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Université de Bourgogne,

9 avenue Alain Savary, 21 078 Dijon Cedex, France

e-mail: Jerome.Saracco@u-bourgogne.fr

Summary

In this paper, we consider a semiparametric regression model involving both
p-dimensional quantitative covariable X and categorical predictor Z, and
including a dimension reduction of X via K indices X ′βk. The dependent
variable Y can be real or q-dimensional. We propose an approach based
on SIRα and Pooled Marginal Slicing methods in order to estimate the
space spanned by the βk’s. We establish

√
n-consistency of the proposed

estimator. Simulation studies show the numerical qualities of our estimator.
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1 Introduction

Regression analysis studies the relationship between a covariable X and a
response variable Y . In parametric regression, the link function is a simple
algebraic function of X , and least squares or maximum likelihood methods
(among others) can be applied in order to find the best global fit. In non-
parametric regression, the class of fitted function is enlarged in order to ob-
tain greater flexibility via sophisticated smoothing procedures (such kernel or
smoothing splines methods). However as the dimension p of the covariable X
becomes large, increased difficulties in modeling are often encountered. This
is the well-known curse of dimensionality. In this framework of high dimen-
sional regression, Li (1991) proposed the following semiparametric dimension
reduction model:

Y = g(β′

1X, . . . , β′

KX, ε), (1)

where the univariate response variable Y is associated with the p-dimensional
regressor X (with expectation E[X ] = µ and covariance matrix V(X) =
Σ) only through the reduced K-dimensional variable (β′

1X, . . . , β′

KX) with
K < p. The error term ε is independent of X . The link function g and
the β-vectors are unknown. We are interested in finding the linear subspace
spanned by the K unknown β-vector, called the effective dimension reduction
(e.d.r.) space .

Li (1991) introduced Sliced Inverse Regression (named SIR-I in the fol-
lowing) which is a computationally simple and fast method to estimate the
e.d.r. space without assuming the functional form of g and the distribution
of ε. All the SIR approaches are based on some properties of the conditional
distribution of X given Y . The SIR-I method exploits a property of the
first inverse moment E(X |Y ); see for instance Duan and Li (1991), Carroll
and Li (1992), Hsing and Carroll (1992), Zhu and Ng (1995), Kötter (1996),
Saracco (1997, 1999), Aragon and Saracco (1997), Bura and Cook (2001) or
Gather et al. (2002) among others. The SIR-II method relies on a property
ot the second inverse moment V(X |Y ), which is not blind for “symmetric
dependencies”; see for instance Li (1991) or Cook and Weisberg (1991). In
order to conjugate information from SIR-I and SIR-II approaches, Li (1991)
proposed the SIRα method which is a suitable combinaison of the methods.

Several authors (see Aragon, 1997, Li et al., 2003) extented the univari-
ate model (1) to a multivariate response variable: Y is assumed to be q-
dimensional with q > 1, the corresponding link function is then ℜq-valued.
In this multivariate framework, the associated dimension reduction model
can be written as follows:

Y = g(β′

1X, . . . , β′

KX, ε) =





g1(β
′

1X, . . . , β′

KX, ε1)
...
gq(β

′

1X, . . . , β′

KX, εq)

(2)
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3

where the error terms εj are assumed independent of X and the link func-
tions gj’s are unknown real-valued functions. Clearly, as in (1), only the
e.d.r. space is identifiable. A few methods based on SIR-I approach have
been developed in this multivariate context; they are named Complete Slic-
ing, Marginal Slicing, Pooled Marginal Slicing and Alternating SIR methods.
Barreda et al. (2003) and Saracco (2005) focused on some extensions of the
existing multivariate SIR approaches by using the SIRα method.

Another extension of model (1) is to incorporate a qualitative or categori-
cal predictor Z in addition to the quantitative covariable X . Many covariates
(often called factors) are qualitative in the nature such as gender, treatment,
type of population, . . . Generally, the categorical predictor Z can be viewed
as a classification variable with L “levels” which identifies a number of sub-
populations. Thus to introduce this qualitative predictor, we consider the
following model: for l = 1, . . . , L,

Y = g(l)(β′

1X, . . . , β′

KX, ε) when Z = l. (3)

For each subpopulation l, Y is related to the p-dimensional quantitative re-
gressor X only through the K indices β′

kX . The categorical variable Z is
not assumed to be independent of X . It affects the conditional distribution
of X given Z as follows: E(X |Z = l) = µ(l) and V(X |Z = l) = Σ(l) for
l = 1, . . . , L. It also influences the dependency between Y and the indices
β′

kX via the different link function g(l) associated with each subpopulation
l. In other words, a statement equivalent to (3) is that Y and (X, Z) are
independent conditionally on (β′

1X, . . . , β′

KX, Z).
In a similar dimension reduction model context with binary regressor,

Carroll and Li (1995) presented a new look at treatment comparisons. They
considered the covariable Z as the treatment indicator and the proposed
model is Y = g(β′X + θZ, ε). Estimates of β and θ are obtained without
assuming a functional form for g. Their method is based on the use of
SIR-I in order to estimate the direction of β (e.d.r. directions estimated
from each subpopulation are combined in order to obtain a final direction
e.d.r.), followed by a partial-inverse mean matching method for estimating
the treatment effect θ.

When the number L of levels for Z is greater than two, Chiaromonte et
al. (2002) considered a similar context to (3) and they presented a partial
dimension reduction of X, for the regression of Y on (X, Z). They mentioned
that this approach need not coincide with marginal dimension reduction for
the regression of Y on X , nor with conditional dimension reduction for the
regression of Y on X within the subpopulations indentified by Z. Assum-
ing the simplifying hypothesis that the predictors’ covariance structure is the
same across subpopulations (Σ(l) = Σ⋆, l = 1, . . . , L), they introduced a cor-
responding estimation method of the e.d.r. space, based on SIR-I technique
and named Partial Sliced Inverse Regression.

In this paper, we consider an extension of model (3) in which Y is assumed
to be q-dimensional (q > 1), the link functions g(l) are now ℜq-valued as the
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4

function g in model (2). In order to estimate the e.d.r. space, we propose a
new method based on the Pooled Marginal Slicing approach via SIRα method.
In section 2, we give an overview of the univariate SIRα method and describe
the corresponding Pooled Marginal Slicing (PMSα) estimator. In Section
3, we exhibit two estimators, the first one in the homoscedastic case and
the second one in the heteroscedastic context. We also establish asymptotic
properties for these estimators. Some simulations are presented in Section
4 in order to show the numerical qualities of our estimators. Concluding
remarks are given in section 5.

2 The PMSα estimator without discrete pre-

dictors

First, we recall some properties of the univariate SIRα method. Then, we
introduce the corresponding Pooled Marginal Slicing method, named PMSα

hereafter.

2.1 Overview of the univariate SIR
α

method

We consider the framework of model (1), that is when q = 1 and without
discrete predictors. We give an overview of the univariate SIRα approach.
While there are several possible variations, the basic principle of the SIR
methods (SIR-I, SIR-II or SIRα) is to reverse the role of Y and X . Instead
of regressing the univariate Y on the multivariate X , the covariable X is
regressed on the response variable Y . The SIR-I estimates based on the first
moment E(X |Y ) have been studied extensively; see for instance Duan and
Li (1991), Li (1991), Carroll and Li (1992), Hsing and Carroll (1992), Zhu
and Ng (1995), Kötter (1996), Saracco (1997, 1999), Aragon and Saracco
(1997). But this approach is “blind” for symmetric dependencies (see Cook
and Weisberg (1991) or Kötter (2000)). Then, SIR-II estimates based on
the inverse conditional second moment V(X |Y ) have been suggested; see for
instance Li (1991), Cook and Weisberg (1991) or Kötter (2000). Hence these
two approaches concentrate on the use of the inverse conditional moments
E(X |Y ) or V(X |Y ) to find the e.d.r. space. For increasing the chance
of discovering all the e.d.r. directions, the idea of the SIRα method is to
conjugate these informations: if an e.d.r. direction can only be marginally
detected by SIR-I or SIR-II, a suitable combination of these two methods
may sharpen the result.

Let us now recall the geometric properties of the model (1). In order
to conjugate information from the SIR-I and SIR-II approaches, Li (1991)
considered, for α ∈ [0, 1], the eigen-decomposition of the matrix Σ−1Mα

where Σ = V(X) and Mα = (1 − α)MIΣ
−1MI + αMII . The matrices MI

and MII are respectively the matrices used in the usual SIR-I and SIR-II ap-
proaches. They are defined as follows: for a monotonic transformation T of Y ,
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5

MI = V(E(X |T (Y ))) and MII = E

{(
ṼT − E(ṼT )

)
Σ−1

(
ṼT − E(ṼT )

)
′

}
,

where ṼT = V(X |T (Y )). It can be shown that the eigenvectors associated
with the largest K eigenvalues of Σ−1Mα are some e.d.r. directions. Let us
remark that, when α = 0 (resp. α = 1), SIRα is equivalent to SIR-I (resp.
SIR-II).

Li (1991) proposed a transformation T , called a slicing, which catego-
rizes the response Y into a new response with H > K levels. The support
of Y is partitioned into H non-overlapping slices s1, . . . , sh, . . . , sH . With
such transformation T , the matrices of interest are now written as MI =∑H

h=1 ph(mh − µ)(mh − µ)′ and MII =
∑H

h=1 ph

(
Vh − V

)
Σ−1

(
Vh − V

)
,

where ph = P (Y ∈ sh), mh = E(X |Y ∈ sh), Vh = V(X |Y ∈ sh) and

V =

H∑

h=1

phVh.

So, it is straightforward to estimate these matrices by substituting empir-
ical versions of the moments for their theoretical counterparts, and therefore
to obtain the estimation of the e.d.r. directions. Each estimated e.d.r. di-
rection converges to an e.d.r. direction at rate

√
n when the corresponding

eigenvalues are assumed to be distinct, see for instance Li (1991) or Saracco
(2001). Asymptotic normality of the SIRα estimates has been studied by
Gannoun and Saracco (2003a).

Remarks. The practical choice of the slicing function T is discussed in Li
(1991), Kötter (2000) and Saracco (2001). Note that the user has to fix the
slicing strategy and the number H of slices. In order to avoid the choice of
a slicing, kernel-based estimate of SIR-I has been investigated, see Zhu and
Fang (1996) or Aragon and Saracco (1997). However, these methods are hard
to implement with regard to basic Slicing one and are computationally slow.
Moreover, Bura and Cook (2001) proposed a parametric version of SIR-I.
Determining the number K (of indices) is considered by Li (1991), Schott
(1994) and Ferré (1998), for the SIR-I method.

The practical choice of α can be based on the test approach proposed
by Saracco (2001), which does not require the estimation of the link func-
tion. Two cross-validation criteria have been also developed by Gannoun and
Saracco (2003b) to select the parameter α, these criteria require the kernel
smoothing estimation of the link function.

Note that one crucial condition for the success of SIR-I method is:

E(b′X |β′

1X, . . . , β′

KX) is linear for any b. (4)

This assumption will hold if the distribution of X is elliptically symmetric.
The classical example of an elliptically symmetric distribution is the mul-
tivariate normal distribution. It does not seem possible to verify (4), this
involves the unknown directions of main interest as a start. As Li (1991)
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6

pointed out, this linearity condition is not a severe restriction. Using a
bayesian argument of Hall and Li (1993), we can infer that (4) holds ap-
proximatively for many high dimensional data sets.

For SIR-II and SIRα methods, X is generally assumed to have a multi-
variate normal distribution. Alternatively, note that another commonly used
assumptions in the literature are as follows: (i) the condition of the ellipti-
cal symmetry made under the design condition (4), and (ii) the conditional
variance V(X |β′

1X, . . . , β′

KX) is non-random.

2.2 Pooled Marginal Slicing estimator based on SIR
α

We consider here the multivariate framework of model (2) without discrete
predictors. We present a short description of the Pooled Marginal Slicing
based on the SIRα approach; see Saracco (2005) for details. Let Y j denote
the jth component of Y .

The idea of the Pooled Marginal Slicing method is to consider the q uni-
variate SIRα methods of each component Y j of Y on X (based on a specific

slicing Tj) and to combine the corresponding Mα matrices (denoted by M
(j)
αj )

in the following pooling:

Mα,P =

q∑

j=1

wjM
(j)
αj

, (5)

for positive weigths wj and parameters αj . Each transformation Tj cate-
gorizes each response Y j into a new response with Hj > K levels; that is

the support of each Y j is partitioned into Hj fixed slices s
(j)
1 , . . . , s

(j)
Hj

. For

j = 1 . . . , q, the matrices M
(j)
αj are defined as follows:

M (j)
αj

= (1 − αj)M
(j)
I Σ−1M

(j)
I + αjM

(j)
II ,

where M
(j)
I and M

(j)
II are respectively the matrices used in the SIR-I and

SIR-II approaches corresponding to the component Y j based on a slicing
Tj . For simplicity, assume that X has a multivariate normal distribution,
then the eigenvectors, denoted by b1, . . . , bK , associated with the largest K
eigenvalues of Σ−1Mα,P are e.d.r. directions.

It is straightforward to estimate the matrices M
(j)
I and M

(j)
II by substitut-

ing empirical versions of the moments for their theoretical counterparts, and
therefore to obtain the estimation of the e.d.r. directions b̂1, . . . , b̂K which
are the eigenvectors associated with the K largest eigenvalues of Σ̂−1M̂α,P .

Remarks. From a practical point of view, as in Aragon (1997), two kinds
of weights wj can be used: equal weights or weights proportional to the
major eigeinvalues found by a preliminary univariate SIRα analysis of each
component of Y . In (5), the parameters αj are individually chosen for each
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7

univariate SIRα method. For the choice of the αj ’s, the method based on the
test approach of Saracco (2001) can be used. The asymptotic normality of

Σ̂−1M̂α,P is obtained by Saracco (2005), as well as the asymptotic normal-
ity of the eigenprojector on the estimated e.d.r. space, and the asymptotic
normality of each estimated e.d.r. direction and its corresponding eigenvalue.

3 Incorporating discrete covariables

In this section, we consider a multivariate extension of model (3) in which
Y is assumed to be q-dimensional (q > 1). Let Yi denote the ith observed
q-dimensional vector Y . Let Y j

i be the jth component of Yi. Let us now
introduce the multivariate semiparametric regression model: for l = 1, . . . , L,

Y =





Y 1 = g
(l)
1 (β′

1X, . . . , β′

KX, ε
(l)
1 ) when Z = l,

...

Y q = g
(l)
q (β′

1X, . . . , β′

KX, ε
(l)
q ) when Z = l.

(6)

The quantitative predictor X ∈ ℜp is the covariable with respect to which
we will perform dimension reduction, while the discrete predictor Z is an
additional categorical covariable that is not included in the reduction of the
dimension. This covariable may represent one or more discrete covariables
that identify L subpopulations.

For simplicity, from now on we assume that K = 1, thus we focus on the
characterization and the estimation of an e.d.r. direction b colinear to β.

Conditions. As in the standard SIR approaches, a design condition is re-
quired for the consistency of the method. In our context, let us assume that
X is elliptically symmetric for each subpopulation. Note that we then get
the following linear conditions for each subpopulation:

∀v ∈ ℜp, E[v′X |β′X, Z = l] is linear in β′X for each l = 1, . . . , L.

Moreover, an additional condition is necessary for the consistency of the
method: we assume that the conditional variance V(X |β′X, Z = l) is non-
random for each subpopulation. Alternatively, note that we can also make
the assumption that, for each subpopulation l, X has a multivariate normal
distribution.

Estimator of the e.d.r. space. We define a general estimator of the
e.d.r. space. The idea of the estimator is based on the PMSα approach. We
propose to pool the “marginal” matrix obtained for each component Y j of Y
and for each level l of Z. Then, the population version of the pooled matrix
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8

of interest is defined as follows:

MP
q,L =

q∑

j=1

w̃(j)
q

{
L∑

l=1

w
(l)
L

(
Σ(l)

)
−1

M
(j,l)

α(j,l)

}
, (7)

where the matrices M
(j,l)

α(j,l) are the Mα matrices corresponding to the sub-

population l for the component Y j of Y , that is the SIRα matrix defined

for the pairs (X, Y j) given Z = l. The weights {w(l)
L , l = 1, . . . , L} are the

probability of the events Z = l, and the weights {w̃(j)
q , j = 1, . . . , q} are

some positive weights such that
∑q

j=1 w̃
(j)
q = 1. Note that the parameter α

of each Mα matrix can be individually adapted and is denoted by α(j,l). In

the sequel, we use the equal weights {w̃(j)
q = 1

q , j = 1, . . . , q} for simplicity.

As in Chiaromonte et al. (2002), we will first consider the same simplifying
assumption that all the covariance structure of X given Z = l are the same
across the L subpopulations:

Σ(l) = Σ⋆, l = 1, . . . , L. (8)

Hereafter, this common covariance assumption will be refered as the “ho-
moscedastic case” in constrast to the more general “heteroscedastic case”. In
each case, we will describe the specific population and sample version of the
matrix of interest (7).

3.1 Homoscedastic case

When Σ(l) = Σ⋆ for each subpopulation l = 1, . . . , L, the matrix MP
q,L defined

in (7) can be written this way:

(Σ⋆)−1MP
q,L, (9)

where MP
q,L =

∑q
j=1 w̃

(j)
q

{∑L
l=1 w

(l)
L M

(j,l)

α(j,l)

}
. Clearly, if the design condition

holds within each subpopulation, the eigenvector associated with the largest
eigenvalue of (Σ⋆)−1MP

q,L is an e.d.r. direction.

Sample version. We assume that an independent and identically dis-
tributed (i.i.d.) sample

S = {(Xi, Zi, Yi), i = 1, . . . , n}

is available from model (6). In order to get an estimator of the matrix defined
in (9), the usual idea of the SIR approaches is to substitute empirical versions
of all the moments for their theoretical counterparts.

Let S(l) = {(Xi, Yi) such that Zi = l} be the subsample corresponding

to the subpopulation l. Let Σ̂(l) be the covariance matrix of X in each
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9

subsample S(l). An estimate of the common covariance Σ⋆ is given by: Σ̂⋆ =∑L
l=1

nl

n Σ̂(l), where nl is the size of the subsample S(l).

Let us also introduce the subsample S(j,l) = {(Xi, Y
j
i ) such that Zi = l}.

Following the usual way of the PMSα approach, we assume that, for each
subpopulation l, the sample support of each component Y j of Y is partitioned

into H(j,l) fixed slices s
(j,l)
1 , . . . , s

(j,l)
h , . . . , s

(j,l)

H(j,l) . Let n
(j,l)
h be the number of

observations in slice h of the subsample S(j,l) for the Y j component. For each
subsample S(j,l), we calculate the corresponding intraslice mean vectors and
intraslice covariance matrices as follows: for h = 1, . . . , H(j,l), j = 1, . . . , q
and l = 1, . . . , L,

x̄
(j,l)
h =

1

n
(j,l)
h

n∑

i=1

XiI
[
Y j

i ∈ s
(j,l)
h

]
,

and V̂
(j,l)
h =

1

n
(j,l)
h

n∑

i=1

(Xi − x̄
(j,l)
h )(Xi − x̄

(j,l)
h )′I

[
Y j

i ∈ s
(j,l)
h

]
,

where I[.] is the indicator function. Let us define V̂
(j,l)

=
∑H(j,l)

h=1

n
(j,l)

h

nl
V̂

(j,l)
h .

The matrices M
(j,l)
I and M

(j,l)
II are then estimated as follows:

M̂
(j,l)
I =

H(j,l)∑

h=1

n
(j,l)
h

nl

(
x̄

(j,l)
h − x̄(j,l)

) (
x̄

(j,l)
h − x̄(j,l)

)
′

and

M̂
(j,l)
II =

H(j,l)∑

h=1

n
(j,l)
h

nl

(
V̂

(j,l)
h − V̂

(j,l)
)

(Σ̂⋆)−1

(
V̂

(j,l)
h − V̂

(j,l)
)

′

.

Then, we can define the estimators of the matrices M
(j,l)

α(j,l) and MP
q,L by

M̂
(j,l)

α(j,l) = (1 − α(j,l))M̂
(j,l)
I (Σ̂⋆)−1M̂

(j,l)
I + α(j,l)M̂

(j,l)
II

and

M̂P
q,L =

1

q

q∑

j=1

{
L∑

l=1

nl

n
M̂

(j,l)

α(j,l)

}
.

Finally, the estimated e.d.r. direction b̂ is the eigenvector associated with the
largest eigenvalue of (Σ̂⋆)−1M̂P

q,L.
In the sequel, this method is named PMSα homo. When the value of α is

fixed at zero by the user, the corresponding method is called PMS-I homo.
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Asymptotics. Let us assume that n
(j,l)
h → +∞ as n → +∞. Conver-

gence in probability at root n rate of the estimated e.d.r. direction b̂ to
the EDR direction b is easy to establish. For each subsample S(j,l), we

have M̂
(j,l)

α(j,l) = M
(j,l)

α(j,l) + Op(n
−1/2) for a fixed parameter α(j,l). Then,

M̂P
q,L = MP

q,L + Op(n
−1/2). Straightforwardly, since (Σ̂⋆)−1 converges to

(Σ⋆)−1, the estimated e.d.r. direction b̂ (principal eigenvector of (Σ̂⋆)−1M̂P
q,L)

converges to the e.d.r. direction b (principal eigenvector of (Σ⋆)
−1

MP
q,L) at

the same rate.
The asymptotic normality of

√
n

(
(Σ̂⋆)−1M̂P

q,L − (Σ⋆)−1MP
q,L

)
can be ob-

tained as in Saracco (2005) using the delta method and the central limit
theorem. From this result, we could derive the asymptotic normality of the
eigenprojector on the e.d.r. space as well as the asymptotic distributions of
the estimated e.d.r. direction and its corresponding eigenvalue.

Remarks. Note that the parameters α(j,l) are individually chosen for each

matrix M̂
(j,l)

α(j,l) which corresponds to the univariate SIRα method applied on

the subsample S(j,l). One can use the test approach proposed by Saracco
(2001) in order to get appropriate values for the α(j,l)’s.

In this homoscedastic context and for q = 1, the partial sliced inverse re-
gression approach of Chiaromonte et al. (2002) leads to the eigenvalue decom-

position of the matrix M̃P
L = E[V(E[X̃ |Y, Z])|Z] where X̃ = (Σ⋆)−1/2(X−µ)

is the standardized version of X . The eigenvector b̃ associated with the largest
eigenvalue of M̃P

L is a standardized e.d.r. direction. Returning to the X-scale,

b = (Σ⋆)−1/2b̃ is an e.d.r. direction. This characterization is equivalent to
our approach when α = 0.

3.2 Heteroscedastic case

In the heteroscedastic case, we consider the eigenvalue decomposition of the
matrix MP

q,L defined in (7) under the design condition. The important point
to note here is that this matrix have no reason to be symmetric (with re-
spect to a specific inner product) or positive definite. So it is possible to
have some complex eigenvalues and eigenvectors. However the crucial fact is

that, for each matrix
(
Σ(l)

)−1
M

(j,l)

α(j,l) (with j = 1, . . . , q and l = 1, . . . , L),
the eigenvector associated with the largest eigenvalue is an e.d.r. direc-
tion. Then, since the matrix MP

q,L is a convex combination of the matrices
(
Σ(l)

)−1
M

(j,l)

α(j,l) , it is straightforward to see that there exists an eigenvec-
tor b which is an e.d.r. direction associated with a real positive eigenvalue λ.
From an algebraic point of view, there is no guarantee that this corresponding
eigenvalue is the largest one (in descending order of modulus). Geometrically
speaking, one can find pathological cases in which the largest eigenvalue is
not associated with an e.d.r. direction. More precisely, let Au and Bu (for
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11

u = 1, . . . , U) be symmetric positive definite matrices. Let vu be the eigen-
vector associated with the largest eigenvalue of AuBu and let us assume
that vu is colinear to a direction β. Let us consider the convex combination
N =

∑U
u=1 γuAuBu where the γu are positive and such that

∑U
u=1 γu = 1.

The eigenvector associated with the largest eigenvalue of N is not necessary
the one colinear to β. Unfortunately, to the best of our knowledge, there
is no characterization of these pathological cases, nor necessary conditions
allowing us to avoid these cases. It is an open problem which is under in-
vestigation. It is important to mention that the potential pathological case
can only occur when one is underestimating the true dimension K, as it is
illustrated in the pathological example given the Appendix. Moreover, we
will see that, in our simulation studies (with K = 1), we never encounter this
problem.

Sample version. In the heteroscedastic case, we have to estimate the ma-
trix MP

q,L by substituting empirical versions of the moments for their theo-
retical counterparts. Then the corresponding estimate is given by:

M̂P
q,L =

1

q

q∑

j=1

{
L∑

l=1

nl

n

(
Σ̂(l)

)
−1

M̂
(j,l)

α(j,l)

}
, (10)

where the major modification is that the estimated common covariance ma-
trix Σ̂⋆ is now replaced by the estimated marginal covariance matrix Σ̂(l)

of the subsample S(l) in the estimated matrices M̂
(j,l)

α(j,l) and M̂
(j,l)
II . More

precisely, these matrices are now written this way:

M̂
(j,l)

α(j,l) = (1 − α(j,l))M̂
(j,l)
I

(
Σ̂(l)

)
−1

M̂
(j,l)
I + α(j,l)M̂

(j,l)
II

where M̂
(j,l)
I is as defined before and

M̂
(j,l)
II =

H(j,l)∑

h=1

n
(j,l)
h

nl

(
V̂

(j,l)
h − V̂

(j,l)
) (

Σ̂(l)
)
−1

(
V̂

(j,l)
h − V̂

(j,l)
)

′

.

Let b̂ be the eigenvector associated with the eigenvalue λ̂ corresponding to
λ. This vector b̂ is the estimated e.d.r. direction.

In the sequel, this method is named PMSα hetero. When the value of α is
fixed at zero by the user, the corresponding method is called PMS-I hetero.

Asymptotics. As in the homoscedastic case, we have the root n consis-
tency of the estimated e.d.r. direction to the corresponding e.d.r. direction:
b̂ = b + Op(n

−1/2).
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12

Remark. For convenience, let us assume that q = 1. As in Carroll and Li
(1995), an alternative optimization problem which combines the covariance
matrix of each subpopulation is the following:

max
b

L∑

l=1

w
(l)
L

b′M
(l)

α(l)b

b′Σ(l)b
. (11)

In the heteroscedastic case, there is no analytic solution for (11), but there
exists numerical methods for performing this simultaneous eigendecomposi-
tion. In the homoscedastic case, the maximization problem (11) leads to a
single eigenvalue decomposition of the matrix (Σ⋆)−1MP

L where MP
L is the

following pooled covariance matrix: MP
L =

∑L
l=1 w

(l)
L M

(l)

α(l) . The eigenvector
associated with the largest eigenvalue is clearly an e.d.r. direction. Note that
this characterization is equivalent to our method.
When K = 1, in order to get the common direction, there exists other ways
such combining the eigenvectors vt corresponding to the largest eigenvalues
of the Lq matrices

(Σ̂(l))−1M̂
(j,l)

α(j,l) .

An immediate question is how to combine them. There are several ways
to proceed. The simplest is to take the average of these vectors, but recall
that only the direction is estimated and problems with orientation and norm
of the vt’s could arise. A less simple alternative based on a combination
via covariance weighting have been proposed by Carroll and Li (1995) for
L = 2 and q = 1. Moreover it may be interesting to study the eigenvector
corresponding to the largest eigenvalue of

∑
t vtv

′

t or some other appropriately
chosen matrix function of the vt’s. But the choice of a good or optimal
function is not straightforward and is still an open problem.

4 Simulation study

The aim of this simulation study is twofold. First, we consider an homosce-
dastic case and we compare the performance of the PMSα homo and PMSα

hetero methods versus the PMS-I homo and PMS-I hetero methods. Sec-
ondly, we focus on the heteroscedastic case and we evaluate the quality of
the PMSα homo method versus the PMSα hetero method.

In all simulations, since only the direction of β is identifiable, in order to
evaluate the quality of an estimate b̂ of the direction of β, we calculate the
following efficiency measure:

cos2
(
b̂, β

)
=

< b̂, β >2

||̂b||2||β||2

where || · || is the usual euclidian norm associated to scalar product < ·, · >.

The closer this square cosine of the angle between b̂ and β is to one, the
better is the estimation.
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4.1 Simulation 1

Let us first recall that, for a variable X with mean 0, a symmetrically de-
pendent model is a regression model such that: Y = f(β′X) + ε, where the
distribution of β′X is symmetric around 0 and the link function f is also
symmetric around the vertical axis.

In this simulation, we consider an homoscedactic case and we generate
simulated data from the following multivariate semiparametric regression
model (with q = 2, L = 2):





Y 1 = [(1 − ρ)/8](β′X)2 + ρ(β′X) + ε
(1)
1 for Z = 1,

Y 2 = 2(1 − ρ)
√
|2β′X | + ρ(β′X) + ε

(1)
2 for Z = 1,

Y 1 = (1 − ρ)|β′X | + ρ(β′X)3 + ε
(2)
1 for Z = 2,

Y 2 = [(1 − ρ)/8](β′X)2 + ρ exp (β′X/4) + ε
(2)
2 for Z = 2,

(12)

where X |Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with
mean µ(l) = 05 and common covariance matrix

Σ⋆ = Σ(1) = Σ(2) =




5 3.5 1.5 2.5 2.5
3.5 12.5 4 5 4
1.5 4 9 2.5 1.5
2.5 5 2.5 7 3
2.5 4 1.5 3 12




.

Each ε
(l)
j is standard normally distributed. We take β = (1, 1,−1,−1, 0)′.

In order to point out the efficiency of the methods based on SIRα versus
the SIR-I methods, we have introduced in the model (12) the parameter ρ
which controls the symmetric dependency between the index β′x and the
response variables Y j . When ρ = 0, all the “submodels” are symmetrically
dependent. On the contrary, the symmetric dependency disappears as ρ
increases. When ρ = 1, there is none symmetric dependency.

From model (12), N = 100 samples of size n = 50 and n = 100 were
generated for each value of ρ in the set {0, 0.2, 0.4, 0.6, 0.8, 1}. For each
simulated sample, the e.d.r. direction was estimated with the four methods:
PMS-I hetero, PMS-I homo, PMSα hetero and PMSα homo. Then, in order
to compare the different estimates obtained with each of the four described
methods, we have calculated, for each estimation, its corresponding square
cosine.

Comments on the plots of the means of the squared cosines. We
present on Figure 1, the mean of the N = 100 square cosines obtained for
each of 6 values of ρ (from 0 to 1) for the four methods.

• For the two sample sizes, both PMSα methods give reliable estimates
of the direction of β for all values of ρ.
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Figure 1: Plots of the means of the squared cosines for different values of
ρ and n = 50’s sample size on the left side and n = 100’s sample size on
the right side. The two upper (resp. lower) curves correspond to the PMSα

(resp. PMS-I) hetero and PMSα (resp. PMS-I) homo methods.

• For both PMS-I methods, the quality of the estimation increases with
increasing values of ρ. For ρ ≥ 0.4, these hetero and homo methods
give reliable estimates. The quality of the estimation increases when
the sample size is larger. For ρ = 0.2 and n = 100, these methods give
suitable results compared with n = 50.

Comments on the boxplots. We represent on Figure 2 the boxplots of
the N = 100 square cosines obtained with the four methods for different
values of ρ (0, 0.2, 0.4, 0.6) and n = 100’s sample size.

• For ρ = 0 (case of global symmetric dependency), the PMS-I homo and
hetero methods can not recover the e.d.r. direction. The PMSα hetero
method gives the best quality of estimations even if the PMSα homo
method gives reliable estimations.

• For ρ = 0.2, the PMSα methods are still better, and the PMSα hetero
also provides the best perfomance.

• For ρ = 0.4 or 0.6, the four methods give suitable estimates.

• For ρ > 0.6 (case of non-symmetrically dependent model), the results of
the simulation have not been reported here because they do not present
further of interest: indeed all methods give very good estimations in
this context.
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Figure 2: Boxplots of the squared cosines for different values of ρ and n =
100’s sample size.

The boxplots corresponding to the simulation for n = 50 (not presented
here) give same conclusions about the performance of the four method. For
PMS-I hetero and PMS-I homo methods, the performance of the estimation
increases with increasing values of ρ. Methods based on SIRα give the best
results with a superority of PMSα hetero method over the other ones.

An illustrated example. A sample of size n = 100 were generated from
model (12) with ρ = 0.5. The e.d.r. direction was estimated with the
PMSα hetero method and the PMSα homo method. The lists of the eigen-
values are the following: λ̂hetero = {0.640, 0.021, 0.011, 0.006, 0.004} and

λ̂homo = {0.660, 0.024, 0.013, 0.007, 0.006}. Clearly, there is a visible jump
between the first and the second eigenvalues, then we retain only one e.d.r. di-
rection. The two methods give excellent estimations with cos2 (̂b, β) ≃ 0.999.

The corresponding estimated e.d.r. directions are respectively b̂hetero =
(0.68, 0.73,−0.70,−0.73, 0.01) and b̂homo = (−0.63,−0.72, 0.69, 0, 73, 0.01).
The plots for each subpopulation of the response variables Y 1 and Y 2 versus
the index β′X are represented on Figure 3. In this figure, we exhibit the

kernel estimates of the link functions g
(l)
j between the variables of interest Y j

when Z = l and the common estimated index. We used the gaussian kernel
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and the bandwidths were chosen by cross validation.
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Figure 3: Plots of the estimated index X ′b̂ versus Y 1 (first response variable)
on the left side and Y 2 (second response variable) on the right side, with ◦
for Z = 1 and + for Z = 2, with plots of the estimated link functions for
Z = 1 (solid line) and for Z = 2 (dotted line)

4.2 Simulation 2

To evaluate the performance between PMSα hetero and PMSα homo meth-
ods, we generate simulated data from the following semiparametric regression
model (q = 1, L = 2):

{
Y 1 = β′X + ε(1) for Z = 1

Y 2 =
√

5|β′X | + ε(2) for Z = 2
(13)

where X |Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with
mean µ(l) = 05 and covariance matrix Σ(l) defined by:

Σ(1) = diag(1, 5, 10, 15, 20) and Σ(2) = Σ(1) + θV,

where θ ≥ 0 and

V =




26 4.6 5.4 7.6 5.6
4.6 21 4.6 6.4 3.6
5.4 4.6 16.8 7.6 5.2
7.6 6.4 7.6 16.2 6.4
5.6 3.6 5.2 6.4 6.8




.

Each ε(l) is standard normally distributed. We take β = (1, 1,−1,−1, 0)′.
The parameter θ switches homoscedastic case to heteroscedastic case. When
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θ = 0, we are in the homoscedastic case. Highest values of θ involve that the
covariance matrices Σ(1) and Σ(2) become very different.

From model (13), N = 100 samples of size n = 100 were generated for
each value of θ in the set {0, 2, 4, 6, 8, 10}. For each simulated sample, the
e.d.r. direction was estimated with PMSα homo and PMSα hetero methods.
In order to compare these two different estimates, we calculated, for each
estimation, its corresponding square cosine.
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Figure 4: Boxplots of the squared cosines for different values of θ.

Comments on the boxplots. We represent on Figure 4 the boxplots of
the N = 100 square cosines obtained with the PMSα homo and PMSα hetero
methods for different values of θ (0, 2, 4, 6, 8, 10) and n = 100’s sample size.

• The PMSα hetero method always gives the best quality of estimations.
The corresponding squared cosines are always greater than 0.95.

• The PMSα homo method only gives suitable results when θ = 0 (Σ(1) =
Σ(2)). The quality of the estimations decreases with increasing values
of θ. This method seems to be very sensitive to deviation from the
homoscedastic hypothesis.
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5 Concluding remarks

Since a very large number of high-dimensional data sets do contain quan-
titative and categorical variables, the introduction of discrete predictors in
reduction dimension model appears to be very useful. In this article, we pre-
sented an extension of the well-known dimension reduction methods, SIRα

and PMS, to regression analyses involving predictors of both types, with mul-
tiple responses. All assumptions used in our extension are similar to the ones
employed in classical dimension reduction context. Contrary to Chiaromonte
et al. (2002), we have abandoned the common covariance assumption (8)
used in partial SIR. This is particulary helpful when the several subpopu-
lations (identified by the discrete predictor) have very different covariance
structures for the quantitative covariables. Note that Chiaromonte et al.’s
framework does guarantee that the eigenvectors corresponding to the largest
eigenvalues belong to the Partial Central Subspace as they defined it. Our
method has been implemented in Splus and can be avalaible from the authors.
An homoscadastic version and an heteroscedastic version of the method have
been developed. Our approach perfoms well with small sample size. The
link functions between the variables of interest and the common estimated
index can be first nonparametrically estimated with a kernel method for in-
stance, and subsequently parametrically modelled if necessary. Finally, we
have not detailed the multiple indices case (K > 1); in this case, we focus
on the estimated e.d.r. space which is spanned by the first K eigenvectors
associated with the largest K eigenvalues of the matrices (Σ̂⋆)−1M̂P

q,L (for

the homoscedastic context) or M̂P
q,L (for the heteroscedastic context). More-

over, other well known procedures for multidimensional dependent variable
such as Alternating SIR (see Li et al., 2003, for instance) or nearest neighbor
inverse regression of Hsing (1999) could be adapted to our approach in a way
similar to the one detailed here for pooled marginal slicing. This is currently
under investigations.

Appendix: an example of a pathological case

Let us introduce the following 2 × 2 symmetric positive definite matrices Ã1

and B̃1, and the multiplication of these two matrices:

Ã1 =

[
ǫ 0
0 1/ǫ

]
, B̃1 =

[
2 −1
−1 2

]
and C̃1 = Ã1B̃1 =

[
2ǫ −ǫ

−1/ǫ 2/ǫ

]
.

Let ǫ = 2 +
√

3 (see below an explanation for the choice of this value for ǫ).
The eigenvalues of C̃1 are λ̃1 = 4 +

√
13 and λ̃2 = 4 −

√
13. Let Ã2 = B̃′

1,
B̃2 = Ã′

1 and C̃2 = Ã2B̃2. Since C̃2 = C̃′

1, these two matrices have the same
eigenvalues.

Let δ > 0. We now consider the following 3×3 symmetric positive definite
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matrices A1 and B1, and the multiplication of these two matrices:

A1 =




√
4 +

√
13 + δ 0 0

0
0

Ã1


 , B1 =




√
4 +

√
13 + δ 0 0

0
0

B̃1


 ,

and C1 = A1B1 =




4 +
√

13 + δ 0 0
0
0

C̃1


 .

Clearly, the eigenvalues of C1 are λ1 = 4 +
√

13 + δ > λ2 = λ̃1 > λ3 = λ̃2.
Moreover, the eigenvector associated with the largest eigenvalue λ1 is b1 =
(1, 0, 0)′.

Similarly, we also consider the following 3× 3 symmetric positive definite
matrices A2 and B2, and the multiplication of these two matrices:

A2 =




√
4 +

√
13 + δ 0 0

0
0

Ã2


 , B2 =




√
4 +

√
13 + δ 0 0

0
0

B̃2


 ,

and C2 = A2B2 =




4 +
√

13 + δ 0 0
0
0

C̃2


 .

Clearly, C2 have the same eigenvalues as C1: λ1 > λ2 > λ3, and the eigen-
vector associated with the largest eigenvalue λ1 is also b1 = (1, 0, 0)′.

Finally, let us define the matrix

N =
1

2
C1 +

1

2
C2 =




4 +
√

13 + δ 0 0
0 2ǫ −(ǫ + 1/ǫ)/2
0 −(ǫ + 1/ǫ)/2 2/ǫ


 .

Note that when ǫ = 2 +
√

3, the matrix N has the following simplest expres-
sion:

N =




4 +
√

13 + δ 0 0
0 2ǫ −2
0 −2 2/ǫ


 .

Straightforwardly, since 0 < δ < 8 − (4 +
√

13), the eigenvalues of N are:
ξ1 = 8 > ξ2 = λ1 > ξ3 = 0. Hence, the eigenvector b1 = (1, 0, 0)′ is now
associated with the eigenvalue ξ2 which is not the largest eigenvalue of N .
This illustrates the mentioned pathological case.

Note that this numerical example involves the sums of two matrices, C1

and C2, each with two large nearly equal eigenvalues and a third relatively
small eigenvalue. In our dimension reduction setting, one would most likely
be using K = 2 here (instead of K = 1).
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