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Iterative PET Image Reconstruction Using
Translation Invariant Wavelet Transform

Jian Zhou, Lotfi Senhadji, Senior Member, IEEE Jean-Louis Coatrieux, Fellow, IEEE, Limin Luo, Senior
Member, IEEE

Abstract—The present work describes a Bayesian maximum
a posteriori (MAP) method using a statistical multiscale wavelet
prior model. Rather than using the orthogonal discrete wavelet
transform (DWT), this prior is built on the translation invariant
wavelet transform (TIWT). The statistical modeling of wavelet
coefficients relies on the generalized Gaussian distribution. Image
reconstruction is performed in spatial domain with a fast block
sequential iteration algorithm. We study theoretically the TIWT
MAP method by analyzing the Hessian of the prior function
to provide some insights on noise and resolution properties of
image reconstruction. We adapt the key concept of local shift
invariance and explore how the TIWT MAP algorithm behaves
with different scales. It is also shown that larger support wavelet
filters do not offer better performance in contrast recovery
studies. These theoretical developments are confirmed through
simulation studies. The results show that the proposed method
is more attractive than other MAP methods using either the
conventional Gibbs prior or the DWT-based wavelet prior.

Index Terms—emission tomography, image reconstruction,
maximum a posteriori, translation invariant, wavelet transform,
expectation-maximization.

I. INTRODUCTION

POSITRON emission tomography (PET) image reconstruc-
tion using maximum a posteriori (MAP) principles can

provide improved spatial resolution and noise properties. Con-
ventional MAP algorithms control the noise behavior through
the so-called image prior as well as a smoothness constraint
penalizing the roughness of image estimate and reducing the
noise level. The choice of prior is however the crucial point
to MAP methods. Over past years, many priors have been
reported, most of which are related to the Markov random
fields (MRF) that model image features (e.g., lines and edges)
by means of local neighborhood structures.

While MRF priors have attracted considerable interests in
image reconstruction, MRF-based approaches are typically
limited to modeling very local interactions in images. In
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comparison to MRF priors, multiscale schemes can improve
modeling and provide long range interactions, i.e., both global
and local interactions at different scales can be dealt with.
Previous works related to multiscale priors are primarily
focused on the use of wavelets. Wavelet-based tomography
reconstruction methods [1]–[13] can be divided into two
categories: the analytical inversion and the iterative image
reconstruction. One typical analytical method has relied on the
wavelet-vaguelette decomposition (WVD) [14] that computes
image reconstruction by a direct wavelet inverse from Radon
domain (see [6], [7], [10] for example). Such method can offer
a better image reconstruction over the conventional filtered
back-projection (FBP) method, but fails to take the physical
properties of PET into account. In addition, it is usually
difficult to ensure the emission nonnegativity constraint when
the reconstruction is performed in the wavelet domain.

To overcome these problems, statistical iterative MAP
methods, coupled with a multiscale wavelet prior, have been
explored. Wu et al [1] has early reported a wavelet prior
using the space variant simultaneous autoregressive (SAR)
processes. The wavelet coefficients were assumed to be corre-
lated, and extracted using discrete wavelet transform (DWT)
and anisotropic diffusion. Nowak and Kolaczyk [4] reported
another multiscale approach, which however is limited to the
Haar wavelet transform. Frese et al [9] developed the so-called
wavelet graph model based on the conditional distribution of
wavelet coefficients for each scale provided the information
up to all coarser scales. This conditional distribution was
computed through a learning stage and the classification
of a specific training data set. In our previous work [13],
we also proposed a wavelet-based MAP-EM (expectation-
maximization) algorithm. Our multiscale prior model is mainly
motivated by the fact that wavelet coefficients of most im-
ages (including medical images) are independently distributed
according to generalized Gaussian distribution laws [15]–
[18]. This, unlike other methods mentioned above, leads to
a decorrelated multiscale wavelet prior model. By properly
using the expectation-maximization (EM) algorithm, the image
reconstruction was done efficiently with an iterative wavelet
coefficient thresholding.

Despite the success of a wavelet prior, room for im-
provement remains. One challenge is due to the translation
noninvariance of DWT that makes difficult a formal analysis
of noise behavior as shown in [13] (we will revisit it in this
paper). The present paper can be seen as an extension of our
previous work with the translation invariant wavelet transform
(TIWT) instead of DWT. Image TIWT representations are
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often overcomplete representations, which can also be viewed
as tight frames often used in domain of image processing
such as denoising and deconvolution (see [19]–[23] for some
specific examples). We still use the multiscale generalized
Gaussian prior model. Though we have already mentioned
in [13] a similar TIWT-based MAP reconstruction method,
the related optimization (namely, the iterative thresholding
algorithm as well [18]) with respect to TIWT was heuristic
(such as the management of nonnegativity constraint) and the
convergence was not addressed. Rather than using wavelet
domain optimization, in this paper the reconstruction is per-
formed in the spatial domain by means of a block EM iterative
algorithm [24] which has fast and global convergent properties.
The proposed method is developed over the standard discrete
dyadic wavelet transform and thus is suitable for a large
variety of wavelets. A theoretical study on the performance
of TIWT prior model based on the local shift invariance is
also proposed. This helps us to understand the main difference
between the proposed multiscale wavelet prior and some
conventional prior models.

This paper is organized as follows. In Section 2, we describe
the TIWT-based PET reconstruction method together with the
design and analysis of wavelet prior, and the optimization al-
gorithm. Experiments are conducted in Section 3 on simulation
data in order to highlight the performance of the method when
compared to other approaches. The results are then discussed
in Section 4 followed by some perspective issues.

II. METHOD

A. MAP reconstruction

In this paper, we consider the two-dimensional PET image
reconstruction. Assume that the emission distribution can be
discretized into p pixels with nonnegative emission rates x =
[x1, . . . , xp]′ ∈ R

p
+ where the prime denotes matrix or vector

transpose. Let yi denote the number of emissions detected
by the ith of N detectors. We consider the standard Poisson
model, i.e., yi’s are independent Poisson random variables with
mean

ȳi(x) = [Ax]i + ri (1)

for i = 1, . . . , N , where A := {aij} is the system matrix.
ri accounts for the presence of scatter and randoms in the
data. According to this measurement model, the log-likelihood
function is as follows:

L(y|x) =
∑

i

{−ȳi(x) + yi log ȳi(λ)}

=
∑

i

{−([Ax]i + ri) + yi log([Ax]i + ri)}
(2)

with y = [y1, . . . , yN ]′ ∈ R
N
+ denoting the collection of

measurement data.
Maximizing L(y|x) with respect to x yields the so-called

maximum likelihood (ML) estimation. Recently, the Bayesian
MAP estimation becomes more attractive as an alternative to
the conventional ML estimation. In the MAP estimation, the
prior information can be specified by a probability density on
x combined with the information contained in y to produce an

estimate of the unknown image. Many priors have the Gibbs
form

Pr(x) ∝ exp {−βU(x)} (3)

where U(x) is the energy function, β is a smoothing parameter
that controls the noise properties of the reconstructed image.
Combining the likelihood function and the image prior, the
MAP reconstruction is found as

x̂(y) = arg max
x≥0

{L(y|x) − βU(x)} . (4)

B. Translation invariant wavelet transform and wavelet prior

In this paper, a statistical multiscale wavelet prior model
is used. This prior introduces the a priori knowledge on
the wavelet coefficients that can be obtained through wavelet
transform. We are particularly interested in the translation
invariant wavelet transform. One typical TIWT is the dyadic
wavelet transform where the scale is sampled along a dyadic
sequence. Because we are dealing with discrete images, we
further limit our attention on the discrete dyadic wavelet trans-
form. The discrete TIWT is often carried out by the classical
algorithme à trous (originated from [25], see also [26]–[28]
or the review in [21]). This algorithm, similar to the standard
DWT, can be implemented with the filter bank using pairs
of low and high pass finite impulse response (FIR) wavelet
filters denoted by h0[n] and g0[n] (n ∈ Z) respectively. To
clarify it, let us consider the case of a 2D image. It is possible
to obtain the TIWT of images by a separable representation,
i.e., by one-dimensional filtering of rows and columns of the
image. A one-scale TIWT of image x (redefined by x := θ 0

0)
has been schematically illustrated in Fig. 1. We may view
the coefficient image either as a vector in space R

p or as
a two-dimensional discrete representation of J × J pixels.
The transform has no downsampling operations for output
low level images, while the used FIRs should be upsampled
by a dyadic factor according to scale changes from high to
low. Such scheme also requires a relatively low computational
complexity. It has been shown in [21] that the implementation
of TIWT with a filter bank leads to a computational complexity
of O((Kh+Kg)p log2 p) where Kh and Kg are the number of
non-zero samples of the initial filters h0 and g0 respectively.

For a M -scale TIWT, we can apply the above scheme
repeatedly to the output approximation coefficients, and obtain
a set of coefficient images:

{
θ0

M , {θd
m}} , m = 1, . . . , M, d =

1, 2, 3, where θ0
M = [θ0

M,1, . . . , θ
0
M,p]

′ ∈ R
p represents

the approximation coefficients at the lowest scale M , and
θd

m = [θd
m,1, . . . , θ

d
m,p]

′ ∈ R
p, d = 1, 2, 3, are the mth scale

detail coefficients in three orientations (horizontal, vertical and
diagonal, respectively). Note that the practical implementation
of multiscale decomposition should involve the boundary con-
ditions for the two-dimensional spatial convolution operations.
For example, the periodic boundary conditions are often used.
Because there are no downsampling operations, the output
coefficient images always have the same size as the image
being decomposed.

One critical component of our MAP reconstruction method
is the use of a statistical multiscale wavelet prior model.
As pointed out by several authors [29], [15], [30], [21],
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Fig. 1. One-level translation invariant wavelet transform using the algorithm à trous. Here ↑ 2 means the upsampling operation with a factor of 2. θdm’s are
supposed to be square images with size J × J = p. Note that the output coefficients have no downsampling operation.

[16], [17], the wavelet transform can be interpreted as a
multiscale edge detector representing the singularity content
of the image at multiple scales at different orientations. If the
singularity is within the support of a wavelet basis function,
the corresponding wavelet coefficient is large. Hence the
wavelet coefficients at the singularity location tend to be
large. Likewise, a smooth image region is represented by
a cascade of small wavelet coefficients across scale. Since
the spatial structure of many images typically consists of
smooth areas separated with edges, the distribution wavelet
coefficients should be sharply peaked around zero, due to the
contribution of smooth areas, and have broad tails representing
the contribution of the edges. It thus can be described by the
generalized Gaussian distribution which has the form

Pr(θ) ∝ exp
{
− β

(∑
k

ϕ(α0
M,kθ0

M,k)

+
∑
m

∑
d

∑
k

ϕ(αd
m,kθd

m,k)
)} (5)

where ϕ(t) = |t|s with 0 < s ≤ 2, and αd
m,k represents

the weight for the kth coefficient at the dth orientation and
the mth scale. Note that the tail of this distribution becomes
increasingly heavy as s approaches zero. For real cases, the
optimal s is seldom known to us, this paper only considers the
simple probabilistic model by taking s = 1, which relates to
the familiar Laplacian distribution. The Laplacian distribution
has proven to be useful for the modeling of heavy-tailed
wavelet coefficients [15]. Unlike the Gaussian distribution, it
penalizes less image features. Therefore, one can expect that
a MAP with such prior can produce edge-preserved image
reconstruction.

The specification of α’s for each coefficient is of importance
for a multiscale wavelet prior model. One can emphasize the
role of some specific wavelet coefficients by increasing the
corresponding α’s. Nevertheless, this is not realistic due to the
lack of a priori information. A useful choice can be made by
considering the approximate energy relationship of coefficient
images across various scales. In Appendix, we have derived
the two-scale Fourier domain coefficient relationship which

indicate that the total energy of a higher level approximation
coefficient image can be divided into four parts corresponding
to four lower level coefficient images. The energy proportion
relates to the wavelet filters by a constant factor 1/C 2 (C �= 1).
Therefore, the energy of wavelet coefficients is scale depen-
dent. To remove this dependence, we suggest the following
α’s

αd
m,k := αm = C−2m, C > 0. (6)

By using these weights, we then obtain equally contributing
coefficients from the viewpoint of balanced signal energy. Of
course, (6) is only one possible choice for α’s, a thorough
discussion on weight modeling can be found in [16]. Recently,
the choice of parameter α’s has been shown of relevance for
the Besov space norm [30], [31].

It is worth to note that θ0
M serves as a low-level ap-

proximation of the original image x, while each θm,d (for
m = 1, . . . , M − 1 and d = 1, 2, 3) depicts the local
image feature. Thus, both the global and local image a priori
information has been included by the proposed multiscale
wavelet prior. This differs from the conventional MRF-based
prior where information about local features is included only.
It is easy to show that such global prior gives preference
to image reconstructions with smaller norms (when s = 1,
the function ϕ is the l1 norm). Thus it plays a similar role
of noise suppression, and then can be expected to yield
additional improvement in image reconstruction. Finally, the
energy function used for our MAP estimation (4) is

UWV(x) =
∑

k

ϕ(αMθ0
M,k) +

∑
m

∑
d

∑
k

ϕ(αmθd
m,k). (7)

C. Prior model study using local shift invariance

In PET imaging, it is often important to quantify a MAP
reconstruction method in terms of resolution and variance
of the resulting images. These measures can be used in
comparing different reconstruction algorithms on a particular
imaging system. Due to the nonlinear MAP estimator, a direct
computation of these quantities is nontrivial. Early works
by [32], [33] including [34], [35] have used the approximate
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expressions based on the implicit function theorem, the Taylor
expansion and the chain rule. Typically, the jth local impulse
response has the form

lj(x̂) ≈ (F + βU(x̂))−1Fej (8)

and the variance is

Varj(x̂) ≈ (ej)′(F + βU(x̂))−1F (F + βU(x̂))−1ej . (9)

where ej is the jth unit vector, F := A′D[qi]A is the Fisher
information matrix given the measurement data; D[q i] denotes
a diagonal matrix with qi (representing the reciprocal of the
variance of yi) being the ith diagonal entry. qi’s are usually
solved by the data-plugin techniques (refer to [35]–[37] for
more details). U(x̂) is the Hessian matrix of the energy
function U . Provided the measured data and system, the Fisher
information may not change anymore. Hence, it is the Hessian
U(x̂), varying with the energy function as well as the used
prior model, that makes one MAP method distinguishing from
another. While the incorporation of image prior may reduce the
noise variance, it would lead to a bias in image estimation. By
assuming the local shift invariance for both Fisher and Hessian
matrices, it further can be shown [38], [39] that

lj(x̂) ≈ F−1

{ F {Fej}
F {Fej} + βF {U(x̂)ej}

}
(10)

and

Varj(x̂) ≈
∑

n

{
[F {Fej}]n

([F {Fej}]n + β[F {U(x̂)ej}]n)2

}
(11)

where F {·} represents the 2D discrete Fourier transform
operator, F−1 {·} is the corresponding inverse, and the di-
vision in (10) is an element-by-element division. These two
approximations enable us to identify the principal differences
of MAP methods by analyzing the locally spatial response
U(x̂)ej .

To make it clear, let us first consider the conventional MRF
priors. The Gibbs energy of most conventional MRF priors
can be written in the form [40]

UMRF(x) =
∑

j

wjφ([Cx]j) (12)

where φ is the potential function, C denotes the difference
operator, and wj’s are weighting parameters. For a usual
second-order MRF, we may partition C into four parts:
C = [C ′

1, C
′
2, C

′
3, C

′
4]

′ where C�’s (� = 1, . . . , 4) are shift
invariant operations representing the horizontal, vertical and
two diagonal difference operations respectively. The finite dif-
ference operation can be performed by using two-dimensional
convolution. Typically, the two-dimensional convolution ker-
nels of C�’s can be [41]:

[ −1 1
]
,

[ −1
1

]
,

[
− 1√

2
0

0 1√
2

]
and

[
0 − 1√

2
1√
2

0

]
,

respectively. The Hessian of UMRF(x) is therefore

UMRF(x) =
∑

�

(C�)′D[ξ�
j(x)]C� (13)

Fig. 2. Four frequency magnitude response images of the kernel of a
usual second-order MRF prior. From left to right: ker(C′

1C1) (horizontal),
ker(C′

2C2) (vertical), ker(C′
3C3), and ker(C′

4C4) (two diagonals), re-
spectively. Note that the DC component of Fourier transform is located at the
center of each image.

where ξ�
j(x) = wj φ̈([C�x]j) with φ̈ the second order deriva-

tive of φ. If we assume that the ξ�
j(x)’s are spatially stationary,

we can obtain the following approximation:

UMRF(x)ej ≈
4∑

�=1

ξ�

j
(x)(C�)′C�ej

⇔
4∑

�=1

ξ�

j
(x) ker(C ′

�C�).

(14)

The above equation shows the linear combination of high-pass
filters {ker(C ′

�C�)}�=1,...,4 (where ker(X) means the two-
dimensional convolution kernel of a shift invariant operator
X) with portions adjusted by ξ �

j
(x)’s (it is possible to use

the approximate exchange to compute ξ �

j
(x)’s, see Eq. 16

in [40] for instance). This indicates that the influence of a
MRF prior affects on the higher frequency domain. Fig. 2
shows the magnitude response of the corresponding filters,
where different frequency concentrations (i.e., {[−π,−π/2]∪
[π/2, π]} × {[−π,−π/2]∪ [π/2, π]}) and orientations can be
well recognized. The coefficients ξ �

j
(x)’s control the local

behavior of each filter. For most of the nonlinear potential
functions, we see that ξ�

j
(x)’s are signal dependent, which

leads to the adaptive image reconstruction (e.g., the edge-
preserved filtering). When the coefficients do not change
largely (usually for pixels within relatively smooth regions),
the effect of such prior is proportional to a conventional
quadratic prior. In fact, ξ �

j
(x)’s in this case is also independent

of position j. Thus, we may have

UMRF(x)ej ∝
4∑

�=1

ker(C ′
�C�) = ker

⎛
⎝ −2 −1 −2

−1 12 −1
−2 −1 −2

⎞
⎠

as a constant high-pass filter kernel.
As for the proposed wavelet prior, we employ the same strat-

egy by separating W into a set of operators:
{
W 0

M , {W d
m}},

m = 1, . . . , M , d = 1, . . . , 3 where W d
m represents the partial

wavelet transform that acts on x to produce the coefficients
θd

m, i.e., θd
m = W d

mx. Then, according to (7), the Hessian of
the proposed multiscale wavelet prior can be expressed as

UWV(x) = (W 0
M )′D[λ0

M,k(x)](W 0
M )

+
M∑

m=1

3∑
d=1

(W d
m)′D[λd

m,k(x)](W d
m)

(15)

with λd
m,k(x) = α2

mϕ̈(αm[W d
mx]k) and ϕ̈ the second or-

der derivative of ϕ. Using the similar assumption that the
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Fig. 3. Frequency magnitude response images involved by a two-level TIWT
prior with Haar wavelet filters. The first row (from left to right), the second
level: ker((W0

2 )′(W0
2 )) (low-pass filter), ker((W1

2 )′(W1
2 )) (horizontal),

ker((W2
2 )′(W2

2 )) (vertical), ker((W3
2 )′(W3

2 )) (diagonal); The second
row (from left to right), the first level: ker((W1

1 )′(W1
1 )) (horizontal),

ker((W2
1 )′(W2

1 )) (vertical), ker((W3
1 )′(W3

1 )) (diagonal). Note that the
DC component of Fourier transform is located at the center of each image.

λd
m,k(x)’s vary slowly, we have

UWV(x)ej ≈ λ0
M,j(x)(W 0

M )′(W 0
M )ej

+
M∑

m=1

3∑
d=1

λd
m,j(x)(W d

m)′(W d
m)ej

⇔ λ0
M,j(x) ker((W 0

M )′(W 0
M ))

+
M∑

m=1

3∑
d=1

λd
m,j(x) ker((W d

m)′(W d
m)).

(16)

UWV(x)ej is no more than UMRF(x)ej , having the same
form of linear filter combination with signal related coeffi-
cients λd

m,j(x)’s. However, these filters consist of a low-pass
filter ker((W 0

M )′(W 0
M )), and several subband high-pass filters{

ker((W d
m)′(W d

m))
}

, m = 1, . . . , M , d = 1, . . . , 3. Note
that for each scale, there is only one diagonal filter while for
the MRF prior two separable diagonal filters are used. The
frequency concentration of high-pass filters are scale depen-
dent. As an example, Fig. 3 shows the frequency response of
the Haar wavelet filters up to scale M = 2. Typically, it is
concentrated on {[−2−m+1π,−2−mπ]∪ [2−mπ, 2−m+1π]}×
{[−2−m+1π,−2−mπ] ∪ [2−mπ, 2−m+1π]}, m = 1, . . . , M .
Here, let us consider the one-scale Haar wavelet prior in which
we slightly ignore the global regularization as well as the
low-level approximation wavelet coefficients. We suppose the
signal related coefficients λd

m,j(x)’s do not vary too much
so that they are independent of both signal content and pixel
locations, it can be shown that

UWV(x)ej ∝
3∑

d=1

ker((W d
1 )′(W d

1 ))

= ker

⎛
⎝ −2 −1 −2

−1 12 −1
−2 −1 −2

⎞
⎠ (17)

This implies that the conventional MRF prior can be viewed as
a special case of Haar wavelet prior. When M > 1, this clearly
yields larger range of frequency domain (in comparison with
MRF prior) and thus more signal features could be involved.
From this point of view, the wavelet prior is usually different
from the MRF prior.

Fig. 4. Frequency magnitude response images of high-pass filters
involved by a one-level TIWT prior with ’db4’ wavelet filters. From
left to right: ker((W1

1 )′(W1
1 )) (horizontal), ker((W2

1 )′(W2
1 )) (vertical),

ker((W3
1 )′(W3

1 )) (diagonal). Note that the DC component of Fourier
transform is located at the center of each image.

Fig. 5. The first two images show two kernels extracted from the operator
(W1

1 )′(W1
1 ) where W1

1 computed by the standard DWT with db4 wavelet
filters. For good visualization, only center part of images (32 × 32) is given.
The last two images are the corresponding frequency magnitude responses.
Note that the DC component of Fourier transform is located at the center of
each image.

Similarly, let us check different wavelet filters. In Fig. 4,
we give out another set of filters computed with Daubechies
wavelet filters of length 8 (denoted by ‘db4’), i.e., with
larger support wavelet basis. Clearly, the frequency orientation
of such wavelet filters are the same as the Haar wavelet.
Nevertheless, the high-pass effect of the related filters becomes
stronger (i.e., the ‘db4’ filters rolls off more quickly around the
cutoff frequency than the Haar filters. Note that the brighter
color in images indicate higher magnitudes), and therefore
high frequency components will be more penalized. Since the
Hessian occurs only in the denominator of (10) and (11), the
consequence is that: the image variance could be reduced,
leading to smoother reconstructions as compared to a Haar
wavelet prior; On the other hand, the image bias increases due
to the large penalization of the local impulse response. Thus,
the performance of TIWT MAP changes with different wavelet
filters. In our experiments, we will show that this method for
the particular application of lesion contrast recovery is actually
degraded if large support wavelets are used.

It is worth to note that although the above local analysis
may not hold for DWT-based MAP method since DWT is
shift-varying, it is still possible to get some insights on the
behavior of a shift-varying wavelet prior. In Fig. 5, we studied
a prior computed by the standard DWT. These two kernels
correspond to two consecutive rows extracted from the opera-
tor (W 1

1 )′(W 1
1 ). Both of them have been shifted properly to

the center of image. Different spatial profiles and frequency
magnitudes illustrate the shift-varying property. Notice also
that the spatial profiles are asymmetric, which indicates that
the local impulse response is anisotropic and even irregular.
This may complicate the analysis of noise behavior in image
reconstruction. We will address this issue in Section 3.

D. Optimization

We have adapted the block sequential regularized expec-
tation maximization (BSREM) algorithm [24] to compute
the MAP reconstruction. This algorithm is an extension of
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RAMLA (row-action maximum likelihood algorithm) [42]
for MAP reconstruction. It has proven to be fast and to
have guaranteed convergence properties. In this algorithm, a
full iteration consists of a set of subiterations, each being
performed sequentially using one predetermined block of
measurement data. Let us define a partition of the integer
set Ω = [1, 2, . . . , N ] into B disjoint subsets Sb, such that⋃B

b=1 Sb = Ω. Then, the BSREM iteration scheme is given as
follows:

1. Setup x̂0, for n = 0, 1, . . ., x̂n = x̂n,0, and for b =
1, . . . , B and j = 1, . . . , p

x̂n,b
j = x̂n,b−1

j

+ ρnx̂n,b−1
j

∑
i∈Sb

aij

(
yi∑p

d=1 aidx̂
n,b−1
d + ri

− 1

)
;

2. Set x̂n+1/2 ≡ x̂n,B and define for j = 1, . . . , p

x̂n+1
j = x̂

n+1/2
j − ρnx̂

n+1/2
j

[
∇UWV(x̂n+1/2)

]
j
;

3. Apply the nonnegativity constraint:

x̂n+1
j = max

{
x̂n+1

j , τ
} ∀j = 1, . . . , p.

Here, {ρn} is a sequence of positive relaxation parameters
such that limn→∞ ρn = 0 and

∑∞
n=0 ρn = ∞. τ > 0

is a threshold, compensating the nonnegativity constraint.
∇UWV(x) = [∂UWV

∂x1
, . . . , ∂UWV

∂xp
]′ is the gradient of function

UWV with respect to x. By letting ηd
m = [ηd

m,1, . . . , η
d
m,p]

′

where ηd
m,k = αmϕ̇(αm[W d

mx]k) and ϕ̇ is the first derivative
of ϕ, then

∇UWV(x) = (W 0
M )′η0

M +
∑
m

∑
d

(W d
m)′ηd

m. (18)

The calculation of ∇UWV(x) is equivalent to the backward
TIWT that maps wavelet coefficients into an image. Here we
treat ηd

m’s as wavelet coefficient images so W d
m’s play the

role of backward wavelet transform, mapping η d
m’s back to

the image space. Note that TIWT is nonorthogonal so this
backward is not really the wavelet inverse transform. It can
be carried out by a (backward) filter bank with the same
computational complexity as the forward TIWT [21]. Note
that because the function ϕ is nondifferentiable when s = 1, a
smooth approximation as shown below on is often desired as
computing the gradient of the energy function UWV(x). In this
paper we assume that such approximation will not affect too
much the behavior of prior model, hence we expect that the
BSREM would converge to an image reconstruction close to
the real MAP solution. Of course, there are other optimization
algorithms available, such as the interior-point method [43]
and the splitting algorithm [23] (the latter does not need a
differentiable energy function).

III. SIMULATION STUDIES

This section provides simulation results in order to study
quantitatively the performance of the TIWT-based MAP re-
construction. We considered the three-dimensional NU2–2000

National Electrical Manufacturers Association (NEMA) phan-
tom [44]. This phantom is described on a space of 350
mm×350 mm×180 mm (axial). The body wall thickness is
3 mm, the lung is modeled as 250mm radius cylinder in the
center of the phantom. It consists of 6 spherical lesions of 10
mm, 13 mm, 17 mm, 22 mm, 28 mm, and 37 mm diameters.
The first four lesions are hot spheres and the last two cold
spheres. In the emission phantom, the activity was applied by
setting the background (i.e., the lung and other body tissues)
to 2. All hot lesions had a contrast equal to 5 while cold
lesions were set at 0.5. We also assumed that the background
has uniform attenuation coefficient of 0.0095 mm−1. The
whole volume was digitized with 64 × 64 (axial) voxels.
For the two-dimension image reconstruction, we selected the
central slice (the related emission activity image is shown in
Fig. 9(a)). We simulated a PET scanner operating in two-
dimensional mode which produces the projection data with
80 radial bins and 64 angular views (evenly spread over
180◦). The detector efficiencies were generated by a pseudo-
random log-normal variance of 0.3. The sinogram was globally
scaled to a mean sum of 200, 000 true events. Pseudo-random
independent Poisson variants were drawn according to (1),
and a uniform field of Poisson distributed background scatter
events with known mean of 10% random coincidences was
also considered in our experiments.

Reconstructions of the simulated data were performed using
the MRF-based and the wavelet-based MAP algorithms. Be-
sides the proposed TIWT-based MAP, we also used the DWT
for comparison purpose. For the DWT-based algorithm, the
optimization was not changed. The weights α’s had to be set to
1 according to the signal energy balance previously mentioned
(note that in DWT there is a downsampling operation so that
the extra factor as well as C resulting from filtering taps
would be canceled, see [21] for more details about DWT).
DWT has lower computational complexity and lower memory
storage than TIWT, which can be more attractive for higher
dimensional image reconstruction. For the MRF model, we
chose two commonly used potential functions: φ(t) = |t|2
and φ(t) = |t|. The former leads to the Gaussian quadratic
MRF model while the latter is close to the well-known
total variational (TV) regularization. In the following, we
use the terms QUAD-MAP, TV-MAP, DWT-MAP and TIWT-
MAP to identify different methods. All MAP methods were
implemented by using the BSREM optimization. In BSREM,
we fixed B = 16 blocks. Each block had the same size.
The bth block index subset Sb (∀b = 1, . . . , B) was chosen
according to the angular view. More precisely, let us denote
na the number of projection angles. For the bth block, we
consider those projection data in views: {b + 16a | a =
0, 1..., and (b+16a) ≤ na}. The threshold τ was set to 10−8.
Since the function ϕ (including the TV φ(t) = |t|) is not
differentiable at zero, we have used the smooth approximation
proposed in [45], [16]: ϕ(t) ≈ √|t|2 + ε −√

ε, where ε, the
stabilization constant, is set to 10−6. The relaxation parameter
was generated according to [24]: ρn = ρ0/(n + 1)0.1, where
the initial value ρ0 was chosen carefully for each algorithm to
avoid any divergence. The initial estimate x̂0 was a uniform
disk with a constant emission activity. We ran 200 iterations
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Fig. 6. Background noise standard deviation versus hot lesion contrast
recovery coefficient. The reconstruction methods are: QUAD-MAP (circle),
TV-MAP (square), DWT-MAP (cross), and TIWT-MAP (diamond). Both
DWT and TIWT have used the Haar wavelet including a total M = 3
decomposition level.
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Fig. 7. The changes of uptake estimation μmax
lesion/μbg as a function of

β for hot lesions with different diameters. The reconstruction methods are:
QUAD-MAP (circle), TV-MAP (square), DWT-MAP (cross) and TIWT-MAP
(diamond).

to ensure the effective convergence.

A. Lesion contrast recovery analysis

We first studied the performance of different MAP algo-
rithms for lesion recovery by using the contrast recovery
coefficients (CRC) for different sized hot lesions. The lesion
CRC is defined as (see Eq. (16) in [46]):

CRClesion =
E{μmax

lesion}/E{μbg} − 1
μtrue

lesion/μtrue
bg − 1

(19)

where μmax
lesion and μbg denotes the maximum activity of

the reconstructed lesion and the mean activity background
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Fig. 8. The mean and standard deviation of CRClesion relations of two
lesion of (a) 22 mm and (b) 17 mm diameters. The reconstruction methods
are: QUAD-MAP (circle), TV-MAP (square), DWT-MAP (cross) and TIWT-
MAP (diamond).

respectively, and μtrue
lesion and μtrue

lesion are the corresponding true
activity values. The expectation operation E{·} was replaced
by the ensemble mean computed from reconstructions of 200
replicate noisy sinograms. The background mean and standard
deviation were calculated from 4 selected circular regions in
the lung area. For the wavelet-based MAP algorithms, we
have used the Haar wavelet filters for instance, the maximum
decomposition level was set to M = 3 for both DWT and
TIWT. Fig. 6 plots the contrast recovery coefficients (CRC)
of four hot lesions versus the spatial standard deviation of
the reconstructed background. Note that the recovery rate is
related to the lesion size. For lesions of 22, 17 and 13 mm
diameters, the CRCs of TIWT-MAP are higher. This shows
the advantage of the multiscale TIWT prior in achieving
higher contrast recovery at matched noise levels. The DWT-
MAP shows better performance than QUAD-MAP while it is
inferior to either TIWT-MAP or TV-MAP. For the smallest
lesion, the performance of TV-MAP is close to TIWT-MAP.
We analyzed the uptake μmax

lesion/μbg as a function of β. The
results are shown in Fig. 7 with the mean and standard
deviation. It can be seen that the proposed TIWT-MAP has
relatively higher uptake than other MAP methods for all
hot lesions with different sizes, which again indicates better
performance. Also in this particular experiment, there seems
no large different performance between TV-MAP and DWT-
MAP while they are better than QUAD-MAP. To perform
further evaluation, we used a modified CRC by excluding the
expectation operation. Then, for each image reconstruction, we
had CRC’s for different lesions. With 200 reconstructions in
total, we were able to calculate the CRC mean and the related
standard deviation. Fig. 8 shows the changes of mean CRC as a
function of standard deviation for two lesions of 22 mm and 17
mm diameters respectively. These results confirm our proposed
TIWT-MAP algorithm since the standard deviation of TIWT-
MAP is usually lower than others for some fixed mean values.
In Fig. 9, we show different MAP image reconstructions from
one single noise sinogram. Here the β value was selected
according to Fig. 6(d) so that all methods produced the nearly
equal CRC (≈ 0.4) for the 10 mm lesion. The results yielded
by TIWT-MAP, TV-MAP and DWT-MAP are visually similar
with well preserved sharp edges. In this experiment, they are
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(a) (b) (c)

(d) (e)

Fig. 9. (a) The simulated phantom; (b)–(e) are image reconstructions
from QUAD-MAP, TV-MAP, DWT-MAP, and TIWT-MAP, respectively. The
smoothing parameters for four methods were chosen to achieve approximately
matched CRClesion (≈ 0.4) for the smallest hot lesion of 10 mm diameter
according to curves in Fig. 6(d).
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Fig. 10. Parameter β versus contrast recovery coefficient (CRC) on pixel of
interest at the center of phantom for different MAP methods.

better than that obtained by QUAD-MAP.
This simulation study can be confirmed through a theoretical

analysis based on (10) and (11). The local CRC of any pixel
j is often used to characterize the resolution property. The
definition of local CRC is [34], [35]

crcj(x̂) = (ej)′lj(x̂). (20)

The β versus CRC curves are plotted in Fig. 10. This figure
indicates a monotonic relationship between β and CRC for
a given pixel of interest. We also studied the related local
impulse response functions of different MAP methods. Ac-
cording to Fig. 10, we chose a target CRC (≈ 0.05) for each
MAP method, and then displayed the impulse images (Fig.
11). It can be seen that these methods except DWT lead to
a well-shaped point spread function. The result is somewhat
consistent with our previous analysis, pointing out that the

(a) (b)

(c) (d)

Fig. 11. Local impulse response images of four MAP methods (from (a)
to (d)) QUAD-MAP, TV-MAP, DWT-MAP and TIWT-MAP, respectively.
For a good visualization, only part of images (32 × 32) are displayed. The
parameters β for different MAP methods were chosen to create a nearly same
target CRC (≈ 0.05) at pixel of interest using curves shown in Fig. 10. Both
DWT and TIWT were computed with Haar wavelet filters and the maximum
decomposition level M = 3.
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Fig. 12. (a) Comparison of the experimental CRCs and theoretical CRCs
using the approximate expression versus β; (b) Comparison of the standard
deviation of point of interest versus β. The measured standard deviation were
computed at the center of phantom across 200 independent reconstructions.

translation noninvariance of DWT causes an irregular local
impulse response function.

We also evaluated the accuracy of the theoretical approx-
imate expressions for the TIWT-MAP estimation. The theo-
retical CRC was compared to the experimental CRC which
was measured from reconstructions of two noiseless data sets:
1) the original phantom sinogram, and 2) the sinogram of the
phantom after perturbation of a single pixel of interest. Fig.
12(a) shows a comparison of the measured and theoretical
predicted CRCs for that pixel of interest. The approximations
are in good agreement with the measured CRCs. We then com-
puted the pixel-wise variance from 200 reconstructions from
independent data sets. The standard deviation versus parameter
β curves from both measured and theoretical estimated results
are shown in Fig. 12(b). Again, the agreement is good: the
theoretical predictions do not show a significant increase in
error.

To combine the CRC with the background noise level,
we used the contrast-to-noise ratio (CNR), which has the
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Fig. 13. The relation curves between CNR and parameter β of different MAP
methods for pixel of interest located at the center of phantom: QUAD-MAP
(circle), TV-MAP (square), TIWT-MAP (diamond) and the modified TIWT-
MAP (dash-dot) with αM = 0. For DWT-MAP, we computed two curves:
one is for the pixel at (33, 33) (triangle) and the other is for (32, 33) (cross).
Note that the performance of DWT-MAP changes greatly as we only shifted
one pixel spatial location.

form [34]

CNRj(x̂) =
crcj(x̂)√
Varj(x̂)

(21)

When assuming that the reconstructions are locally ergodic,
then the CNR is equivalent to the signal-to-noise ratio (SNR).
The CNR is commonly used to test the performance of PET
reconstruction algorithms. In order to compare the four meth-
ods, we selected several β values and then performed image
reconstruction with the mean sinogram ȳ. In the case, qi’s
were approached by: qi = max{ȳi, 1} for all i. CNR values
were computed using (21) where the crcj(x̂) and Varj(x̂)
were calculated with the aid of theoretical expressions (10),
(11) and (20). The results were plotted for the center pixel (33,
33) in Fig. 13. These curves show unique global maxima, e.g.,
the CNRs peak at β ≈ 10−0.9 for TIWT-MAP. We observe
again that the TIWT-MAP slightly outperforms others because
it produces the highest maximum CNR among four methods.
This justifies our previous results and points out the efficiency
of the proposed wavelet prior model. For QUAD-MAP and
TV-MAP, the maximum CNR values are nearly equal to each
other. When dealing with DWT-MAP, we found that if we use
the naive choice x̂ = xtrue the theoretical approximations can
be applied. While this may be not correct, it could provide us
some insights on how the behavior of DWT-MAP method. We
traced out two β versus CNR curves for DWT-MAP at two
connected pixels of interest (33, 33) and (32, 33). The results
are put together in Fig. 13.

As we can see, the DWT-MAP yields two distinct CNR
curves, and the maximum CNRs occur for two different β val-
ues. Therefore, the performance of DWT-MAP is highly spa-
tially varying. As mentioned previously, this situation should
attribute to the shift-varying property of DWT which makes it
difficult to predict the noise behavior with the current version
of theoretical approximations. In previous sections, we have

already noted that besides the multiscale nature, the proposed
prior model differs from the conventional MRF-based one due
to an additional global coarse level constraint. Such a global
penalization plays the role of noise suppression as well. To
show the relevance of such a priori penalization, we defined a
modified TIWT-MAP by setting αM = 0 ignoring the coeffi-
cients θ0

M . The CNR performance of the modified TIWT-MAP
was evaluated and the result is shown in Fig. 13. By comparing
the maximum CNRs, we see that the performance of TIWT-
MAP without the global constraint is slightly inferior to the
constrained case. Nevertheless, such modified TIWT-MAP still
shows better performance than QUAD-MAP and TV-MAP
while the difference between two TIWT-MAP algorithms is
not obvious. These results are probably due to the facts that: 1)
the main contribution of a TIWT-based prior is captured by the
used multiscale local features; 2) the value of αM is relatively
small (in this particular experiment αM = 2−6), leading
to less contribution of low-level approximation coefficients.
However, we have to notice that a penalization on the global
information perhaps results in an additional negative bias of
the estimator which is undesirable for image quantification.
So, how much bias can be produced by the above αM ?
To get some insights to this problem, we conducted another
experiment by analyzing the bias-standard deviation tradeoff
of the related estimators. Fig. 14 compares the tradeoff curves
based on two hot lesions of 22 mm and 17 mm diameters
respectively. It can be seen that they are close to each other.
This implies that the bias changes related to a global constraint
are negligible, i.e., the proposed TIWT-MAP does not cause
too much negative effects on image reconstruction.
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Fig. 14. The comparison of bias and standard deviation of two hot lesion
estimators of (a) 22 mm and (b) 17 mm diameters using the TIWT-MAP with
(circle) and without (diamond) a priori constraint on coefficients θ0M .

B. Influence of wavelet filters

For the proposed TIWT-MAP algorithm, there are at least
two remaining aspects that should be considered: 1) the type
of wavelet filter which characterizes the filtering behavior and
2) the used maximum scale that affects the range of frequency
concentration. We first studied the latter issue, i.e., the changes
of CNR performance as a function of M was examined.
We used the Haar wavelet and traced out the corresponding
performance curves in Fig. 15(a). We see that the maximum
CNR increases when M becomes bigger. This fact exactly
indicates that a multiscale prior is clearly more advantageous
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Fig. 15. (a) Relation between the maximum decomposition level M and CNR
of image reconstruction using TIWT-MAP with Haar wavelets; (b) Relation
between wavelet filters and CNR using TIWT-MAP with a fixed maximum
decomposition level M = 3.

over a single scale prior when viewed through a global CNR
performance criterion. On the other hand, it also reflects that
a larger range of frequency concentration resulting from a
multiscale prior does improve the image reconstruction of a
MAP algorithm. This shows the agreement with our previous
analysis on scale effects of wavelet prior. It is worth to note
that the global maxima for different methods of M do not
differ too much from each other, all occurring at 10−1.0. The
difference between the choices M = 3 and M = 4 is not
significant.

Let us investigate the effect of wavelet filters. Fig. 15(b)
shows the CNR curves obtained by selecting four different
wavelet filters: db1 (as well as the Haar wavelet), db2, db3,
and db4 (where the number relates to the length of wavelet
filters by a factor of 2). In our simulation, we have set M = 3,
and the pixel of interest was chosen to be near the smallest 10
mm lesion. Interestingly, the Haar wavelet gives the optimal

(a) (b)

(c) (d)

Fig. 16. Image reconstructions using TIWT-MAP coupled with different
wavelet filters (from (a) to (d)): db1 (as well as the Haar wavelet), db2, db3
and db4. All TIWTs were computed up to level M = 3, and parameters β
were chosen to obtain approximately the CRC (≈ 0.3) for the pixel located
at the center of phantom.

performance because it has the largest maximum CNR, while
the maximum CNR decreases as increasing the wavelet filter
length. This indicates that large support wavelet bases might
not be suitable for small lesion detection. As an example, Fig.
16 shows image reconstructions using four types of wavelet
filter. Here, the parameter β has been set in such a way that
all MAPs produce nearly the same CRC values. Note that
smoother edges are obtained using db4 wavelet filters. The
reason is that the local impulse response has been highly
penalized by the large support wavelet prior model. In fact, a
similar result has been reported by Qi and Leahy [34] where
the 3rd order thin plate model was shown to have poorer
detectability than lower order membrane models.

IV. DISCUSSION AND CONCLUSION

In PET imaging, MAP methods are often introduced to
improve the noise behavior of image reconstruction. The
present work describes a MAP method (i.e., TIWT-MAP)
using a multiscale wavelet prior. This prior, based on the
heavy-tailed behavior of wavelet coefficients, was constructed
from the translation invariant wavelet transform. We have
discussed the design of TIWT prior and the way to choose
weighting parameters based on the signal energy. The image
reconstruction was performed in the spatial domain (rather
than in wavelet domain) with a block sequential EM-like
iteration algorithm.

Quantifying a MAP algorithm for PET image reconstruction
usually can be carried out in terms of resolution and variance
properties. While the TIWT-MAP estimate is nonlinear and
has no closed-form expression, this still can be done locally
with the aid of classical theoretical approximates, such as
local impulse response function and variance. The local shift
invariance provides another useful way to explore approxi-
mately the characteristics of a MAP algorithm through the
local behavior of the Hessian of the used prior function. Under
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some reasonable assumptions, we have found that the Hessian
kernel at given pixel can be expressed into a combination of
linear filters. These filters, including combination coefficients,
are key components that characterize a prior model and
differentiate one MAP algorithm from another.

For the proposed multiscale TIWT prior, the local behavior
of the Hessian depends on what kind of wavelet filters and
how many decomposition levels we use. Theoretically, we
have observed that the TIWT prior would be more efficient
as we increase the decomposition scale (i.e., larger than one).
This is because the more scales used, the more the signal
content would be captured. Empirical results have verified this
prediction. However, the performance of TIWT-MAP seems
bounded when we increase the level of wavelet transform.
Additionally, the global a priori constraint on low-level ap-
proximation coefficients is of relevance and provides a slight
improvement in CNR while less negative effects in mean
reconstruction. A natural question follows: is there optimal
αM that tradeoffs the maximum of CNR and the bias of mean?
To obtain such αM is obviously interesting but is beyond the
scope of this paper.

Another point worth to mention is that the large support
wavelet filters may not be suitable for sharp edge-preserving.
This is because large support wavelets usually have stronger
high-pass effects (and sharper transition region) which penal-
ize largely higher frequency components of the local impulse
response. On the other hand, this also indicates that the Haar
wavelets would be the favorite choice since it always has the
smallest support. These theoretical considerations have been
confirmed by our simulation studies.

It should be underlined that theoretical prediction for the
noise properties of a MAP using nonquadratic prior is often
complicated due to its highly nonlinear nature. Our theoretical
prediction is mainly conducted with formulations (10) and
(11). The accuracy of the local linearized impulse response
and the covariance depends on the resolution and noise level
in reconstructed images because of the approximations that
are used. The main difficulty for prediction is perhaps that
the noise level in reconstruction can be large (due to the
ill-posed nature of tomography reconstruction) so that the
accuracy of (10) and (11) cannot be ensured any more (in
particular for pixels around sharp changes). The Hessian is
especially the key to such approximation, and efficient calcula-
tion have recently been suggested by [35] and [47]. As we have
already mentioned in experiments, our reconstructions were
obtained from the assumed mean sinogram instead of noisy
realizations since we only concern to provide some useful
insights. Therefore, the noise in final reconstruction is usually
small especially when large beta is used. This strategy can
undoubtedly lead to better prediction than that using the noisy
realizations. However, when beta is too small, there is still
discrepancy between theoretical predictions and experimental
simulations due to the sensitiveness of approximation.

Quantitative results show that TIWT-MAP performs better
than QUAD-MAP and TV-MAP. It provides relatively higher
maximum contrast-to-noise ratio and thus better lesion contrast
recovery. DWT-MAP does not outperform TIWT-MAP in the
same kind of application. Also our simulation results reveal

that the resolution and noise properties of DWT based MAP
reconstruction can be complicated. In spite of this, the DWT-
MAP has its own advantages, e.g., the fast algorithm and low
computational complexity. As a result, further studies on such
algorithm are deserved.

The current theoretical evaluation of resolution and noise
properties is limited to mean measurement data. Verification
on their accuracy with one single noisy realization should be
conducted. The computation would be intensive for large data
sets, so we plan to design wavelet-based simplified theoretical
expressions that allow fast calculation. The CNR utilizing
single pixel variance and contrast recovery coefficient in task
of lesion detection does not include the correlation from
nearby pixels. Therefore, a further study based on criteria
involving pixel correlation such as the channelized Hotelling
observer (CHO) may be better to understand the performance
of the proposed TIWT-MAP method. We will also investigate
higher dimensional wavelet-based PET image reconstruction,
and will evaluate the proposed method using real data.
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APPENDIX

Let θ̂d
m(ω1, ω2), d = 0, . . . , 3, be the two-dimensional

Fourier transform of θd
m where ω1 and ω2 represent the

frequency components. The Fourier transform of h 0 and g0

are denoted by ĥ0(ω) and ĝ0(ω). Then, the one-scale TIWT
decomposition can be expressed in terms of Fourier transforms

θ̂0
m(ω1, ω2) = θ̂0

m−1(ω1, ω2)ĥ0(2m−1ω1)ĥ0(2m−1ω2)

θ̂1
m(ω1, ω2) = θ̂0

m−1(ω1, ω2)ĥ0(2m−1ω1)ĝ0(2m−1ω2)

θ̂2
m(ω1, ω2) = θ̂0

m−1(ω1, ω2)ĝ0(2m−1ω1)ĥ0(2m−1ω2)

θ̂3
m(ω1, ω2) = θ̂0

m−1(ω1, ω2)ĝ0(2m−1ω1)ĝ0(2m−1ω2)

for all m = 1, . . . , M . It follows immediately that

|θ̂0
m(ω1, ω2)|2 + |θ̂1

m(ω1, ω2)|2
+ |θ̂2

m(ω1, ω2)|2 + |θ̂3
m(ω1, ω2)|2

= |θ̂0
m−1(ω1, ω2)|2

{
(|ĥ0(2m−1ω1)|2 + |ĝ0(2m−1ω1)|2)

× (|ĥ0(2m−1ω2)|2 + |ĝ0(2m−1ω2)|2)
}

.

(22)

For wavelet filters, we may have

|ĥ0(ω)|2 + |ĝ0(ω)|2 = C, ∀ω ∈ [−π, π] (23)

where C is a constant. This condition holds for many wavelet
filters, e.g., for the commonly used conjugate mirror filters,
we have C = 2. Substituting it into (22), we obtain

|θ̂0
m−1(ω1, ω2)|2 =

1
C2

{
|θ̂0

m(ω1, ω2)|2 + |θ̂1
m(ω1, ω2)|2

+ |θ̂2
m(ω1, ω2)|2 + |θ̂3

m(ω1, ω2)|2
}

.
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By integrating both sides of the above equation and then
applying the Parseval’s theorem, we can approach the two-
scale signal energy relationship.
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