 0.971 0.697 0.742 0.850

0.2 0.989 0.713 0.750 0.851 0.965 0.703 0.749 0.849 0.971 0.697 0.743 0.850

0.3 0.977 0.711 0.752 0.851 0.939 0.697 0.746 0.851 0.968 0.700 0.743 0.849

0.4 0.890 0.706 0.749 0.852 0.898 0.691 0.744 0.850 0.967 0.700 0.742 0.849

0.5 0.548 0.669 0.745 0.849 0.844 0.683 0.742 0.848 0.966 0.697 0.743 0.849

0.6 0.250 0.537 0.717 0.847 0.798 0.674 0.740 0.848 0.964 0.698 0.744 0.849

0.7 0.355 0.494 0.659 0.830 0.763 0.666 0.738 0.848 0.964 0.696 0.743 0.850

0.8 0.409 0.580 0.703 0.825 0.731 0.656 0.736 0.847 0.963 0.697 0.744 0.849

0.9 0.419 0.608 0.763 0.903 0.714 0.651 0.734 0.847 0.962 0.698 0.742 0.848

1 0.420 0.613 0.780 0.957 0.698 0.642 0.730 0.846 0.962 0.696 0.742 0.848

Table 1: Means of the R̂k,α’s values over the N = 500 replications, denoted by R̂k,α, for different

values of θ when γ = 0, n = 300 and p = 5.
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Model with two directions (γ = 1). Let us consider the N = 500 samples of size n = 500 for

p = 10 and θ = 100. Figure 8 shows the boxplots of the R̂k,α over the N = 500 replications and the

plots of the mean of the R̂k,α’s versus the values of α, for several values of k (1, 2 and 3). Note that

for α = 0, the SIRα method fails (with
¯̂
Rk,α ≤ 0.5). For α > 0, the R̂k,α’s provide greater values

that are close to one for k = 2. Figure 9 shows the boxplots of the R̂k,α’s values over the N = 500
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Figure 8: Boxplots of the R̂k,α’s values (above) and plots of R̂k,α, mean of the R̂k,α’s, (below)

versus α, for k = 1, 2 and 3.

replications and the plots of the mean of the R̂k,α’s versus the values of k, for several values of α

(0, 0.1 and 1). Note that for α = 0.1 and 1, the R̂k,α’s are close to 0.8 when k = 1, that they

increase to 0.9 for k = 2, and then decrease for k = 3 and 4, before increasing slowly thereafter.

Figure 10(a) represents the mean of the R̂k,α’s values over the N = 500 replications versus α and

k. In view of Figures 8, 9 and 10(a), the best choice (in mean) is the dimension K̂ = 2 and an

α̂ > 0.1.

We also show the results when p = 5 (with the same simulation parameters: γ = 1 , θ = 100,

n = 500). Figure 10(b) shows the mean of the R̂k,α’s values over the N = 500 replications versus

α and k. Note that for α = 0, the SIRα method fails. For α > 0, R̂k,α gives greater values that

are close to one for k = 1 and 2. When k = 3, the values of R̂k,α are significantly lower than

the previous ones. In this case, we observe the same plateau phenomenon as described in the

second example of section 4.1. The two directions appear to be individually identifiable, and a

16



●●●●●●●

●

●

●
●

●●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●●

●
●

●●

●

●●
●●

●●●

●

●

●

●●

●●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα == 0

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

●
●

●
●
●●

●
●
●
● ●●●

●●
●
●●●

●●

●●

●

●

●●

●●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα == 0.1

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

●

●
●

●
●●

●
●●

●
●●

●

●●

●
●

●

●●●

●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα == 1

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα == 0

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

●

●

●
● ●

●

●

●

●

●

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

αα == 0.1

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

●

●

●
● ●

●

●

●

●

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα == 1

k

R̂
kαα

1 2 3 4 5 6 7 8 9 10

Figure 9: Boxplots of the R̂k,α’s (above) and plots of R̂k,α (below) versus k for α = 0, 0.1 and 1.
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Figure 10: Plot of R̂k,α versus α and k.
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straightforward consequence is that the quality of the estimated EDR space for k = 1 and k = 2

is good (close to one). Nevertheless, in order to keep all the EDR space information, we need

to consider the two-dimensional subspace. Note that in the previous case (see Figure 10(a)), the

first two directions were not individually identifiable, contrary to the two-dimensional EDR space;

therefore the quality of the criterion for k = 1 is poor while it is close to one when k = 2. Hence,

the best choice in mean is the dimension K̂ = 2 and an α̂ > 0.1.

4.3 Case of a non-multivariate X

We also consider the case when X does not come from a multivariate normal distribution in order

to obtain some idea of the robustness of our approach: the distribution of X is 1
2Np(µ2,Σ2) +

1
2Np(µ1,Σ1) where µ1 = (−2, . . . ,−2)T , Σ1 = 0.5Ip, µ2 = (2, . . . , 2)T , Σ2 = Ip. We present the

results for the case where n = 500, p = 10, γ = 1 and θ = 100. Figure 11 shows the boxplots
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Figure 11: Boxplots of the R̂k,α’s values (above) and plots of R̂k,α (below) versus α, for k = 1, 2

and 3.

of the R̂k,α’s values over the N = 500 replications and the plots of the mean of the R̂k,α’s versus

the values of α for several values of k (1, 2 and 3). Note that for α = 0, the SIRα method fails

(
¯̂
Rk,α ≃ 0.4). When k = 2, the R̂k,α’s provide greater values for α ≥ 0.1. Figure 12 shows the

boxplots of the R̂k,α’s values over all the replications and the plots of the mean of the R̂k,α’s values

versus the values of k for several values of α (0, 0.1 and 1). Note that for α = 0.1, the R̂k,α’s are
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Figure 12: Boxplots of the R̂k,α’s values (above) and plots of R̂k,α (below) versus k for α = 0, 0.1

and 1.

close to 1 when k = 2, then they decrease until k = 4, and that they slowly increase thereafter.

Figure 13 represents the mean of the R̂k,α’s values over all the replications versus α and k. In view

of figures 11, 12 and 13, the best choice in mean is the dimension K̂ = 2 and an α̂ = 0.1.

4.4 Comparison with other methods

In this subsection, we compare the proposed bootstrap method with the nested tests procedure

introduced by Li (1991) and with the method developed by Ferré (1998), which is based on an

estimation of the risk function Rk thanks to asymptotic expansions. These two methods only focus

on the SIR-I approach (that is when α = 0 in SIRα). Therefore, the choice of the parameter α is

not necessary and is fixed at zero in our approach. This is a first limitation of these two existing

methods for determining dimension K. In the following,we recall these two methods. Then we

describe the simulated model. Finally we comment the results of this simulation study.

The nested tests procedure. Li (1991) suggested evaluating K by successively testing the

nullity of the (p− k) smallest eigenvalues, starting at k = 0. He proposed a chi-squared test based

on the mean of the smallest (p−k) eigenvalues of the matrix MI , denoted by λ̄(p−k). Theoretically,

for the true dimension K and if X is normally distributed, Li (1991) showed that n(p − K)λ̄(p−K)
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Figure 13: Plot of R̂k,α versus α and k.

follows a χ2 distribution with (p − K)(H − K − 1) degrees of freedom asymptotically. From this

result, if the rescaled λ̄(p−k) is larger than the corresponding χ2 value (say the 95th percentile), we

may infer that there are at least k + 1 (significant) indices in the model.

Ferré’s method. Ferré (1998) proposed to estimate the risk function Rk defined in (2). Under

technical assumptions and when X follows an elliptically distribution, Ferré showed that:

Rk = 1 − 1

nk




k∑

i=1

K∑

j=k+1

(λi + λj + (−1 + κ)λiλj)

(λi − λj)2
+ (p − K)

q∑

i=1

1

λi



 + O(n−3/2)

for k = 1 to K where κ is the usual kurtosis parameter. From this asymptotic expansion, an

estimator R̂k is defined by substituting the eigenvalues and κ by their estimates. Nevertheless, this

criterion depends on the true dimension K (unknown). Ferré proposed to compute R̂k (in fact a

best notation should be here R̂k,K) for K = 1 to p and k = 1 to p, and he mentioned that ”the

decision rule deduces from the observation of the p curves obtained by plotting R̂k,K versus k, for

k = 1 to p and for K = 1 to p”. In practice, it is not really easy to determine the dimension from

this graphical aspect (in particular when p is large).
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Simulated model. We generate simulated data from the following regression model (in which

the true dimension K is equal to 2):

Y = (X′β1) exp(X′β2) + ǫ, (8)

where X follows a 10-dimensional standardized normal distribution and ǫ is normally distributed

with σ2. We take β1 = (1, 1, 0, . . . , 0)′ and β2 = (0, 0, 0, 1, 1, 0, . . . , 0)′. Note that we consider here

the multinormal case corresponding with the theoretical assumption of the nested tests procedure

and Ferré method. Moreover, this model is not a symmetric dependent model, then SIR-I should

provide good performance.

The performances of the different methods are evaluated for different sample sizes (n = 100, 400

or 1000) and several choices of σ2 (= 0.01 or 1). For each value of (n, σ2), N = 500 samples have

been generated. For each sample, we determined the dimension with the three methods (nested

tests, Ferré’s approach, bootstrap approach).

Results and comments. Using our bootstrap approach, Figure 14 shows the boxplots of the

R̂k,α’s values over the N = 500 replications and the plots of the mean of the R̂k,α’s versus the values

of k, in the case where σ2 = 1, n = 100 and n = 400. Note that for n = 100, the R̂k,α’s are close

to 0.7 when k = 1, increase to 0.8 for k = 2, and then decrease for k = 3 and 4, before increasing

slowly thereafter. In view of this figure, the best choice (in mean) is the dimension K̂ = 2. Similar

(and best) results have been observed for n = 400 and σ2 = 1 (see Figure 14). When σ2 = 0.01

and n = 100, 400 or 1000, we obtained similar graphics which are not shown in the paper.

Let us now comment the results from the nested tests procedure. Figure 15 shows the boxplots

of the p-values of the nested tests for all values of (n, σ2). On these graphics, if a p-value is lower

than 5% for a value of k and is greater than 5% for k + 1, the dimension k + 1 is chosen. Note that

the only case where this procedure had good performance (that is determine the true dimension)

is for large sample size (n = 1000) and small variance (σ2 = 0.01). The dimension K̂ = 2 has

been always chosen. In the other cases, the method failed. For instance, for medium sample size

(n = 400) and small variance (σ2 = 0.01), the procedure chose K̂ = 2 for 23 simulated samples, and

K̂ = 1 for 477 samples. When the variance is σ2 = 1, the procedure never find the true dimension

(K̂ = 1 for n = 1000, no dimension reduction for n = 100).

Concerning Ferré approach, the estimate R̂k,K of RK only gave reasonable values (in [0,1]) for

K = 1 and for the true dimension K = 2. In the other cases, the values for R̂k,K are always (in
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Figure 14: Boxplots of the R̂k,α (on the left handside) and plots of the mean of R̂k,α’s (on the right

handside) versus k for α = 0 with σ2 = 1, n = 100 (above) and n = 400 (below)

mean over the N replications) negative values. This phenomenon is particularly obvious for small

sample size and large variance. This problem has been already mentioned by Ferré and Yao (1999)

for a SIR-II version of this approach. An explanation of these ”bad” values can be the proximity of

the eigenvalues. From these remarks, it seems difficult to use this method to determine dimension,

even if R̂k,K appears to be well estimated for the true dimension (which is unknown in practice).
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Figure 15: Boxplots of the p-values of the nested tests for different values of (n, σ2)

Final comments. Note that our bootstrap approach always provides a good decision concerning

the choice of dimension, contrary to the other ones. Moreover, this approach also makes it possible

the choice of α (which was fixed, α = 0, in the previous comparison) for all kinds of models

(especially for symmetric dependent models).

The nested tests procedure and the Ferré approach rely on multinormal or elliptical assumption

for the distribution of X. In the previous subsection, we show that our method still provides good

performance in non elliptical case.

5 Concluding remarks

This article proposes a practical criterion based on bootstrap to choose the dimension and α in

the SIRα method. The simulation study demonstrates good numerical behaviour of this approach,

contrary to existing methods (which only focus on the choice of dimension K). We underline the

pleasant graphical aspect of the criterion which allows the practitioner to choose both K and α.
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The method has been implemented in R, and the source codes are available from the author. They

provide the three kinds of graphics in order to visualize the quality of the estimated EDR space

when k (resp. α) varies for a fixed α (resp. k), and they give the 3D-plot of this quality when the

couple (k, α) varies on a grid. We used a rough grid in our simulation study, but for a dataset, we

recommend working with a thin grid.

Importantly the choice of parameter α seems to be less sensitive than the choice of dimension

K. More precisely, for the choice of α, there are generally two scenarios: the case where α = 0 and

the case where α > 0 (when a symmetric dependence occurs in the model). The 3D-graphics in

Section 4 show that for each fixed k, the profiles of the criterion are nearly similar when α > 0.

Finally, this approach can be extended to the multivariate SIRα method named pooled marginal

slicing PMSα, see Saracco (2005) or Barreda et al. (2007).
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