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In this paper, we consider a semiparametric regression model involving both p-dimensional quantitative covariable X and categorical predictor Z, and including a dimension reduction of X via K indices X ′ β k . The dependent variable Y can be real or q-dimensional. We propose an approach based on SIR α and Pooled Marginal Slicing methods in order to estimate the space spanned by the β k 's. We establish √ n-consistency of the proposed estimator. Simulation studies show the numerical qualities of our estimator.

Introduction

Regression analysis studies the relationship between a covariable X and a response variable Y . In parametric regression, the link function is a simple algebraic function of X, and least squares or maximum likelihood methods (among others) can be applied in order to find the best global fit. In nonparametric regression, the class of fitted function is enlarged in order to obtain greater flexibility via sophisticated smoothing procedures (such kernel or smoothing splines methods). However as the dimension p of the covariable X becomes large, increased difficulties in modeling are often encountered. This is the well-known curse of dimensionality. In this framework of high dimensional regression, [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] proposed the following semiparametric dimension reduction model:

Y = g(β ′ 1 X, . . . , β ′ K X, ε), (1) 
where the univariate response variable Y is associated with the p-dimensional regressor X (with expectation E[X] = µ and covariance matrix V(X) = Σ) only through the reduced K-dimensional variable (β ′ 1 X, . . . , β ′ K X) with K < p. The error term ε is independent of X. The link function g and the β-vectors are unknown. We are interested in finding the linear subspace spanned by the K unknown β-vector, called the effective dimension reduction (e.d.r.) space . [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] introduced Sliced Inverse Regression (named SIR-I in the following) which is a computationally simple and fast method to estimate the e.d.r. space without assuming the functional form of g and the distribution of ε. All the SIR approaches are based on some properties of the conditional distribution of X given Y . The SIR-I method exploits a property of the first inverse moment E(X|Y ); see for instance [START_REF] Duan | Slicing regression: a link-free regression method[END_REF], [START_REF] Carroll | Measurement error regression with unknown link: dimension reduction and data visualization[END_REF], [START_REF] Hsing | An asympotic theory for Sliced Inverse regression[END_REF], [START_REF] Zhu | Asymptotics of sliced inverse regression[END_REF], [START_REF] Kötter | An asymptotic result for Sliced Inverse Regression[END_REF], [START_REF] Saracco | An asymptotic theory for Sliced Inverse Regression[END_REF][START_REF] Saracco | Sliced Inverse Regression under linear constraints[END_REF], [START_REF] Aragon | Sliced Inverse Regression (SIR): an appraisal of small sample alternatives to slicing[END_REF], Bura and Cook (2001) or [START_REF] Gather | A note on outlier sensitivity of sliced inverse regression[END_REF] among others. The SIR-II method relies on a property ot the second inverse moment V(X|Y ), which is not blind for "symmetric dependencies"; see for instance [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] or [START_REF] Cook | Discussion of "Sliced inverse regression for dimension reduction[END_REF]. In order to conjugate information from SIR-I and SIR-II approaches, [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] proposed the SIR α method which is a suitable combinaison of the methods.

Several authors (see [START_REF] Aragon | A Gauss implementation of multivariate sliced inverse regression[END_REF][START_REF] Li | Dimension reduction for multivariate response data[END_REF] extented the univariate model (1) to a multivariate response variable: Y is assumed to be qdimensional with q > 1, the corresponding link function is then ℜ q -valued. In this multivariate framework, the associated dimension reduction model can be written as follows:

Y = g(β ′ 1 X, . . . , β ′ K X, ε) =      g 1 (β ′ 1 X, . . . , β ′ K X, ε 1 ) . . . g q (β ′ 1 X, . . . , β ′ K X, ε q ) (2)
inserm-00366569, version 1 -9 Mar 2009

where the error terms ε j are assumed independent of X and the link functions g j 's are unknown real-valued functions. Clearly, as in (1), only the e.d.r. space is identifiable. A few methods based on SIR-I approach have been developed in this multivariate context; they are named Complete Slicing, Marginal Slicing, Pooled Marginal Slicing and Alternating SIR methods. [START_REF] Barreda | Some extensions of multivariate SIR[END_REF] and [START_REF] Saracco | Asymptotics for pooled marginal slicing estimator based on SIR α[END_REF] focused on some extensions of the existing multivariate SIR approaches by using the SIR α method. Another extension of model ( 1) is to incorporate a qualitative or categorical predictor Z in addition to the quantitative covariable X. Many covariates (often called factors) are qualitative in the nature such as gender, treatment, type of population, . . . Generally, the categorical predictor Z can be viewed as a classification variable with L "levels" which identifies a number of subpopulations. Thus to introduce this qualitative predictor, we consider the following model: for l = 1, . . . , L,

Y = g (l) (β ′ 1 X, . . . , β ′ K X, ε) when Z = l. (3) 
For each subpopulation l, Y is related to the p-dimensional quantitative regressor X only through the K indices β ′ k X. The categorical variable Z is not assumed to be independent of X. It affects the conditional distribution of X given Z as follows: E(X|Z = l) = µ (l) and V(X|Z = l) = Σ (l) for l = 1, . . . , L. It also influences the dependency between Y and the indices β ′ k X via the different link function g (l) associated with each subpopulation l. In other words, a statement equivalent to (3) is that Y and (X, Z) are independent conditionally on (β ′ 1 X, . . . , β ′ K X, Z). In a similar dimension reduction model context with binary regressor, [START_REF] Carroll | Binary regressors in dimension reduction models: A new look at treatment comparisons[END_REF] presented a new look at treatment comparisons. They considered the covariable Z as the treatment indicator and the proposed model is Y = g(β ′ X + θZ, ε). Estimates of β and θ are obtained without assuming a functional form for g. Their method is based on the use of SIR-I in order to estimate the direction of β (e.d.r. directions estimated from each subpopulation are combined in order to obtain a final direction e.d.r.), followed by a partial-inverse mean matching method for estimating the treatment effect θ.

When the number L of levels for Z is greater than two, [START_REF] Chiaromonte | Sufficient dimension reduction in regressions with categorical predictors[END_REF] considered a similar context to (3) and they presented a partial dimension reduction of X, for the regression of Y on (X, Z). They mentioned that this approach need not coincide with marginal dimension reduction for the regression of Y on X, nor with conditional dimension reduction for the regression of Y on X within the subpopulations indentified by Z. Assuming the simplifying hypothesis that the predictors' covariance structure is the same across subpopulations (Σ (l) = Σ ⋆ , l = 1, . . . , L), they introduced a corresponding estimation method of the e.d.r. space, based on SIR-I technique and named Partial Sliced Inverse Regression.

In this paper, we consider an extension of model ( 3) in which Y is assumed to be q-dimensional (q > 1), the link functions g (l) are now ℜ q -valued as the function g in model (2). In order to estimate the e.d.r. space, we propose a new method based on the Pooled Marginal Slicing approach via SIR α method. In section 2, we give an overview of the univariate SIR α method and describe the corresponding Pooled Marginal Slicing (PMS α ) estimator. In Section 3, we exhibit two estimators, the first one in the homoscedastic case and the second one in the heteroscedastic context. We also establish asymptotic properties for these estimators. Some simulations are presented in Section 4 in order to show the numerical qualities of our estimators. Concluding remarks are given in section 5.

2 The PMS α estimator without discrete predictors

First, we recall some properties of the univariate SIR α method. Then, we introduce the corresponding Pooled Marginal Slicing method, named PMS α hereafter.

Overview of the univariate SIR α method

We consider the framework of model (1), that is when q = 1 and without discrete predictors. We give an overview of the univariate SIR α approach. While there are several possible variations, the basic principle of the SIR methods (SIR-I, SIR-II or SIR α ) is to reverse the role of Y and X. Instead of regressing the univariate Y on the multivariate X, the covariable X is regressed on the response variable Y . The SIR-I estimates based on the first moment E(X|Y ) have been studied extensively; see for instance [START_REF] Duan | Slicing regression: a link-free regression method[END_REF], [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], [START_REF] Carroll | Measurement error regression with unknown link: dimension reduction and data visualization[END_REF], [START_REF] Hsing | An asympotic theory for Sliced Inverse regression[END_REF], [START_REF] Zhu | Asymptotics of sliced inverse regression[END_REF], [START_REF] Kötter | An asymptotic result for Sliced Inverse Regression[END_REF], [START_REF] Saracco | An asymptotic theory for Sliced Inverse Regression[END_REF][START_REF] Saracco | Sliced Inverse Regression under linear constraints[END_REF], [START_REF] Aragon | Sliced Inverse Regression (SIR): an appraisal of small sample alternatives to slicing[END_REF]. But this approach is "blind" for symmetric dependencies (see [START_REF] Cook | Discussion of "Sliced inverse regression for dimension reduction[END_REF] or [START_REF] Kötter | Sliced Inverse Regression[END_REF]). Then, SIR-II estimates based on the inverse conditional second moment V(X|Y ) have been suggested; see for instance [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], [START_REF] Cook | Discussion of "Sliced inverse regression for dimension reduction[END_REF] or [START_REF] Kötter | Sliced Inverse Regression[END_REF]. Hence these two approaches concentrate on the use of the inverse conditional moments E(X|Y ) or V(X|Y ) to find the e.d.r. space. For increasing the chance of discovering all the e.d.r. directions, the idea of the SIR α method is to conjugate these informations: if an e.d.r. direction can only be marginally detected by SIR-I or SIR-II, a suitable combination of these two methods may sharpen the result.

Let us now recall the geometric properties of the model (1). In order to conjugate information from the SIR-I and SIR-II approaches, [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] considered, for α ∈ [0, 1], the eigen-decomposition of the matrix Σ -1 M α where Σ = V(X) and M α = (1 -α)M I Σ -1 M I + αM II . The matrices M I and M II are respectively the matrices used in the usual SIR-I and SIR-II approaches. They are defined as follows: for a monotonic transformation T of Y , inserm-00366569, version 1 -9 Mar 2009

M I = V(E(X|T (Y ))) and M II = E V T -E( V T ) Σ -1 V T -E( V T ) ′ ,
where V T = V(X|T (Y )). It can be shown that the eigenvectors associated with the largest K eigenvalues of Σ -1 M α are some e.d.r. directions. Let us remark that, when α = 0 (resp. α = 1), SIR α is equivalent to SIR-I (resp. SIR-II). [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] proposed a transformation T , called a slicing, which categorizes the response Y into a new response with H > K levels. The support of Y is partitioned into H non-overlapping slices s 1 , . . . , s h , . . . , s H . With such transformation T , the matrices of interest are now written as

M I = H h=1 p h (m h -µ)(m h -µ) ′ and M II = H h=1 p h V h -V Σ -1 V h -V , where p h = P (Y ∈ s h ), m h = E(X|Y ∈ s h ), V h = V(X|Y ∈ s h ) and V = H h=1 p h V h .
So, it is straightforward to estimate these matrices by substituting empirical versions of the moments for their theoretical counterparts, and therefore to obtain the estimation of the e.d.r. directions. Each estimated e.d.r. direction converges to an e.d.r. direction at rate √ n when the corresponding eigenvalues are assumed to be distinct, see for instance [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] or [START_REF] Saracco | Pooled Slicing methods versus Slicing methods[END_REF]. Asymptotic normality of the SIR α estimates has been studied by Gannoun and Saracco (2003a).

Remarks. The practical choice of the slicing function T is discussed in [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], [START_REF] Kötter | Sliced Inverse Regression[END_REF] and [START_REF] Saracco | Pooled Slicing methods versus Slicing methods[END_REF]. Note that the user has to fix the slicing strategy and the number H of slices. In order to avoid the choice of a slicing, kernel-based estimate of SIR-I has been investigated, see [START_REF] Zhu | Asymptotics for kernel estimate of Sliced Inverse Regression[END_REF] or [START_REF] Aragon | Sliced Inverse Regression (SIR): an appraisal of small sample alternatives to slicing[END_REF]. However, these methods are hard to implement with regard to basic Slicing one and are computationally slow. Moreover, Bura and Cook (2001) proposed a parametric version of SIR-I. Determining the number K (of indices) is considered by [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], [START_REF] Schott | Determining the dimensionality in Sliced Inverse Regression[END_REF] and [START_REF] Ferré | Determining the dimension in Sliced Inverse Regression and related methods[END_REF], for the SIR-I method.

The practical choice of α can be based on the test approach proposed by [START_REF] Saracco | Pooled Slicing methods versus Slicing methods[END_REF], which does not require the estimation of the link function. Two cross-validation criteria have been also developed by [START_REF] Gannoun | Two Cross Validation Criteria for SIR α and PSIR α methods in view of prediction[END_REF] to select the parameter α, these criteria require the kernel smoothing estimation of the link function.

Note that one crucial condition for the success of SIR-I method is:

E(b ′ X|β ′ 1 X, . . . , β ′ K X) is linear for any b. (4) 
This assumption will hold if the distribution of X is elliptically symmetric.

The classical example of an elliptically symmetric distribution is the multivariate normal distribution. It does not seem possible to verify (4), this involves the unknown directions of main interest as a start. As [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] pointed out, this linearity condition is not a severe restriction. Using a bayesian argument of [START_REF] Hall | On almost linearity of low-dimensional projections from high-dimensional data[END_REF], we can infer that (4) holds approximatively for many high dimensional data sets.

For SIR-II and SIR α methods, X is generally assumed to have a multivariate normal distribution. Alternatively, note that another commonly used assumptions in the literature are as follows: (i) the condition of the elliptical symmetry made under the design condition (4), and (ii) the conditional variance

V(X|β ′ 1 X, . . . , β ′ K X) is non-random.

Pooled Marginal Slicing estimator based on SIR α

We consider here the multivariate framework of model ( 2) without discrete predictors. We present a short description of the Pooled Marginal Slicing based on the SIR α approach; see [START_REF] Saracco | Asymptotics for pooled marginal slicing estimator based on SIR α[END_REF] for details. Let Y j denote the jth component of Y .

The idea of the Pooled Marginal Slicing method is to consider the q univariate SIR α methods of each component Y j of Y on X (based on a specific slicing T j ) and to combine the corresponding M α matrices (denoted by M (j) αj ) in the following pooling:

M α,P = q j=1 w j M (j) αj , (5) 
for positive weigths w j and parameters α j . Each transformation T j categorizes each response Y j into a new response with H j > K levels; that is the support of each Y j is partitioned into H j fixed slices s

(j) 1 , . . . , s (j) 
Hj . For j = 1 . . . , q, the matrices M (j) αj are defined as follows:

M (j) αj = (1 -α j )M (j) I Σ -1 M (j) I + α j M (j) II ,
where M (j) I and M

(j)

II are respectively the matrices used in the SIR-I and SIR-II approaches corresponding to the component Y j based on a slicing T j . For simplicity, assume that X has a multivariate normal distribution, then the eigenvectors, denoted by b 1 , . . . , b K , associated with the largest K eigenvalues of Σ -1 M α,P are e.d.r. directions.

It is straightforward to estimate the matrices M (j) I and M

(j)

II by substituting empirical versions of the moments for their theoretical counterparts, and therefore to obtain the estimation of the e.d.r. directions b1 , . . . , bK which are the eigenvectors associated with the K largest eigenvalues of Σ -1 M α,P .

Remarks. From a practical point of view, as in [START_REF] Aragon | A Gauss implementation of multivariate sliced inverse regression[END_REF], two kinds of weights w j can be used: equal weights or weights proportional to the major eigeinvalues found by a preliminary univariate SIR α analysis of each component of Y . In (5), the parameters α j are individually chosen for each univariate SIR α method. For the choice of the α j 's, the method based on the test approach of Saracco ( 2001) can be used. The asymptotic normality of Σ -1 M α,P is obtained by [START_REF] Saracco | Asymptotics for pooled marginal slicing estimator based on SIR α[END_REF], as well as the asymptotic normality of the eigenprojector on the estimated e.d.r. space, and the asymptotic normality of each estimated e.d.r. direction and its corresponding eigenvalue.

Incorporating discrete covariables

In this section, we consider a multivariate extension of model ( 3) in which Y is assumed to be q-dimensional (q > 1). Let Y i denote the ith observed q-dimensional vector Y . Let Y j i be the jth component of Y i . Let us now introduce the multivariate semiparametric regression model:

for l = 1, . . . , L, Y =        Y 1 = g (l) 1 (β ′ 1 X, . . . , β ′ K X, ε (l) 
1 ) when Z = l, . . .

Y q = g (l) q (β ′ 1 X, . . . , β ′ K X, ε (l) 
q ) when Z = l.

(6)

The quantitative predictor X ∈ ℜ p is the covariable with respect to which we will perform dimension reduction, while the discrete predictor Z is an additional categorical covariable that is not included in the reduction of the dimension. This covariable may represent one or more discrete covariables that identify L subpopulations.

For simplicity, from now on we assume that K = 1, thus we focus on the characterization and the estimation of an e.d.r. direction b colinear to β.

Conditions. As in the standard SIR approaches, a design condition is required for the consistency of the method. In our context, let us assume that X is elliptically symmetric for each subpopulation. Note that we then get the following linear conditions for each subpopulation:

∀v ∈ ℜ p , E[v ′ X|β ′ X, Z = l] is linear in β ′ X for each l = 1, . . . , L.
Moreover, an additional condition is necessary for the consistency of the method: we assume that the conditional variance V(X|β ′ X, Z = l) is nonrandom for each subpopulation. Alternatively, note that we can also make the assumption that, for each subpopulation l, X has a multivariate normal distribution.

Estimator of the e.d.r. space. We define a general estimator of the e.d.r. space. The idea of the estimator is based on the PMS α approach. We propose to pool the "marginal" matrix obtained for each component Y j of Y and for each level l of Z. Then, the population version of the pooled matrix of interest is defined as follows:

M P q,L = q j=1 w(j) q L l=1 w (l) L Σ (l) -1 M (j,l) α (j,l) , (7) 
where the matrices M (j,l) α (j,l) are the M α matrices corresponding to the subpopulation l for the component Y j of Y , that is the SIR α matrix defined for the pairs (X, Y j ) given Z = l. The weights {w (l) L , l = 1, . . . , L} are the probability of the events Z = l, and the weights { w(j) q , j = 1, . . . , q} are some positive weights such that q j=1 w(j) q = 1. Note that the parameter α of each M α matrix can be individually adapted and is denoted by α (j,l) . In the sequel, we use the equal weights { w(j) q = 1 q , j = 1, . . . , q} for simplicity. As in [START_REF] Chiaromonte | Sufficient dimension reduction in regressions with categorical predictors[END_REF], we will first consider the same simplifying assumption that all the covariance structure of X given Z = l are the same across the L subpopulations:

Σ (l) = Σ ⋆ , l = 1, . . . , L. (8) 
Hereafter, this common covariance assumption will be refered as the "homoscedastic case" in constrast to the more general "heteroscedastic case". In each case, we will describe the specific population and sample version of the matrix of interest (7).

Homoscedastic case

When Σ (l) = Σ ⋆ for each subpopulation l = 1, . . . , L, the matrix M P q,L defined in (7) can be written this way:

(Σ ⋆ ) -1 M P q,L , (9) 
where M P q,L = q j=1 w(j)

q L l=1 w (l) L M (j,l)
α (j,l) . Clearly, if the design condition holds within each subpopulation, the eigenvector associated with the largest eigenvalue of (Σ ⋆ ) -1 M P q,L is an e.d.r. direction.

Sample version.

We assume that an independent and identically distributed (i.i.d.) sample

S = {(X i , Z i , Y i ), i = 1, . . . , n}
is available from model ( 6). In order to get an estimator of the matrix defined in (9), the usual idea of the SIR approaches is to substitute empirical versions of all the moments for their theoretical counterparts. Let S (l) = {(X i , Y i ) such that Z i = l} be the subsample corresponding to the subpopulation l. Let Σ (l) be the covariance matrix of X in each subsample S (l) . An estimate of the common covariance Σ ⋆ is given by: Σ l) , where n l is the size of the subsample S (l) . Let us also introduce the subsample S (j,l) = {(X i , Y j i ) such that Z i = l}. Following the usual way of the PMS α approach, we assume that, for each subpopulation l, the sample support of each component Y j of Y is partitioned into H (j,l) fixed slices s (j,l) 1 , . . . , s (j,l) h , . . . , s (j,l) H (j,l) . Let n (j,l) h be the number of observations in slice h of the subsample S (j,l) for the Y j component. For each subsample S (j,l) , we calculate the corresponding intraslice mean vectors and intraslice covariance matrices as follows: for h = 1, . . . , H (j,l) , j = 1, . . . , q and l = 1, . . . , L,

⋆ = L l=1 n l n Σ (
x(j,l) h = 1 n (j,l) h n i=1 X i I Y j i ∈ s (j,l) h , and 
V (j,l) h = 1 n (j,l) h n i=1 (X i - x(j,l) h )(X i - x(j,l) h ) ′ I Y j i ∈ s (j,l) h , where I[.] is the indicator function. Let us define V (j,l) = H (j,l) h=1 n (j,l) h n l V (j,l) h
.

The matrices M (j,l) I and M

(j,l) II are then estimated as follows:

M (j,l) I = H (j,l) h=1 n (j,l) h n l x(j,l) h -x(j,l) x(j,l) h -x(j,l) ′ and M (j,l) II = H (j,l) h=1 n (j,l) h n l V (j,l) h -V (j,l) ( Σ ⋆ ) -1 V (j,l) h -V (j,l) ′
.

Then, we can define the estimators of the matrices M (j,l) α (j,l) and M P q,L by

M (j,l) α (j,l) = (1 -α (j,l) ) M (j,l) I ( Σ ⋆ ) -1 M (j,l) I + α (j,l) M (j,l) II and M P q,L = 1 q q j=1 L l=1 n l n M (j,l) α (j,l)
.

Finally, the estimated e.d.r. direction b is the eigenvector associated with the largest eigenvalue of ( Σ ⋆ ) -1 M P q,L . In the sequel, this method is named PMS α homo. When the value of α is fixed at zero by the user, the corresponding method is called PMS-I homo.
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Asymptotics. Let us assume that n (j,l) h → +∞ as n → +∞. Convergence in probability at root n rate of the estimated e.d.r. direction b to the EDR direction b is easy to establish. For each subsample S (j,l) , we have M (j,l) α (j,l) = M (j,l) α (j,l) + O p (n -1/2 ) for a fixed parameter α (j,l) . Then, M P q,L = M P q,L + O p (n -1/2 ). Straightforwardly, since ( Σ ⋆ ) -1 converges to (Σ ⋆ ) -1 , the estimated e.d.r. direction b (principal eigenvector of ( Σ ⋆ ) -1 M P q,L ) converges to the e.d.r. direction b (principal eigenvector of (Σ ⋆ )

-1 M P q,L ) at the same rate.

The asymptotic normality of √ n ( Σ ⋆ ) -1 M P q,L -(Σ ⋆ ) -1 M P q,L can be obtained as in [START_REF] Saracco | Asymptotics for pooled marginal slicing estimator based on SIR α[END_REF] using the delta method and the central limit theorem. From this result, we could derive the asymptotic normality of the eigenprojector on the e.d.r. space as well as the asymptotic distributions of the estimated e.d.r. direction and its corresponding eigenvalue.

Remarks. Note that the parameters α (j,l) are individually chosen for each matrix M (j,l) α (j,l) which corresponds to the univariate SIR α method applied on the subsample S (j,l) . One can use the test approach proposed by [START_REF] Saracco | Pooled Slicing methods versus Slicing methods[END_REF] in order to get appropriate values for the α (j,l) 's.

In this homoscedastic context and for q = 1, the partial sliced inverse regression approach of [START_REF] Chiaromonte | Sufficient dimension reduction in regressions with categorical predictors[END_REF] leads to the eigenvalue decomposition of the matrix

M P L = E[V(E[ X|Y, Z])|Z] where X = (Σ ⋆ ) -1/2 (X -µ) is the standardized version of X.
The eigenvector b associated with the largest eigenvalue of M P L is a standardized e.d.r. direction. Returning to the X-scale, b = (Σ ⋆ ) -1/2b is an e.d.r. direction. This characterization is equivalent to our approach when α = 0.

Heteroscedastic case

In the heteroscedastic case, we consider the eigenvalue decomposition of the matrix M P q,L defined in (7) under the design condition. The important point to note here is that this matrix have no reason to be symmetric (with respect to a specific inner product) or positive definite. So it is possible to have some complex eigenvalues and eigenvectors. However the crucial fact is that, for each matrix Σ (l) -1 M (j,l) α (j,l) (with j = 1, . . . , q and l = 1, . . . , L), the eigenvector associated with the largest eigenvalue is an e.d.r. direction. Then, since the matrix M P q,L is a convex combination of the matrices Σ (l) -1 M (j,l) α (j,l) , it is straightforward to see that there exists an eigenvector b which is an e.d.r. direction associated with a real positive eigenvalue λ. From an algebraic point of view, there is no guarantee that this corresponding eigenvalue is the largest one (in descending order of modulus). Geometrically speaking, one can find pathological cases in which the largest eigenvalue is not associated with an e.d.r. direction. More precisely, let A u and B u (for inserm-00366569, version 1 -9 Mar 2009 u = 1, . . . , U ) be symmetric positive definite matrices. Let v u be the eigenvector associated with the largest eigenvalue of A u B u and let us assume that v u is colinear to a direction β. Let us consider the convex combination N = U u=1 γ u A u B u where the γ u are positive and such that U u=1 γ u = 1. The eigenvector associated with the largest eigenvalue of N is not necessary the one colinear to β. Unfortunately, to the best of our knowledge, there is no characterization of these pathological cases, nor necessary conditions allowing us to avoid these cases. It is an open problem which is under investigation. It is important to mention that the potential pathological case can only occur when one is underestimating the true dimension K, as it is illustrated in the pathological example given the Appendix. Moreover, we will see that, in our simulation studies (with K = 1), we never encounter this problem.

Sample version.

In the heteroscedastic case, we have to estimate the matrix M P q,L by substituting empirical versions of the moments for their theoretical counterparts. Then the corresponding estimate is given by:

M P q,L = 1 q q j=1 L l=1 n l n Σ (l) -1 M (j,l) α (j,l) , ( 10 
)
where the major modification is that the estimated common covariance matrix Σ ⋆ is now replaced by the estimated marginal covariance matrix Σ (l) of the subsample S (l) in the estimated matrices M (j,l) α (j,l) and M (j,l)

II . More precisely, these matrices are now written this way:

M (j,l) α (j,l) = (1 -α (j,l) ) M (j,l) I Σ (l) -1 M (j,l) I + α (j,l) M (j,l) II
where M (j,l) I is as defined before and

M (j,l) II = H (j,l) h=1 n (j,l) h n l V (j,l) h -V (j,l) Σ (l) -1 V (j,l) h -V (j,l) ′ .
Let b be the eigenvector associated with the eigenvalue λ corresponding to λ. This vector b is the estimated e.d.r. direction.

In the sequel, this method is named PMS α hetero. When the value of α is fixed at zero by the user, the corresponding method is called PMS-I hetero.

Asymptotics. As in the homoscedastic case, we have the root n consistency of the estimated e.d.r. direction to the corresponding e.d.r. direction:

b = b + O p (n -1/2 ).
Remark. For convenience, let us assume that q = 1. As in [START_REF] Carroll | Binary regressors in dimension reduction models: A new look at treatment comparisons[END_REF], an alternative optimization problem which combines the covariance matrix of each subpopulation is the following:

max b L l=1 w (l) L b ′ M (l) α (l) b b ′ Σ (l) b . ( 11 
)
In the heteroscedastic case, there is no analytic solution for ( 11), but there exists numerical methods for performing this simultaneous eigendecomposition. In the homoscedastic case, the maximization problem ( 11) leads to a single eigenvalue decomposition of the matrix (Σ ⋆ ) -1 M P L where M P L is the following pooled covariance matrix:

M P L = L l=1 w (l) L M (l)
α (l) . The eigenvector associated with the largest eigenvalue is clearly an e.d.r. direction. Note that this characterization is equivalent to our method. When K = 1, in order to get the common direction, there exists other ways such combining the eigenvectors v t corresponding to the largest eigenvalues of the Lq matrices ( Σ(l) ) -1 M (j,l) α (j,l) . An immediate question is how to combine them. There are several ways to proceed. The simplest is to take the average of these vectors, but recall that only the direction is estimated and problems with orientation and norm of the v t 's could arise. A less simple alternative based on a combination via covariance weighting have been proposed by [START_REF] Carroll | Binary regressors in dimension reduction models: A new look at treatment comparisons[END_REF] for L = 2 and q = 1. Moreover it may be interesting to study the eigenvector corresponding to the largest eigenvalue of t v t v ′ t or some other appropriately chosen matrix function of the v t 's. But the choice of a good or optimal function is not straightforward and is still an open problem.

Simulation study

The aim of this simulation study is twofold. First, we consider an homoscedastic case and we compare the performance of the PMS α homo and PMS α hetero methods versus the PMS-I homo and PMS-I hetero methods. Secondly, we focus on the heteroscedastic case and we evaluate the quality of the PMS α homo method versus the PMS α hetero method.

In all simulations, since only the direction of β is identifiable, in order to evaluate the quality of an estimate b of the direction of β, we calculate the following efficiency measure:

cos 2 b, β = < b, β > 2 || b|| 2 ||β|| 2
where || • || is the usual euclidian norm associated to scalar product < •, • >.

The closer this square cosine of the angle between b and β is to one, the better is the estimation.

Simulation 1

Let us first recall that, for a variable X with mean 0, a symmetrically dependent model is a regression model such that: Y = f (β ′ X) + ε, where the distribution of β ′ X is symmetric around 0 and the link function f is also symmetric around the vertical axis.

In this simulation, we consider an homoscedactic case and we generate simulated data from the following multivariate semiparametric regression model (with q = 2, L = 2):

             Y 1 = [(1 -ρ)/8](β ′ X) 2 + ρ(β ′ X) + ε (1) 1 for Z = 1, Y 2 = 2(1 -ρ) |2β ′ X| + ρ(β ′ X) + ε (1) 2 for Z = 1, Y 1 = (1 -ρ)|β ′ X| + ρ(β ′ X) 3 + ε (2) 1 for Z = 2, Y 2 = [(1 -ρ)/8](β ′ X) 2 + ρ exp (β ′ X/4) + ε (2) 2 for Z = 2, ( 12 
)
where X|Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with mean µ (l) = 0 5 and common covariance matrix

Σ ⋆ = Σ (1) = Σ (2) =       5 
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      . Each ε (l)
j is standard normally distributed. We take β = (1, 1, -1, -1, 0) ′ . In order to point out the efficiency of the methods based on SIR α versus the SIR-I methods, we have introduced in the model ( 12) the parameter ρ which controls the symmetric dependency between the index β ′ x and the response variables Y j . When ρ = 0, all the "submodels" are symmetrically dependent. On the contrary, the symmetric dependency disappears as ρ increases. When ρ = 1, there is none symmetric dependency.

From model ( 12), N = 100 samples of size n = 50 and n = 100 were generated for each value of ρ in the set {0, 0.2, 0.4, 0.6, 0.8, 1}. For each simulated sample, the e.d.r. direction was estimated with the four methods: PMS-I hetero, PMS-I homo, PMS α hetero and PMS α homo. Then, in order to compare the different estimates obtained with each of the four described methods, we have calculated, for each estimation, its corresponding square cosine.

Comments on the plots of the means of the squared cosines. We present on Figure 1, the mean of the N = 100 square cosines obtained for each of 6 values of ρ (from 0 to 1) for the four methods.

• For the two sample sizes, both PMS α methods give reliable estimates of the direction of β for all values of ρ. The boxplots corresponding to the simulation for n = 50 (not presented here) give same conclusions about the performance of the four method. For PMS-I hetero and PMS-I homo methods, the performance of the estimation increases with increasing values of ρ. Methods based on SIR α give the best results with a superority of PMS α hetero method over the other ones.

An illustrated example. A sample of size n = 100 were generated from model ( 12) with ρ = 0.5. The e.d.r. direction was estimated with the PMS α hetero method and the PMS α homo method. The lists of the eigenvalues are the following: λhetero = {0.640, 0.021, 0.011, 0.006, 0.004} and λhomo = {0.660, 0.024, 0.013, 0.007, 0.006}. Clearly, there is a visible jump between the first and the second eigenvalues, then we retain only one e. j between the variables of interest Y j when Z = l and the common estimated index. We used the gaussian kernel and the bandwidths were chosen by cross validation. 

Simulation 2

To evaluate the performance between PMS α hetero and PMS α homo methods, we generate simulated data from the following semiparametric regression model (q = 1, L = 2):

Y 1 = β ′ X + ε (1) for Z = 1 Y 2 = 5|β ′ X| + ε (2) for Z = 2 (13) 
where X|Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with mean µ (l) = 0 5 and covariance matrix Σ (l) defined by: Σ (1) = diag (1,5,10,15,20) and Σ (2) = Σ (1) + θV, where θ ≥ 0 and 

V =       26 
      .
Each ε (l) is standard normally distributed. We take β = (1, 1, -1, -1, 0) ′ . The parameter θ switches homoscedastic case to heteroscedastic case. When θ = 0, we are in the homoscedastic case. Highest values of θ involve that the covariance matrices Σ (1) and Σ (2) become very different.

From model ( 13), N = 100 samples of size n = 100 were generated for each value of θ in the set {0, 2, 4, 6, 8, 10}. For each simulated sample, the e.d.r. direction was estimated with PMS α homo and PMS α hetero methods. In order to compare these two different estimates, we calculated, for each estimation, its corresponding square cosine. Comments on the boxplots. We represent on Figure 4 the boxplots of the N = 100 square cosines obtained with the PMS α homo and PMS α hetero methods for different values of θ (0, 2, 4, 6, 8, 10) and n = 100's sample size.

• The PMS α hetero method always gives the best quality of estimations.

The corresponding squared cosines are always greater than 0.95.

• The PMS α homo method only gives suitable results when θ = 0 (Σ (1) = Σ 2) ). The quality of the estimations decreases with increasing values of θ. This method seems to be very sensitive to deviation from the homoscedastic hypothesis.

Concluding remarks

Since a very large number of high-dimensional data sets do contain quantitative and categorical variables, the introduction of discrete predictors in reduction dimension model appears to be very useful. In this article, we presented an extension of the well-known dimension reduction methods, SIR α and PMS, to regression analyses involving predictors of both types, with multiple responses. All assumptions used in our extension are similar to the ones employed in classical dimension reduction context. Contrary to [START_REF] Chiaromonte | Sufficient dimension reduction in regressions with categorical predictors[END_REF], we have abandoned the common covariance assumption (8) used in partial SIR. This is particulary helpful when the several subpopulations (identified by the discrete predictor) have very different covariance structures for the quantitative covariables. Note that Chiaromonte et al.'s framework does guarantee that the eigenvectors corresponding to the largest eigenvalues belong to the Partial Central Subspace as they defined it. Our method has been implemented in Splus and can be avalaible from the authors. An homoscadastic version and an heteroscedastic version of the method have been developed. Our approach perfoms well with small sample size. The link functions between the variables of interest and the common estimated index can be first nonparametrically estimated with a kernel method for instance, and subsequently parametrically modelled if necessary. Finally, we have not detailed the multiple indices case (K > 1); in this case, we focus on the estimated e.d.r. space which is spanned by the first K eigenvectors associated with the largest K eigenvalues of the matrices ( Σ ⋆ ) -1 M P q,L (for the homoscedastic context) or M P q,L (for the heteroscedastic context). Moreover, other well known procedures for multidimensional dependent variable such as Alternating SIR (see Li et al., 2003, for instance) or nearest neighbor inverse regression of [START_REF] Hsing | Nearest neighbor inverse regression[END_REF] could be adapted to our approach in a way similar to the one detailed here for pooled marginal slicing. This is currently under investigations.

Appendix: an example of a pathological case

Let us introduce the following 2 × 2 symmetric positive definite matrices Ã1 and B1 , and the multiplication of these two matrices: Ã1 = ǫ 0 0 1/ǫ , B1 = 2 -1 -1 2 and C1 = Ã1 B1 = 2ǫ -ǫ -1/ǫ 2/ǫ .

Let ǫ = 2 + √ 3 (see below an explanation for the choice of this value for ǫ). The eigenvalues of C1 are λ1 = 4 + √ 13 and λ2 = 4 -√ 13. Let Ã2 = B′ 1 , B2 = Ã′ 1 and C2 = Ã2 B2 . Since C2 = C′ 1 , these two matrices have the same eigenvalues.

Let δ > 0. We now consider the following 3×3 symmetric positive definite matrices A 1 and B 1 , and the multiplication of these two matrices:

A 1 =   4 + √ 13 + δ 0 0 0 0 Ã1   , B 1 =   4 + √ 13 + δ 0 0 0 0 B1   ,
and

C 1 = A 1 B 1 =   4 + √ 13 + δ 0 0 0 0 C1   .
Clearly, the eigenvalues of C 1 are λ 1 = 4 + √ 13 + δ > λ 2 = λ1 > λ 3 = λ2 . Moreover, the eigenvector associated with the largest eigenvalue λ 1 is b 1 = (1, 0, 0) ′ .

Similarly, we also consider the following 3 × 3 symmetric positive definite matrices A 2 and B 2 , and the multiplication of these two matrices:

A 2 =   4 + √ 13 + δ 0 0 0 0 Ã2   , B 2 =   4 + √ 13 + δ 0 0 0 0 B2   ,
and

C 2 = A 2 B 2 =   4 + √ 13 + δ 0 0 0 0 C2   .
Clearly, C 2 have the same eigenvalues as C 1 : λ 1 > λ 2 > λ 3 , and the eigenvector associated with the largest eigenvalue λ 1 is also b 1 = (1, 0, 0) ′ . Finally, let us define the matrix

N = 1 2 C 1 + 1 2 C 2 =   4 + √ 13 + δ 0 0 0 2ǫ -(ǫ + 1/ǫ)/2 0 -(ǫ + 1/ǫ)/2 2/ǫ   .
Note that when ǫ = 2 + √ 3, the matrix N has the following simplest expression:

N =   4 + √ 13 + δ 0 0 0 2ǫ -2 0 -2 2/ǫ   .
Straightforwardly, since 0 < δ < 8 -(4 + √ 13), the eigenvalues of N are: ξ 1 = 8 > ξ 2 = λ 1 > ξ 3 = 0. Hence, the eigenvector b 1 = (1, 0, 0) ′ is now associated with the eigenvalue ξ 2 which is not the largest eigenvalue of N . This illustrates the mentioned pathological case. Note that this numerical example involves the sums of two matrices, C 1 and C 2 , each with two large nearly equal eigenvalues and a third relatively small eigenvalue. In our dimension reduction setting, one would most likely be using K = 2 here (instead of K = 1).
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 2 Figure 2: Boxplots of the squared cosines for different values of ρ and n = 100's sample size.

  d.r. direction. The two methods give excellent estimations with cos 2 ( b, β) ≃ 0.999. The corresponding estimated e.d.r. directions are respectively b hetero = (0.68, 0.73, -0.70, -0.73, 0.01) and b homo = (-0.63, -0.72, 0.69, 0, 73, 0.01). The plots for each subpopulation of the response variables Y 1 and Y 2 versus the index β ′ X are represented on Figure 3. In this figure, we exhibit the kernel estimates of the link functions g (l)
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 3 Figure 3: Plots of the estimated index X ′ b versus Y 1 (first response variable) on the left side and Y 2 (second response variable) on the right side, with • for Z = 1 and + for Z = 2, with plots of the estimated link functions for Z = 1 (solid line) and for Z = 2 (dotted line)
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 4 Figure 4: Boxplots of the squared cosines for different values of θ.
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• For both PMS-I methods, the quality of the estimation increases with increasing values of ρ. For ρ ≥ 0.4, these hetero and homo methods give reliable estimates. The quality of the estimation increases when the sample size is larger. For ρ = 0.2 and n = 100, these methods give suitable results compared with n = 50.

Comments on the boxplots. We represent on Figure 2 the boxplots of the N = 100 square cosines obtained with the four methods for different values of ρ (0, 0.2, 0.4, 0.6) and n = 100's sample size.

• For ρ = 0 (case of global symmetric dependency), the PMS-I homo and hetero methods can not recover the e.d.r. direction. The PMS α hetero method gives the best quality of estimations even if the PMS α homo method gives reliable estimations.

• For ρ = 0.2, the PMS α methods are still better, and the PMS α hetero also provides the best perfomance.

• For ρ = 0.4 or 0.6, the four methods give suitable estimates.

• For ρ > 0.6 (case of non-symmetrically dependent model), the results of the simulation have not been reported here because they do not present further of interest: indeed all methods give very good estimations in this context.