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Abstract

In diseases caused by a deleterious gene mutation, knowledge of age-specific cumulative

risks is necessary for medical management of mutation carriers. When pedigrees are

ascertained through at least one affected individual, ascertainment bias can be corrected

by using a parametric method such as the Proband’s phenotype Exclusion Likelihood,

or PEL, that uses a survival analysis approach based on the Weibull model. This paper

proposes a non parametric method for penetrance function estimation that corrects for

ascertainment on at least one affected: the Index Discarding EuclideAn Likelihood or

IDEAL. IDEAL is compared with PEL, using family samples simulated from a Weibull

distribution and under alternative models. We show that, under Weibull assumption and

asymptotic conditions, IDEAL and PEL both provide unbiased risk estimates. However,

when the true risk function deviates from a Weibull distribution, we show that the PEL

might provide biased estimates while IDEAL remains unbiased.

Key Words: Risk estimation, ascertainment bias, non parametric method
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Introduction

In monogenic diseases with variable age of onset a precise estimation of the cumulative risk of

being affected by a given age (called the penetrance function) for mutation carriers is important

both to understand the underlying mechanisms of the diseases and for prevention strategies.

The only data available to estimate the penetrance function are families selected through af-

fected individuals. If the ascertainment process is not taken into account in the estimation, the

penetrance function is likely to be biased. Different adjustments for ascertainment have been

proposed to provide valid risk estimates of a genetic disease [Carayol and Bonaiti-Pellie 2004;

Le Bihan, et al. 1995].

Selection schemes usually depend on the disease characteristics. In this paper, we focus on

samples of family selected through at least one affected individual (i.e. unselected for family

history). For genetic diseases in which all affected individuals are carriers of the predisposing

mutations, this selection is sufficient to provide informative data on the penetrance function.

But in common diseases in which only a minority of cases is due to the rare mutation (referred

to as monogenic sub-entities), an age criterion has to be introduced to increase the probability

that the cases sampled are mutation carriers [Bonadona, et al. 2005; Dunlop, et al. 1997].

When families are selected through at least one affected, two methods taking into account

the ascertainment bias have been proposed to estimate the penetrance function: the Proband’s

phenotype Exclusion Likelihood (or PEL) [alarcon, et al. 2008] and the Prospective likelihood

[Kraft and Thomas 2000; Le Bihan, et al. 1995; Plante-Bordeneuve, et al. 2003]. Both

are maximum likelihood methods implementing survival analysis. The Prospective likelihood

corrects for the ascertainment with an analytical expression of the ascertainment probability
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while PEL is a more intuitive method that corrects for the ascertainment by simply removing

the individual (the proband) who allowed his family to be selected. It has been shown for various

genetic models and selection schemes that PEL is practically unbiased while the Prospective

method is biased in several situations, see [alarcon, et al. 2008]. However, the penetrance

function implemented in the method is modeled with a Weibull distribution. Although this

model is widely used in survival analysis because of its capacity to adjust to observed data,

the assumption of a Weibull distribution for the penetrance can be a tricky limitation in some

applications. A strategy to relax the constraints of the Weibull model is to extend it by

adding new parameters. The model is then more general and can fit more situations. But, the

complexity of the estimation procedure increases dramatically with the number of parameters

(“the curse of dimensionality”) and may turn to be intractable.

In this paper, we propose a non parametric method for penetrance function estimation,

correcting for the ascertainment bias: the Index Discarding EuclideAn Likelihood (IDEAL).

The method is applicable for all selection criteria and disease models with at least one affected.

Instead of building a likelihood based on the Weibull model, we use a non parametric likelihood

that does not assume any parametric family for the distribution. We use the Euclidean Likeli-

hood, a fast version of Owen’s Empirical Likelihood [Owen 2001]. To the best of our knowledge,

this paper is the first attempt to estimate a penetrance function by means of this approach.

The paper is organized as follows: we first introduce the two estimation methods, PEL and

IDEAL. Then, simulations corresponding to real situations are presented under various risk

models and various selection patterns. Both methods are applied on data simulated from a

Weibull distribution as well as from other distributions (Uniform and Cauchy).
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Methods

This section introduces the two estimations methods. First, PEL is briefly presented and then

IDEAL is precisely defined. Finally, the simulation processes are explained and the different

selection schemes are described.

The Proband’s phenotype Exclusion Likelihood

PEL [alarcon, et al. 2008] is an estimation method based on Maximum Likelihood (ML) using

a survival analysis approach and correcting for ascertainment bias when families are selected

through at least one affected individual. It estimates the penetrance function by using the

phenotypic information from family members, genotyped or not, conditionally on observed

genotypes. For an individual i of family f , the phenotype is denoted Pi,f and the genotype

Gi,f . Pi,f = 1 (respectively Gi,f = 1) if i is affected (resp. carrier) and Pi,f = 0 (resp. Gi,f = 0)

if i is not affected (resp. not carrier). The penetrance function F (t) of a carrier i at age t is

modeled using an extended Weibull function [Plante-Bordeneuve, et al. 2003] and is therefore

given by:

F (t) = (1 − κ)[1 − exp(−λ(t − δ)α)],

where κ, λ and α are the parameters of the model estimated by ML using the maximization pro-

cedure implemented in the program GEMINI [Lalouel 1979]. To avoid an over-parametrization,

the parameter δ is not estimated but fixed on the basis of previous knowledge on the age dis-

tribution of the disease. The parameters κ and δ extend the classical Weibull model given by

the simpler form F (t) = 1 − exp(−λtα) (κ is the fraction of individuals that would never be

affected and δ is the age before which the probability of being affected is equal to zero).
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The principle of PEL, based on the Weinberg Proband Method in segregation analysis

[Weinberg 1912], is to correct for ascertainment by ignoring the proband’s phenotype and by

duplicating families that contain several probands. Briefly, PEL can be written as follows:

PEL(κ, λ, α) =
∏
f

PELf =
∏
f

P(P ∗
f |Gf,obs)

where P(X) denotes the probability of X under the Weibull model, P ∗
f is the phenotypic vector

of the family f in which the phenotype of the proband is set as unknown and Gf,obs is the

vector of the observed genotypes for the family f . When there is more than one proband in

the family, the family is duplicated as many times as there are probands and the phenotype of

each proband, referred to as the index, is set as unknown alternately.

IDEAL

In this paper, we propose to consider a non parametric approach based on Empirical likelihood

to estimate the penetrance function, the Index Discarding EuclideAn Likelihood (IDEAL).

Like PEL, IDEAL corrects for the ascertainment by using the discarding method described by

Weinberg [Crow 1965; Weinber 1912]. In addition, IDEAL provides confidence bands for the

penetrance function F , i.e. two functions that bind the penetrance a each age t with a given

probability.

In this subsection, we first present Empirical Likelihood and its Euclidean version for a cu-

mulative function. Then, we show how to apply this method to the estimation of the penetrance

function and we present the modifications introduced to correct for ascertainment. Finally, we

describe the construction of confidence bands for the penetrance function.
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Empirical likelihood

We present here the Empirical Likelihood method for the estimation of a cumulative distribution

function. A more complete exposition of this method and its numerous applications can be

found in Owen’s book [Owen 2001]. This method has been designed to avoid the choice of a

model for the distribution. It can be applied as soon as the true value θ0 of the parameter of

interest is defined as the solution of an estimating equation: for some random variable X and

some function m, E[m(X, θ0)] = 0, where E[.] stands for the expectation. This means that,

according to the observations X1, . . . , Xn , in order to estimate θ0, one looks for a value of θ

such as the sample of the m(Xi, θ)’s has zero-mean:

1

n

n∑
i=1

m(Xi, θ) = 0.

The problem of the estimation of the cumulative distribution function F can be formulated

in this context as follows: for any t > 0,

E[m(X, θ0)] = E[1lA≤t − F (t)] = 0,

with correspondence θ0 = F (t), X = (A, G, P, P b), m(x, y) = 1lx≤t − y and where 1lx≤t is the

indicator function of the event x ≤ t. In the following, θ0 is F (t) and θ stands for a potential

value of θ0. X resumes the information of an individual and contains the age at onset of the

disease A, the genotype G, the phenotype P and the fact that the individual is either a proband

or not Pb (Pb = 1 if the individual is a proband and 0 else).

Empirical Likelihood is built by means of the multinomial distributions on the sample
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X1, . . . , Xn:

Q(x) =




qi if ∃i, x = Xi,

0 otherwise

with 0 < qi < 1 and
∑

qi = 1.

This lead to Empirical Likelihood (Owen, 2001):

EL(θ, t) = sup
Q

{
n∏

i=1

Q(Xi)

∣∣∣∣∣EQ[1lA≤t − θ] = 0

}

= sup
(q1,...,qn)

{
n∏

i=1

qi

∣∣∣∣∣
n∑

i=1

qi(1lAi≤t − θ) = 0,

n∑
i=1

qi = 1

}
.

The estimator is given by θ̂ = argmaxθ{EL(θ, t)} and is an asymptotically normal estimator

of θ0 whatever the distribution of the data. This is the main property of this non parametric

method: it is not necessary to suppose that the distribution belongs to a given parametric

family (not even the multinomial family).

It is interesting to note that the Kullback discrepancy K appears in the expression of the

log-likelihood ratio corresponding to EL:

−2 log

(
EL(θ, t)

EL(θ̂, t)

)
= −2 log

(
EL(θ, t)

supθ {EL(θ, t)}
)

= −2 log

(
supQ {∏n

i=1 Q(Xi)|EQ[1lAi≤t − θ] = 0}
supθ, Q {∏n

i=1 Q(Xi)|EQ[1lAi≤t − θ] = 0}
)

= 2n inf
Q

{K(Q, Pn)|EQ[1lA≤t − θ] = 0} .

where K(Q, Pn) = − ∫ log
(

dQ

dPn

)
dPn, and Pn is the multinomial maximizing the likelihood:

Pn(x) =




1

n
if ∃i, x = Xi,

0 otherwise.
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Thus, the Empirical Likelihood method consists in minimizing the Kullback discrepancy be-

tween Q and Pn. Nevertheless, other choices of discrepancy can be used: the Hellinger distance,

the Relative Entropy and the Euclidean distance are the more common, but the method can

be generalized way beyond (see [Bertail, et al. 2004]). We propose here to use the Euclidean

distance (denoted χ2) instead of the Kullback discrepancy in the expression of the log-likelihood

ratio because it leads to a closed form for the likelihood that strongly reduces the computational

time.

Euclidean Likelihood

The statistic corresponding to the Euclidean distance, that we refer to as the EAL, is then:

EAL(θ, t) = 2n inf
Q

{
χ2(Q, Pn)

∣∣EQ[1lA≤t − θ] = 0
}

= 2n inf
Q

{∫ (
dQ

dPn
− 1

)2

dPn

∣∣∣∣∣EQ[1lA≤t − θ] = 0

}
.

As for EL(θ, t), maximizing EAL(θ, t) in θ gives an asymptotically normal estimator of θ0.

Estimation of penetrance

In the context of penetrance estimation, specific modifications of the Euclidian likelihood in the

reference probability measure Pn are necessary. Hereafter, W stands for the modified versions

of the reference measure.

In order to estimate the value of the penetrance at an age t, one should consider only the

population of carriers aged of t or more years. Therefore, at any fixed t, the individual i is

considered only if Gi = 1 (i.e. if i is affected) and if the current age Yi of i is bigger than t.
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The technical effect of this remark is that the reference measure varies as a function of t:

W(x) =




1

n
if ∃i, x = Xi, Gi = 1 and Yi ≥ t,

0 otherwise.

For unaffected individuals i, the age at onset Ai does not exists. From a mathematical

point of view, the available information is that Ai is bigger than the current age Yi. Therefore,

it is technically convenient to set Ai = +∞. For large values of t, the proportion of such Ai

corresponds to the κ of the extended Weibull model [alarcon, et al. 2008], i.e. the proportion

of individuals that will never be affected.

Ascertainment correction

Because of the ascertainment scheme, the sample is currently biased with an excess of affected

individuals and θ0 = F (t) does not verify the estimating equation: EP0 [1lA≤t − θ0] �= 0, where

P0 is the distribution generating the observed (biased) data. We propose a method related

to Weinberg’s that consists in correcting for the ascertainment bias by underweighting the

probands: if a family contains k potential probands, they should be weighted by 1 − 1
k
, see

Appendix . Under this modified distribution the estimating equation E[1lA≤t − θ0] = 0 can be

used and leads to a non biased estimate of θ0. Therefore, we apply this modification to our

reference measure W:

W(x) =




1

n
if ∃i, x = Xi, P bi = 0, Gi = 1 and Yi ≥ t,

1

n

(
1 − 1

k

)
if ∃i, x = Xi, P bi = 1, Gi = 1 and Yi ≥ t,

0 otherwise.
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Confidence bands

A very strong property of Empirical Likelihood and related method is that it provides confidence

bands for the cumulative distribution function (CDF), see [Owen 2001], chapter 7. This means

that for any given level, for example 95%, we can give two CDF G et H such as with probability

95% and for all t > 0,

G(t) ≤ F (t) ≤ H(t).

This is stronger than a sequence of confidence intervals (CIs) given t by t: with probability

95% the function F remains between G and H for all t. The sequence of CIs is local (given t

by t), whereas the confidence band is global (valid for all t):

sequence of CIs ∀t > 0, P
(
G(t) ≤ F (t) ≤ H(t)

)
= 95%,

confidence band P
(∀t > 0, G(t) ≤ F (t) ≤ H(t)

)
= 95%.

An additional enjoyable property is that the confidence band is not asymptotic: it is actually

reached at the current value of the sample size n. G and H are defined as follows:

G(t) = min {θ|IDEAL(θ, t) ≤ cn}

H(t) = max {θ|IDEAL(θ, t) ≤ cn}

where critical values of cn are tabulated, see [Owen 2001], page 159. For a confidence level of

95% and n ≤ 1000, cn writes:

n ≤ 100 cn = 3.0123 + 0.4835 log(n) − 0.00957 log(n)2 − 0.001488 log(n)3,

100 < n ≤ 1000 cn = 3.0806 + 0.4894 log(n) − 0.02086 log(n)2.
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Simulation

IDEAL was compared to PEL by simulating family samples under various situations. We

chose a simulation process in which the family size and structure are fixed (see Figure 1). To

ensure asymptotic conditions, sample size was fixed to 5 000 families and therefore to 90 000

individuals.

A genotype was randomly assigned to the pedigree founders with a frequency of 10% for

the mutated allele. This value was chosen in order to limit the computational time. For the

other family members, genotypes are randomly assigned using Mendel’s laws. The frequency

of de novo mutation was set to 0 and we restricted to the case where all genotypes are known.

We used French demographic data to simulate the ages of the individuals. For non carriers, we

considered either a risk of 0% for monogenic diseases (MD) or a cumulative risk of 10% at 80

years for complex diseases with monogenic sub-entities (CDMS) where only a fraction of cases

are due to a mutation.

First, to compare IDEAL with PEL under a Weibull model, phenotypes were simulated

with an age-dependent function, based on the Weibull model corresponding to a cumulative

risk of 50% by age 80 for carriers. Secondly, to enlighten the difference between the parametric

method (PEL) and our non parametric method (IDEAL), phenotypes were simulated with

an age-dependent function not based on the Weibull model but respectively on an Uniform

distribution and on a Cauchy distribution. These distributions have been chosen for their

substantial difference with the Weibull model.

As in [alarcon, et al. 2008], in order to model a realistic selection process, we defined a

period length T to select the probands : only individuals affected during the last T years could
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be selected, and this with a probability ps. We considered two different period lengths : a

period of 20 years (T = 20) and a period of 1 year (T = 1). The probability ps was introduced

to simulate the fact that, in real situations, some individuals affected during the study are not

detected and therefore do not become probands. A family was included in the sample as soon

as one of its member was a proband. Under the CDMS model, we introduced an age criterion

for selection (35 years) to increase the probability of detecting families with mutation carriers

[Claus, et al. 1990].

Results

We studied the behavior of IDEAL in two extreme situations. First, we considered the case of

a low ascertainment probability for affected by simulating a CDMS model with an age criterion

of 35 years for the selection as described above, a probability ps = 0.5 and a period T = 1

in the selection process. Then, we considered the case of a high ascertainment probability for

affected by simulating a MD model with a probability ps = 1 and a period T = 20 in the

selection process. To ensure asymptotic conditions, sample size were fixed to 5 000 families

after selection and we considered the case where all genotypes are known. It has already been

shown in [alarcon, et al. 2008] that PEL is practically unbiased in these two situations when

the penetrance function belongs to the Weibull family. Then, we compared IDEAL with PEL

when the Weibull assumption fails. Finally, we study the robustness of the two methods to

sample size by analyzing a Weibull distributed sample of 200 families after selection.
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Behavior of IDEAL under a Weibull model

Figure 2 shows estimation by IDEAL in the case of a low ascertainment probability. IDEAL

is unbiased, the true penetrance (curve with stars) and the estimated penetrance by IDEAL

(dotted curve) are superposed. The plain curves represent the confidence band.

The case of high ascertainment probability is shown in Figure 3. As in Figure 2, IDEAL is

unbiased and the estimated penetrance is indistinguishable from the true penetrance. The PEL

estimator being also superposed with the true penetrance, it is not represented on Figures 2

and 3.

For both figures, the confidence bands are quite thin and contain the true penetrance at all

t, as expected.

Comparison of IDEAL and PEL under Uniform and Cauchy models

Results are only presented in the case of a CDMS model, with an age criterion of 35 for

the selection, with ps = 0.5 and T = 20 for the selection. All other cases we considered in

preliminary investigations lead to similar results.

Figure 4 shows that PEL does not fit the curve while IDEAL is perfectly unbiased (the

estimate with IDEAL is indistinguishable from the true penetrance). Figure 5 shows estimations

with the same previous parameters for the selection, when penetrance is simulated under a

Cauchy distribution (with parameter 5). We can see again that IDEAL is perfectly unbiased

while PEL has a non negligible bias.
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Sensitivity of the two methods to the sample size

We compare in this paragraph the two methods when the penetrance function belongs to the

Weibull family, for a realistic sample size of 200 families. We only report here the case of a

MD model with probability ps = 1 and with period T = 20 in the selection process, but the

CDMS model leads to the same results. Figure 6 shows that PEL is less biased than IDEAL

when asymptotic conditions failed. IDEAL remains unbiased for low ages but the method is

biased for high ages. Moreover, PEL’s confidence intervals are smaller than IDEAL’s confidence

bands.

Discussion

In this paper, we have proposed an estimation method (IDEAL) that adapts to the penetrance

function model and that corrects for the ascertainment bias when families are ascertained

through at least one affected. We have compared this method with a parametric method

(PEL) also designed to take into account the ascertainment bias. First, we have shown that

IDEAL corrects for the ascertainment bias and that it leads to unbiased estimates. Then, we

have shown through simulations on large samples, that IDEAL performs as well as PEL when

the true penetrance is Weibull distributed and significantly better when this assumption fails.

This adaptability of IDEAL allows to estimate penetrance functions in new contexts without

risking a bias due to a model misspecification.

In the simulation part, we have only reported results for the theoretical situations where all

genotypes are known. Unknown genotypes can easily be taken into account in IDEAL method

by means of weighting. For example, we can estimate a probability pi of mutation for each
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individual from the known genotypes of the family and use pi

n
as a reference instead of 1

n
.

An other important situation considered in this paper is the behavior for a small number

of families. In this case, the parametric framework (i.e. the extended Weibull model) is useful

to complete the lack of information by forcing the shape of the distribution and PEL provides

better results than IDEAL particularly for high ages. But this means that the assumption

that the penetrance belong to a given model is then overriding, when the model holds. The

performances of the estimators are then even more dependent of the validity of the model.

A additional feature of IDEAL is that it gives confidence bands directly on the penetrance

function F (t), instead of a confidence interval for a parameter derivated from a model. Simula-

tion results show that the width of this confidence band increases with t. This can be explained

by the fact that only individuals of age larger than t are considered to estimate the penetrance

at t. The population considered is therefore decreasing with t. Thus, the confidence band

informs on the precision of the estimator of the penetrance in function of t.

As a last point, it can be remarked that in the literature, the penetrance function is usually

modeled using a parametric survival analysis approach. But in practice, the real distribution

is not known and, in the best of our knowledge, the used models have never been validated.

Thus, it would be interesting to use IDEAL as a validation method for parametric models;

First estimate the penetrance curve both with IDEAL and with a parametric method and then

confront the two estimators. If the difference is too important, the parametric model can be

questioned. Moreover, when considering a new disease, information on the penetrance structure

is unlikely available. The most natural approach is then to consider directly a non parametric

method like IDEAL. The resulting estimations can be used to motivate the use of a parametric

family like the Weibull.
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Appendix: Index discarding

Weinberg proposes in [Weinberg 1912] a method to correct for the ascertainment based on dis-

carding the probands: for a family with k probands, the family is replicated k times and each

time a different proband is discarded. Crow has shown the validity of this method in [Crow

1965]. This procedure as been designed to estimate the segregation ratio and can straightfor-

wardly transpose in our context of penetrance estimation. The important result is that θ, the

penetrance at time t, is given by the ratio of the statistical mean of the number of affected indi-

viduals in a ascertained and replicated family by the statistical mean of the number of carriers

individuals in a ascertained and replicated family. In the following Pi and Gi are respectively

the phenotype and the genotype of the individual i.

θ =

E

[
r∑

i=1

k1lPi=11lPbi=0 +

r∑
i=1

(k − 1)1lPi=11lPbi=1

]

E

[
r∑

i=1

k1lGi=11lPbi=0 +
r∑

i=1

(k − 1)1lGi=11lPbi=1

]

where r is the length of the family, k the number of probands and Pbi = 1 if i is a proband.

This can be rewritten:

E

[
r∑

i=1

(1lPi=1 − θ1lGi=1) (k1lPbi=0 + (k − 1)1lPbi=1)

]
= 0.

Dividing by k, we get:

E

[
r∑

i=1

(1lPi=1 − θ1lGi=1)

(
1lPbi=0 +

(
1 − 1

k

)
1lPbi=1

)]
= 0.
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Therefore, if we set W0 as follows:

W0(x) =




1 if i is not a proband and , x = Xi,

1 − 1

k
if i is a proband,

0 otherwise.

then θ is given as the solution of

EW0

[
r∑

i=1

(1lPi=1 − θ1lGi=1)

]
= 0.

W0 has mass r − 1 and must be normalized to be a probability measure. Our reference

measure W,

W(x) =




1

n
if ∃i, x = Xi, P bi = 0, Gi = 1 and Yi ≥ t

1

n

(
1 − 1

k

)
if ∃i, x = Xi, P bi = 1, Gi = 1 and Yi ≥ t,

0 otherwise.

converges (once normalized) to the normalized version of W0. Therefore, the estimate θ̂ given

as the solution of EW [
∑r

i=1 (1lPi=1 − θ1lGi=1)] = 0 converges to the parameter of interest θ. This

motivates the ascertainment correction used in IDEAL.

Now we show that the estimating equation can be rewritten as in our statement. First,

under W, Gi is constant and equals to 1 and can therefore be omitted. Secondly, for a fixed

t, the fact that the individual i as contracted the disease, i.e. Pi = 1, is equivalent that it

occurred before t, i.e. Ai ≤ t. Therefore:

EW

[
r∑

i=1

(1lPi=1 − θ1lGi=1)

]
= EW

[
r∑

i=1

(1lAi≤t − θ)

]
.
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Figure 1: Family structure.

Figure 2: Simulation in case of a low ascertainment probability

Figure 3: Simulation in case of a high ascertainment probability

Figure 4: Comparison of PEL and IDEAL under a Uniform distribution, in case of a CDMS

model with an age criterion of 35 for the selection, ps = 0.5 and T = 20 for the selection.

Figure 5: Comparison of PEL and IDEAL under a Cauchy distribution with parameter 5, in

case of a CDMS model with an age criterion of 35 for the selection, ps = 0.5 and T = 20 for

the selection.

Figure 6: Simulation in case of a MD model
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