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New Fast Algorithm for Modulated Complex Lapped
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Abstract—A novel algorithm for fast computation of the mod-
ulated complex lapped transform (MCLT) with sine windowing
function is presented. For the MCLT of length-2M input data
sequence, the proposed algorithm is based on computing a
length-2 M type-II generalized discrete Hartley transform. Com-
parison with existing algorithms shows that the proposed method
achieves the minimal number of arithmetic operations.

Index Terms—Audio processing, discrete Hartley transform, fast
algorithm, lapped transform.

1. INTRODUCTION

HE modulated complex lapped transform (MCLT) is a co-
T sine-modulated filter bank that maps overlapping blocks
of a real-valued signal into complex-valued blocks of transform
coefficients [1]. The MCLT is a complex extension of the mod-
ulated lapped transform (MLT) introduced by Malvar [2], and
the latter transform is equivalent to the modified discrete cosine
transform (MDCT) introduced in [3]. The real part of the MCLT
corresponds to the MLT of the same signal, and the imaginary
part carries phase information. Thus, the MCLT can be used in
applications where the magnitude-phase decomposition is re-
quired, as well as interfacing to coding systems such as in audio
watermarking [4] and identification [5]. The advantage of the
MCLT over the discrete Fourier transform (DFT) filter banks is
that the reconstruction formula of MCLT is not unique, so that it
allows more flexible implementation of audio enhancement and
encoding system.

Several fast algorithms for computing the MCLT have been
reported in the literature. Malvar [1] suggested an efficient way
for calculating the MCLT in which the cosine component is eval-
uated via an MLT algorithm based on the type-IV discrete cosine
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transform (DCT-IV), and the sine component via a slightly mod-
ified MLT algorithm based on the type-IV discrete sine trans-
form. Malvar subsequently proposed a fast MCLT algorithm of
sequence length-2M via the computation of length-2M DFT
[6]. The DFT-based algorithm not only reduces the computa-
tional complexity compared to the algorithm presented in [1]
but also does not require data shuffling. Dai and Chen [7] de-
veloped a DCT-based algorithm for the efficient computation
of the MCLT, and their algorithm is applicable to any symmet-
rical windowing function. For a sine window, Dai’s algorithm
requires slightly more number of arithmetic operations than that
of the algorithm reported in [6]. The DCT-based algorithm was
further improved by the same authors [8]. Other MCLT algo-
rithm for purpose of hardware implementation was proposed by
Tai and Jing [9].

In this letter, we propose a new algorithm for computing
the MCLT with sine windowing function. The algorithm is
based on the type-II generalized discrete Hartley transform
(GDHT-II) introduced by Hu et al. [10], which is equivalent to
the generalized discrete W transform introduced in [11]. For
an MCLT of length-2M input data sequence, both real and
imaginary parts of the MCLT coefficients are calculated via a
length-2M GDHT-II. Compared to previous algorithms, the
proposed one achieves the lowest computational complexity.

II. DEFINITION AND NEW FAST ALGORITHM

The MCLT of length-2M real input data sequence {z(n)},
n=20,1,...,2M — 1 is defined by [1]
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where p(n, k) is the analysis basis function defined by p(n, k) =
pe(n, k) — jps(n, k) with j = /-1 and
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Here h(n) is the windowing function. A common choice of h(n)
is the symmetrical sine windowing function given by
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Equation (1) can be rewritten as



where X.(k) and X,(k) are, respectively, the real part and
imaginary part of X (k), defined by
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Xs(k) = x(n)ps(n, k), k=0,1,...,M —1. (5b)
n=0

The backward MCLT can be calculated via the following re-
construction formula [1]:
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where the coefficients . and s are chosen as 3. + 85 = 1.

We now propose a new fast algorithm for computing the
MCLT coefficients X (k) given by (4). From (2a) and (2b), it
can be easily verified that

pe(n,2M —1—k) =(— )M+1p6(n k) (7a)
ps(n,2M — 1 — k) = (=1)" py(n, k)
k=0,1,....M—1.  (7b)
So that
X.(2M —1 - k) = (=1)M X (k) (8a)
X, (2M —1 - k) =(-1)M X, (k)
k=0,1,...,M -1 (8b)

The above equations imply that X.(k) and X (k) satisfy even
antisymmetry and symmetry property, respectively, depending
on the parity of M. Therefore, the computation of X.(k) and
X (k) for k = .,M — 1 can be done by computing
either the even-indexed or odd-indexed coefficients X (k) for
k varying from 0 to 2M — 1. We choose here the even-indexed
coefficients, and (2a) becomes

pe(n, 2k) = \/7 h(n) cos [4M(2n + 14 M)k + 1)]
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where casf = cosf + siné.

The above derivation is similar to one result reported in [12]
where the authors have established a relationship between the
MDCT and GDHT-IV. For the windowing function h(n) de-
fined by (3), applying the trigonometric property
(10)
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it can be easily verified that
Z(2M — k)= -Y(k), k=0,1,...,2M — 1. (15)

Substituting (11) and (12) into (5a) and (5b), and using
(13)—(15), we obtain

X.(2k) = (?gc [V (2k) — Y (2k + 1)] (16a)
X, (2k) = (}12)’“ [Z(2k + 1) — Z(2k)]
_ (?[12)’“ [V (2M — 2k) — Y(2M — 2k — 1)] (16b)

fork =0,1,...,M — 1. Notice that Y (2M) = —Y(0).

It is worth noting that Y (k) defined by (13) is a normalized
length-2M/ GDHT-II of the input data sequence z(n);thus, it
can be computed via FHT algorithm. When the values of Y (k),
k =0,1,...,2M — 1 are available, the real part and imagi-
nary part of MCLT coefficients, X.(2k) and X(2k), for k =
0,1,...,M — 1, can be easily obtained from (16a) and (16b).
Once the even-indexed coefficients are obtained, the odd-in-
dexed coefficients can be deduced from the symmetry property
(8a) and (8b). The flowgraph realizing the proposed algorithm
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Fig. 1. Fowgraph of the proposed algorithm for even value of M. Solid lines
denote unity transfer factor, and dot lines denote transfer factor —1. e denotes
adder.

is shown in Fig. 1. The flowgraph for the corresponding back-
ward MCLT can be easily inferred from this figure.

The above discussion shows that the computational com-
plexity of the proposed algorithm is that of a length-2M
GDHT-II, plus the arithmetic operations in (16a) and
(16b). Since many FHT algorithms are available [13],
[14], they can be used to improve the computational ef-
ficiency. For M being a power of two, using the algo-
rithm reported in [14], the length-2M GDHT-II requires
(4/3)Mloga M — (8/9)M — (10/9)(—1)'&2M multiplica-
tions and (8/3)Mlog, M + (8/9)M + (10/9)(—1)ke=M
additions where the butterfly computations are implemented by
four multiplications and two additions (4mult-2add scheme).
Because the implementation of the butterfly computation
can also be realized with three multiplications and three
additions (3mult-3add scheme), in such a case, Bi’s al-
gorithm for computing the length-2M GDHT-II needs
Mlogy M — (1/3)M — (2/3)(—1)'"°82 ™ multiplications and
3Mlogy M + (1/3)M + (2/3)(—1)"82M additions. Besides
the FHT, we need to perform 2 M additions involved in (16a) and
(16b). Because the factor 1/ /2 can be either absorbed into the
scaling stage of GDHT or into the quantization stage in coding
application, no multiplication is required in (16a) and (16b).
Thus, the total number of arithmetic operations of the proposed
method is (8/3)M logy, M + (26/9)M + (10/9)(—1)82M
additions and (4/3)M logy, M — (8/9)M — (10/9)(—1)%s2M
multiplications if the 4mult-2add scheme is considered, and
3Mloga M + (7/3)M + (2/3)(—1)"82M additions and
M logy M — (1/3)M — (2/3)(—1)"°82 M multiplications if the
3mult-3add scheme is applied. For the case where M is not a
power of two, the length-2M/ GDHT-II can be calculated via
the fast algorithms reported in [13]-[15].

The comparison of the proposed algorithm with other algo-
rithms in terms of the computational complexity for M being
a power of two is listed in Table I. It can be seen from this
table that for the common sine windowing function, our algo-
rithm requires not only the least number of multiplications if
the 3mult-3add scheme is used for implementing the butterfly
computation but also the least number of additions among all
the existing MCLT algorithms. In the algorithms reported in [7]
and [8], the authors converted the real part and imaginary part
of the 2M -point MCLT coefficients into two M -point DCT-II
coefficients by absorbing the sine windowing function into the

TABLE I
COMPUTATIONAL COMPLEXITY OF SEVERAL FAST MCLT ALGORITHMS FOR
BLOCK SIZE BEING A POWER OF TWO (x MEANS THAT THE 4MULT-2ADD
SCHEME IS USED, AND ** MEANS THAT THE 3MULT-3ADD SCHEME IS

CONSIDERED)
Windowing
Algorithm| function Number of multiplications Number of additions
choice
Ref. [1] any Mlog,M +4M 3Mlog,M +2M
Ref. [6] sine Mlog,M +M 3M logoM +3M=2
symmetrica
Mlog,M +3M
Ref. [7] 1 3M log,M +4M
sine MlogoM +M
any Mlog,M +2M
Ref. [8] 3M log>M +4M
sine Mlog,M
Ref. [9] any 2M log,M +3M+2 6M log,M +3M+4
4 1 . 8 26 10 .
CLD VISR VR VLS P VA T Ve VL
3 9 9 3 - 9 9
Proposed sine
sk 1 2 log, M sk 7 2 log, M
Mlog, M ——M ——(-1) 3Mlog, M +—-M +§(—l)
3 3 3

kernel function of DCT-IV. In our algorithm, we have converted
the real part and imaginary part of the 2M -point MCLT coef-
ficients into the computation of a 2M -point GDHT-II coeffi-
cients by absorbing the sine windowing function into the kernel
function of GDHT-IV. It should be pointed out that the algo-
rithms presented in [7] and [8] can be applied, respectively, to
the symmetrical windowing function and any windowing func-
tion. However, our algorithm seems only to support the sine win-
dowing function.

III. CONCLUSION

In this letter, a new algorithm for the efficient computation
of the MCLT with sine windowing function is presented. For
an MCLT of length-2M input data sequence, both the real part
and imaginary part of the MCLT coefficients can be obtained
from the length-2M GDHT-II coefficients of the same signal.
The proposed algorithm achieves the least number of real mul-
tiplications and the least total number of arithmetic operations,
compared to previous algorithms, with saving on the order of
5%. Moreover, the proposed method has regular structure, so it
can be useful for both software and hardware implementations.
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