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ABSTRACT 

 

Mesenchyme to epithelium transitions are crucial to embryonic development. The 

early mouse embryo offers an excellent model to study epithelium formation as during the 

first three days of development two epithelia are formed, the Trophectoderm (TE) and the 

Primitive Endoderm (PrE). We have previously shown that PrE cells are determined within 

the blastocyst ICM long before epithelium formation. In this work, we isolated Lrp2 as a 

novel PrE precursor (pre-PrE) marker by using a microarray strategy that combines a 

transcriptome analysis of three stem cell lines and early embryos. A detailed expression 

analysis shows that Lrp2 expression is induced in late E3.5 embryos indicating that pre-PrE 

cells are progressively maturing prior to polarization into an epithelium. Furthermore, the 

subcellular location of Lrp2, Disabled-2 (Dab2) and Collagen-IV shows that the epithelial 

structure is acquired in individual cells through successive steps. 

 

Key words : blastocyst, epithelium, cell differentiation, primitive endoderm, cell polarisation, 

microarray. 
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INTRODUCTION 

 

During embryonic development, cells are subjected to dynamic changes in their 

morphology, position and interactions with their environment. In particular, the transition 

between two different cell states, mesenchymal and epithelial, is fundamental to 

organogenesis. In early mouse development, two distinct epithelia, the trophectoderm (TE) 

and the primitive endoderm (PrE) have differentiated by the embryonic day 4.5 (E4.5) 

whereas the epiblast (Epi) remains as a mass of undifferentiated cells (Yamanaka et al., 

2006). TE and PrE are extraembryonic tissues that are required for nutrient exchange and 

have also been shown to play important roles in the induction of the antero-posterior axis 

(Ang and Constam, 2004; Rossant and Tam, 2004). The mechanism of epithelium formation 

is different in the formation of the TE and PrE (Johnson and McConnell, 2004; Yamanaka et 

al., 2006). After fertilization, all blastomeres of the developing embryo are equipotent until 

the 8-cell stage when compaction occurs. During this process, the cells polarize by 

maximizing their contacts through E-cadherin binding, producing the first proto-epithelium of 

development. During the subsequent two rounds of mitosis each cell either divides 

asymmetrically producing an inner and an outer cell or symmetrically producing two outer 

cells. Outer cells remain polarized and generate the TE epithelium with adherens and tight 

junctions. The etiology of PrE differentiation is not known but recent data has shown that PrE 

cells are already determined by the blastocyst stage (E3.5) (Chazaud et al., 2006). However at 

this early stage PrE precursor (pre-PrE) cells, expressing the PrE marker Gata6, have not 

formed an epithelium but are scattered throughout the inner cell mass, intermingled with other 

cells of the future Epi expressing Nanog. Lineage tracing experiments have shown that 

individual cells of the ICM contribute only to the Epi or PrE, suggesting that between E3.5 

and E4.5 pre-PrE cells move toward the surface of the ICM to form the epithelium (Chazaud 
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et al., 2006). The mechanisms involved in these morphogenetic movements are currently 

unknown, but cell adhesion mechanisms are certainly implicated (Yamanaka et al., 2006). 

Low-density lipoprotein Receptor-related Proteins (Lrp) are transmembrane receptors 

that share homology with mammalian LDL-Receptor (Fisher and Howie, 2006; Nykjaer and 

Willnow, 2002). One Lrp family member, Lrp2, also known as gp330 or Megalin (Saito et al., 

1994) has been shown to be expressed during fetal development in the neuroepithelium 

(Assemat et al., 2005a) and the endodermal portion of the yolk sac (Assemat et al., 2005b; 

Drake et al., 2004; Maurer and Cooper, 2005; Yang et al., 2007). In adults, Lrp2 expression 

can be detected in various tissues but the protein is mainly found in absorptive epithelia, such 

as renal proximal tubutles, gallbladder or mammary epithelia (Fisher and Howie, 2006). 

Historically, Lrp family members were generally thought to only be involved in receptor-

mediated endocytosis. Newer research has shown Lrp2 to have a wide variety of ligands, such 

as lipoproteins, proteases and protease/inhibitor complexes, plasminogen and their activators, 

albumin and some drugs like Gentamycin (Christensen and Birn, 2002; Hussain et al., 1999). 

Analysis of Lrp2 mutant mice has highlighted an important role during embryo development 

(Willnow et al., 1996), implicating this receptor in the binding and regulation of morphogenic 

signaling pathways such as Sonic Hedgehog (Shh) and BMP4 (McCarthy et al., 2002; 

Spoelgen et al., 2005). 

Here we show that Lrp2 is an early marker of PrE differentiation. A microarray-based 

screen identified this gene and other members of this signaling pathway as potential PrE 

specific genes. Detailed expression analysis confirms that Lrp2 is expressed in pre-PrE cells 

as early as E3.5. Interestingly, the timing of expression as well as the changes in sub-cellular 

localization of Lrp2 highlights a progressive maturation of pre-PrE cells to finally form the 

PrE epithelium. 
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MATERIALS AND METHODS 

 

Embryo microarray 

Embryos from each stage were pooled and mRNA extracted with the Micro-Fast Track 

isolation kit (Invitrogen, 45-0036). Two independent pools (for two independent experiments) 

were made for each stage, in average 106 embryos at E2.5, 61 at E3.5, 47 at E4.5, 28 at E4.8, 

17 at E5.5 and 19 at E6.5 (see Fig.1A for stages description). SMART (Clontech) reverse 

transcription and PCR was adapted for each developmental stage to amplify cDNAs. To 

generate probes for array hybridization, 1 microgram of cDNA was labeled by incorporation 

of either Cy5 or Cy3-dCTP during random hexamer-primed primer extension in the presence 

of Klenow DNA polymerase (Roche) according to Livesey et al.(Livesey et al., 2000). Poly 

L-lysine coated slides spotted with probe sequences from the NIA mouse 15K cDNA library 

(Ko et al., 2000) were purchased from the University Health Network Microarray Centre 

(www.microarrays.ca). Labeled probes were hybridized according to Wigle et al. (Wigle et 

al., 2002). Slides were scanned with a Genepix Axon 4000 microarray scanner. Spot 

intensities were quantified and median back ground corrected with the supplied Genepix 

software and exported as tables. Duplicate samples were analyzed and probe spot intensities 

were averaged. Expression data was set as a log2 ratio of expression at E2.5. Data has been 

deposited at GEO under accession number (GSE8339). 

 

Stem cell microarray 

Stem cell microarray data on Affymetrix MGU74x2A chips was obtained from the GEO 

database (http://www.ncbi.nlm.nih.gov/geo/) for XEN cells (GDS1763), ES and TS cells 

(GSE3766). Cel files were downloaded and processed in GCOS ver1.4 software (Affymetrix). 
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Expression data of XEN cells were taken as ratios of ES and TS cells using GCOS ver1.4 

software (Affymetrix). 

 

Data mining 

TS, XEN and ES cell expression ratios were filtered to obtain XEN enriched genes based on 

the fold change call and expression call. A gene was considered enriched if it was called as 

present in both XEN cell data sets and had increased expression compared to both TS and ES 

cells. Data filtering was preformed in Microsoft Excel. 

 

Comparison of array platforms 

BLAST (Altschul et al., 1990) was used to reciprocally compare all of the NM, XM 

sequences represented on the Affymetrix MGU74v2A chip, as of March 2007, 

(http://www.affymetrix.com) with the ~15,000 probe sequences on the NIA mouse 15k chip, 

as of March 2007 (http://lgsun.grc.nia.nih.gov/). NM and XM FASTA formatted sequences 

were obtained from NCBI Genbank release 155. Reciprocal best matches were further filtered 

for only those with an e score of 1x10
-100

 or lower with a minimum of 98% identity. 

 

Embryos 

CD1 or ICR embryos were collected by flushing or dissecting the uterus. Noon of the vaginal 

plug was considered as E0.5. Embryos were collected according to Fig.1. Early E3.5 embryos 

were collected in the morning and correspond to expanding blastocyst with about v/v 

ICM/cavity. Late E3.75 embryos are expanded blastocysts collected 6 to 8 hours later 
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Semi quantitative RT-PCR 

PolyA+ RNA was extracted from about 50 pooled embryos from E2.5, E3.5 and E4.5 stages 

(Fig.1A) with the Micro-FastTrack kit (Invitrogen). RNA was subjected to first strand cDNA 

synthesis using SuperScript III reverse transcriptase (Invitrogen). Newly synthesized cDNA 

was amplified using the SMART protocol (Clontech). Products of amplification were used as 

matrices for gene-specific PCR.: Lrp2 forward 5'-CCTTGCCAAACCCTCTGAAAAT-3'; 

Lrp2 reverse 5'-CACAAGGTTTGCGGTGTCTTTA-3'; Lrpap1 forward 5'-

AACGCCCTCAATGAAGACAC-3'; Lrpap1 reverse 5'-TTCTGGTGGGAAATCTCCAG-3'; 

G3PDH forward 5'-ACCACAGTCCATGCCATCA-3'; G3PDH reverse 5'-

TCCACCACCCTGTTGCTGT-3'; Dab2 forward 5’-AAAGGACATTCCCAGTGACG-3’; 

Dab2 reverse 5’-GAGCGAGGACAGAGGTCAAC-3’. 

 

Fluorescent whole mount in situ hybridization 

Whole-mount fluorescent in situ hybridization was performed according to Chazaud et al 

(2006). Probes for Lrp2, Lrpap1 and Amn were obtained by RT-PCR as follows. PCR primers  

for Lrpap1: 5’-ATGGCGCCTCGAAGAGAGAGGGTCT-3’ and 5’-

CCAGTGGCAGGCAGGTTTATGTGAT-3’ (nucleotides 7 to 1391 sequence NM_013587). 

Lrp2, primers: 5’-CACCAGTGCCTCTGTGAAGA-3’ and 5’-

GTCAGCATCGTACGCTTTCA-3’ (nucleotides 1276 to 3069 of sequence NM_001081088). 

Amn primers:5’-GACGAGGACCTGACTGCTTT-3’ and 5’-

CCCGAATGGTAACAGCACTT-3’, (nucleotides 537 to 1613 of sequence NM_033603). 

 

Immunohistology 

Whole-mount immunostaining was carried out according to Chazaud and Rossant (Chazaud 

and Rossant, 2006).  
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Antibodies 

Antibodies were used as follows: goat anti-Megalin serum (1/10000, (Leheste et al., 2003); 

rabbit anti-Nanog (1/700, Cosmo Bio, Japan, RCAB0002P-F or 1/700, AbCam, ab21603), 

goat anti-Cubilin (1/200, Santa Cruz, sc-20607), mouse anti-Dab2 (1/400, BD Biosciences, 

610464), rabbit anti-collagen IV (1/200, (De Arcangelis et al., 1996)). Due to a strong cross-

reaction with Lrp2 antibody, zona-pellucida was removed from the embryos on Fig. 3 and 4. 

Nuclei were either stained with YOYO1 (Molecular Probes, 1/1000), Hoechst B-2883 

(Sigma, 1/10000) or Draq5 (Alexis Biochemicals, 1/5000).  

 

Microscope 

Pictures were taken with Olympus confocal microscope (FV300, 40X oil immersion-objective 

with NE 1.0) or with Zeiss confocal microscope LSM510 Meta 40x oil immersion-objective 

with NE 1.3). LSM510, Fluoview FV1000 and Photoshop softwares were used to visualize 

the data. All embryo images are individual laser confocal sections. 
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RESULTS  

 

Microarray analysis 

 Deposits of large microarray datasets afford an excellent opportunity for the data 

mining of candidate genes. Three stem cell lines, ES, TS and XEN, derived from the first 

three lineages of the blastocyst, the Epi, TE and PrE respectively, have been previously 

characterized by microarray analysis (Kunath et al., 2005). We reasoned that a comparison of 

the microarray data of all three of these stem cell lines should reveal a candidate list of genes 

enriched to the XEN cells and that as these were derived from the PrE, a subset may be 

expressed in vivo in the PrE. A list of 750 XEN enriched probe sets was generated by 

selecting probe sets with a present call in both XEN array data sets and with an increased 

expression relative to both TS and ES cells (See Experimental Procedures). This list included 

several known PrE genes such as Gata6, Dab2 and Sox17 (Chazaud et al., 2006; Kurimoto et 

al., 2006; Yang et al., 2002; Yasunaga et al., 2005) (Supplemental Table 1).  

To further filter this large set of genes, and to assess their potential expression in vivo in the 

PrE, we filtered these candidates against a microarray series of embryo development from 

E2.5 to E6.0 that we generated. The stages selected were (Fig.1A) : E2.5 (equipotent 

blastomeres), E3.5 (induction of PrE), E4.5 (morphological differentiation of PrE), E4.75 

(differentiation of extraembryonic ectoderm), E5.5 (visceral endoderm differentiation, 

induction of DVE/AVE) and E6.0 (mesendoderm induction). Data for each time point was 

collected in duplicates, normalized and averaged (see Experimental Procedures). Expression 

changes were set as a ratio of signal intensities relative to E2.5 (data not shown, full data set is 

available at GEO accession number GSE8339). We mapped between the two microarray 

platforms by means of reciprocal BLAST (See Experimental Procedures), which resulted in 

the selection of 608 probes on the embryo array (data not shown) corresponding to genes in 

our XEN candidate list. 
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As the cDNA arrays do not have a normalized binding affinity we could not justify 

excluding a gene based on the magnitude of its change and therefore consider only its vector 

value as positive or negative relative to E2.5 before the differentiation of the PrE (Fig.1A). As 

previously shown (Chazaud et al., 2006) at E3.5 the pre-PrE cells are already determined and 

mixed with the pre-Epi cells of the ICM (Fig.1A). Later, by E4.5, this has resolved into a 

monolayer of PrE cells underlying the Epi, separating it from the blastocoel cavity (Fig.1A). 

As the embryo matures the TE and the Epi become a greater proportion of the embryo mass 

relative to the PrE making analysis of expression difficult at later time points. For these 

reasons we looked for genes enriched in XEN cells with increased expression at E3.5 (early 

PrE candidates, 179 probes) or E4.5 (late PrE candidates, 93 probes) relative to expression at 

E2.5. These candidates contained the known markers Gata6 (early) and Dab2 (late) 

(Supplemental Table 2). 

Next we tested the early and late PrE candidate list for enrichment of Gene Ontology 

terms using the BinGO plug-in for Cytoscape and MGI GO build (April 6, 2007). This 

revealed many enriched terms after Benjamini & Hochberg False Discovery Rate (FDR) 

correction, with p values less than 0.05 (Supplemental Table 3). We noted that there was a 

general enrichment for genes annotated to cell component terms cytoplasm, endoplasmic 

reticulum, vesicles and endosomes (P-value<0.05 in all cases), but terms such as nucleus and 

mitochondria were not enriched. These observations were interesting as the PrE and its 

derivative tissues are required for nutrient exchange with the growing embryo until the 

placenta has developed. We were especially intrigued by the presence of Lrp2 and its 

molecular chaperone Lrpap1 (Willnow et al., 1995) (Fig. 1B). Furthermore, Dab2 , which is 

also present in these GO categories, is known to interact with the cytoplasmic domain of Lrp2 

(Gallagher et al., 2004) (Fig. 1B). As at least three members of Lrp2 pathway were selected 

by our screen, we decided to carry out further studies. 
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We verified the microarray expression data of Lrp2 and Lrpap1 and Dab2 by RT-PCR 

(Fig. 1C). The results confirmed our embryo microarray data that transcripts for Lrp2 and 

Lrpap1 were undetectable or barely detectable at the 8-cell morula stage and were greatly up-

regulated in E3.5 and E4.5 embryos. Dab2 did not show increased expression until E4.5, 

which is also consistent with our embryo microarray data. We therefore decided to examine in 

situ the expression profile of these genes. 

 

Expression pattern of Lrp2 and associated proteins in implanted blastocysts: 

 Using laser scanning microscopy, we found that Lrp2 transcripts are exclusively 

present in the PrE at E4.5 (n=5; Fig. 2A), and a strong expression is observed in the apical 

part of PrE cells (Fig. 2D, inset) by immunostaining with Lrp2 serum (n=10; Leheste et al., 

2003). mRNA for Lrpap1, is also detected in the PrE of E4.5 blastocysts (n=4; Fig. 2B). We 

decided to extend our study to Cubilin and Amnionless, as these proteins are known to 

interact and form complexes with Lrp2 (Hammad et al., 2000; Moestrup et al., 1998; Strope et 

al., 2004) and all three have been shown to be co-expressed in many different tissues (Drake 

et al., 2004; Strope et al., 2004). Moreover, they have been shown to be expressed in PrE 

derivatives (Assemat et al., 2005b; Drake et al., 2004; Kalantry et al., 2001; Tomihara-

Newberger et al., 1998). Confocal imaging of E4.5 embryos clearly shows Cubilin and 

Amnionless expressed in the PrE (n=4 and n=2 respectively; Fig. 2C, E). Furthermore, 

Cubilin receptor is strongly detected in the apical part of PrE cells (Fig. 2E, inset). 

 

Lrp2 is gradually expressed in the ICM. 

 As PrE is already induced at E3.5, we examined whether the selected candidates are 

expressed in the ICM of E3.5 blastocysts. The in situ hybridization technique was not 

sensitive enough to detect Lrp2 transcripts at that stage of development (data not shown), so 

we used Lrp2-specific antibodies (Leheste et al., 2003). Lrp2 is expressed in the trophoblasts 
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as was described before (Assemat et al., 2005b; Gueth-Hallonet et al., 1994), and we found a 

novel expression in some cells of the ICM, in a “salt and pepper” pattern (Fig. 3). The Lrp2 

ICM-expressing cells are either facing the blastocoelic cavity, in contact or not with 

trophoblasts (Fig 3A), or localized deeper in the ICM (Fig. 3B). Thus, there is no preferential 

position for these cells within the ICM. We noticed that whereas all the trophoblasts are 

strongly stained, only one to two cells of E3.5 ICM are weakly expressing Lrp2. We 

hypothesized that this expression could increase during time, therefore we analyzed 

blastocysts at different time points from early morning of E3.5 to late afternoon. We noticed 

that older E3.75 blastocysts had more Lrp2 expressing cells (compare Fig. 3A to 3D). A 

thorough analysis on several embryos allowed to establish a correlation between the 

blastocyst stages, determined by the number of ICM cells, and the number of ICM cells 

expressing Lrp2 (Fig. 3E). Taken together, these data show that Lrp2 is progressively 

expressed in some ICM cells during blastocyst development. 

 

Lrp2 is expressed in PrE cells. 

 We have previously shown by lineage tracing and gene expression experiments that 

ICM cells of E3.5 blastocysts are already determined to either the PrE or Epi cell lineages 

(Chazaud et al., 2006). As Lrp2 is strongly expressed in the PrE at E4.5, the Lrp2 expressing 

cells at E3.5 should correspond to pre-PrE. To determine the identity of Lrp2 expressing cells, 

we carried out double immunostaining for Lrp2 and Nanog, which is an Epi-specific marker 

(Chambers et al., 2003; Chazaud et al., 2006; Mitsui et al., 2003). As expected, Nanog and 

Lrp2 have exclusive expression in ICM cells at every time point analyzed (Fig. 4A). Cell 

counting analysis reveals that whereas the proportion of Nanog expressing cells remains 

nearly the same, around 42%, the amount of Lrp2 ICM-expressing cells almost doubled 

during blastocyst maturation (Fig. 4B). Thus, Lrp2 expressing cells belong to the pool of pre-
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PrE cells, however, Lrp2 induction is not synchronized within all PrE cells but appears to be 

randomly and progressively activated until the epithelium has formed. 

 

Lrp2 subcellular localization during PrE maturation : 

We noticed that Lrp2 localization within pre-PrE and PrE cells is different according 

to the stage and the position of the cell (Fig. 3A-C’; 5A-C). Indeed, in younger embryos (Fig. 

3A) or when the pre-PrE cell is not at the blastocoelic surface (Fig. 3B-C’; 5A), Lrp2 is 

homogenously distributed in the cytoplasm around the nucleus. At high magnification we 

observed that Lrp2 localization appeared punctate and was not associated with the plasma 

membrane (Fig. 3C’). This was in sharp contrast to the strong polarized expression in the 

epithelium at E4.5 (Fig. 2D, 5B, C). We did observe cells with polarized Lrp2 expression in 

E3.75 embryos, but this was only in pre-PrE cells that had contact with the blastocoelic cavity 

(n=8; Fig. 5A, arrowhead). The Lrp2 localization in these cells corresponds to the future 

apical side of the PrE epithelium. We also noted that these cells had a strong increase in the 

level of Lrp2 expression (Fig.3C, arrowhead; 5A). Our observations imply that PrE cells can 

polarize individually once they reach the ICM surface (Fig. 3C; 5A) and do not form an 

epithelium in unison.  

As a further test of cell polarity we analyzed the expression of the epithelium marker 

Collagen-IV, which is a major component of basal lamina. Collagen-IV has a strong 

expression in the basal lamina of the PrE and mural trophectoderm at E4.5 (Supplemental 

Fig.1). In E3.75 embryos, we observed Collagen-IV expression associated with Lrp2 in cells 

either deep within the ICM or at the blastocoelic surface (n=6; Supplemental Fig.1). This is 

evidence that pre-PrE cells are preparing for epithelialization by producing basement 

membrane components. 

Dab2 has been recently reported to position Lrp2 at the cell surface and also was 

shown to be necessary for Lrp2 and Cubilin trafficking (Maurer and Cooper, 2005; Yang et 
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al., 2007). Dab2 mutant embryos have a defective visceral endoderm (Morris et al., 2002) or a 

stronger phenotype as no PrE epithelium differentiates (Yang et al., 2002). Interestingly, these 

mutants are able to differentiate pre-PrE cells, as they expressed the PrE marker D.Biflorus 

agglutinin (Yang et al., 2002), but these cells are unable to move to the surface of the ICM to 

form an epithelium. This phenotype could be recapitulated in vitro, as embryoid bodies with 

ES cells knocked down for Dab2 express Gata4 (Rula et al., 2007). As observed later in the 

VE, Lrp2 and Dab2 are co-expressed on the apical surface of the PrE epithelium at E4.5 (Fig. 

5B,C). By E3.5, we were not able to detect any Dab2 expression within the ICM, despite a 

strong amplification with the tyramid system (data not shown). The lack of detection is 

probably due to the very low amount of the protein as the RNA was also undetectable at E3.5 

by RT-PCR (Fig.1C) and had no significant change in our microarray analysis (Supp. table 2). 

Nevertheless, at E3.75, in some PrE that cells have reached the surface, Dab2 was induced 

and co-localized on the apical side of the cell with Lrp2 (n=2; Fig. 5A, arrowhead). 

 

 

 

DISCUSSION 

We have recently shown that the ICM of E3.5 blastocysts is not homogenous but 

composed of cells either fated to be Epi or PrE (Chazaud et al., 2006; Rossant et al., 2003). 

This finding was also supported by a recent microarray study analyzing the expression of 

single cells in the ICM (Kurimoto et al., 2006). However, only Nanog and Gata6 genes have 

been reported to be expressed within the embryo in pre-Epi and pre-PrE cells respectively 

(Chazaud et al., 2006). Our aim in this current study was to use microarray data to find genes 

involved in PrE differentiation, thus we focused on embryonic stages E2.5 through E4.75 that 

comprise PrE induction and epithelialization. However, embryos contain derivatives of all 
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three cell lineages so we required a means of sorting our lineage specific gene expression 

patterns. Three previously derived stem cell lines, ES, TS and Xen, correspond to the three 

cell lineages of the mouse blastocyst, Epi, TE and PrE respectively as they can be derived 

from the blastocyst, express many genes in common and have similar behavior in stem 

cell/embryo chimeras (Beddington and Robertson, 1989; Kunath et al., 2005; Tanaka et al., 

1998; Yamanaka et al., 2006). To identify genes specifically expressed in the PrE, we 

compared our microarray data set to previously published microarray datasets of the three 

stem cell lines ES, TS and Xen cells. We first selected a list of candidate PrE genes as those 

that had enriched expression in Xen cells, relative to TS and ES. These candidates were then 

further filtered for their expression in vivo by comparison to our early embryo microarray 

dataset. This selected a set of 271 PrE candidate genes. This list contained several known PrE 

markers, such as Gata4, Gata6, Pdgfra, Dab2, and Itga5. More broadly, an analysis of Gene 

Ontology (GO) terms revealed enrichment for genes of endocytic pathways. This is reflective 

of the biological function of the visceral and parietal endoderm (PrE derivative tissues), as a 

nutrient exchange interface and support for the rapidly proliferating Epi. 

Among candidate PrE genes detected by the microarray, the Lrp2 pathway was 

especially evident as its chaperone Lrpap1 was present, as was Dab2. Dab2 is an adaptor 

protein that binds to Lrp2 (Gallagher et al., 2004) and is known to be involved in PrE 

differentiation (Maurer and Cooper, 2005; Morris et al., 2002; Yang et al., 2002). As Lrp2 

mutant embryos exhibit a late postimplantation phenotype (Willnow et al., 1996), this gene 

does not play an obligate role in PrE formation. Thus Dab2 must be interacting with other 

proteins to mediate its essential role in the formation of the PrE epithelium. We show that 

other components of the Lrp2 pathway, such as Cubilin, Amnionless (Assemat et al., 2005b; 

Kalantry et al., 2001), are all specifically expressed in the mouse PrE at E4.5 along with Lrp2, 

Lrpap1 and Dab2 (Yang et al., 2002). The expression of Dab2, Cubilin and Amnionless were 
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all apparent after the epithelium has formed, suggesting that this endocytic machinery is 

functional at that stage. It is interesting to note that Cubilin and Lrp2 have both been reported 

to be expressed in the TE by E3.5 and even earlier in the morula (Gueth-Hallonet et al., 1994; 

Assemat et al., 2005; and data not shown) but expression is completely lost in the trophoblasts 

by E4.5, when both are strongly expressed in the PrE. This is suggestive of a relay between 

first the TE and then the PrE in the absorption and provision of nutrients to the developing 

epiblast.  

We previously observed Gata6 and Nanog to be expressed uniquely in earlier stages in 

pre-PrE and pre-Epi cells of the E3.5 blastocyst. Lrp2 was also expressed in a few cells of the 

E3.5 ICM and double staining with Nanog clearly identifies these cells as pre-PrE cells as 

they are not co-localized to Nanog expressing cells. Thus Lrp2 is a new pre-PrE cells marker 

that confirms the “salt and pepper” model of PrE and Epi induction (Chazaud et al., 2006; 

Rossant et al., 2003). Unfortunately, we are unable to co-localize Lrp2 and Gata6 due to 

antibody incompatibility. Interestingly, the proportion of Lrp2 expressing cells increases 

while the embryo matures. Lrp2 expression was randomly activated in cells that could be 

located either deep in the ICM or closer to the blastocoelic surface. This activation could be 

driven by Gata6, which is expressed in pre-PrE cells, as Gata and Sox response elements are 

found in Lrp2 promoter and intronic regions (data not shown). It is intriguing that Lrp2 is not 

expressed in all PrE cells, but its activation could be following Gata6 activity. We had 

previously noticed that the level of expression among the Gata6 labeled cells is not 

homogenous (Chazaud et al., 2006; C.C., unpublished observation). Nevertheless, we cannot 

exclude that other independent factors such as Sox7 or Sox17, might be required to activate 

Lrp2 expression. 
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Strikingly, Lrp2 subcellular localization changed according to the maturity of the 

embryo and the position of the pre-PrE cell within the ICM. Lrp2 positive cells of young, 

expanding blastocysts (E3.5) are not polarized as indicated by the localization of Lrp2 even 

when lying at the blastocoelic surface. In older embryos (E3.75), the cells that have joined the 

surface of the blastocoelic cavity adopt an epithelial character by expressing Collagen-IV and 

remodeling the localization of Lrp2 with a stronger accumulation towards the blastocoelic 

cavity. The localization of Lrp2 to the apical membrane perfectly matches the beginning of 

Dab2 expression. Interestingly, we did note that individual pre-PrE cells can polarize at E3.75 

if they are located at the surface of the ICM, despite being adjacent to pre-Epi cells. A similar 

observation was made during PrE differentiation in embryoid bodies (EBs) (Rula et al., 2007). 

However there are differences between in vitro and in vivo models. EBs are made of 

aggregates of ES cells that all have an Epi character at the beginning. In EBs inside cells seem 

to stop differentiating PrE cells and remain Epi cells once PrE epithelium is fully formed 

(Rula et al., 2007). In blastocysts, ICM cells are already committed to Epi or PrE and thus 

pre-Epi cells do not produce PrE cells. Once pre-PrE cells are determined and start 

differentiation, cell sorting towards the surface and epithelium formation involve similar 

mechanisms, requiring cell adhesion molecules such as Laminin C1, Integrin β1 or Maspin 

(Fassler and Meyer, 1995; Gao et al., 2004; Smyth et al., 1999; Stephens et al., 1995) or 

possibly Collagen-IV as we found it expressed in a subset of ICM cells. Also, the role of TE 

is not known in this process. Potentially, cues from the polar trophectoderm must repel pre-

PrE cells, otherwise there would be PrE all around the Epi like in EBs. However, this 

mechanism is complicated by the presence of Trophectodermal Processes (TP) (Fleming et 

al., 1984) that separate the ICM from the blastocoelic cavity. Currently it is not known what 

the role of TP in the polarization of the PrE is or if polarization of factors such as Dab2 

precedes or proceeds retraction of the TP.  
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Dab2 is known to be involved in two phases of PrE development. It is first required 

for positioning pre-PrE cells at the surface of the ICM (Rula et al., 2007; Yang et al., 2002), 

although the exact mechanisms remain unknown, mutation of a Dab2 interaction partner 

Integrin β1 also leads to PrE formation failure (Fassler and Meyer, 1995; Stephens et al., 

1995). Second, once the epithelium has formed, Dab2 is involved in endocytosis, together 

with Lrp2 (Maurer and Cooper, 2005; Morris et al., 2002). In this study, we could not detect 

Dab2 protein or RNA before epithelium formation, in agreement with our microarray 

analysis. Therefore if Dab2 is required at the “cell positioning” phase it must be in very low 

amounts. Like many PrE genes, the level of Dab2 is greatly increased at E4.5 and it was 

clearly detected on the apical surface of the epithelium. In our experiments it was always co-

localized with Lrp2 when pre-PrE cells start to polarize, in accordance with data showing the 

recruitment of Lrp2 by Dab2 in embryoid bodies (Yang et al., 2007). It is striking to note that 

in Dab2 knocked-down ES cells Lrp2 has no apical membrane localization (Yang et al., 

2007), similar to our observations of the inner ICM pre-PrE cells. This suggests that Dab2 

may recruit Lrp2 to the apical membrane once the pre-PrE cell has reached the ICM surface. 

However, Lrp2 polarization in epithelial cells is not strictly dependent on Dab2, as Lrp2 in the 

TE is polarized despite an absence of Dab2 expression. Thus other factors can recruit Lrp2 to 

the membrane and the transient expression of these proteins in the TE could reflect different 

mechanisms. 

Clearly the events driving PrE differentiation and epithelialization are not yet fully 

understood, however the addition of these novel markers will be beneficial to the continued 

study of PrE differentiation and polarization. Importantly, we confirm with novel markers that 

PrE starts differentiating in cells of the ICM in an apparent random fashion. The data 

presented here show that PrE cells progressively acquire epithelial properties (Fig. 6) during 

blastocyst maturation. Once determined as PrE, the cell will gradually start to accumulate 
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structural proteins of the epithelium such as Collagen-IV or Laminins without undergoing 

epithelialization. Collagen and Laminins are required for basement membrane formation once 

the epithelium has formed but their earlier expression may aide in cell sorting of the PrE to 

the surface of the blastocoelic cavity. Concurrently, the pre-PrE cells inside the ICM prepare 

for their future functional activity by starting to express and accumulate proteins from the 

endocytic pathway.  
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 FIGURE LEGENDS 

 

Figure 1. (A) Representation of the stages studied in the microarray. AVE, Anterior Visceral 

Endoderm; DVE, Distal Visceral Endoderm (yellow); EC, Ectoplacental Cone (pink); Epi, 

Epiblast (blue); ExE, Extraembryonic Ectoderm (red); MS, mesendoderm (light gray); PA, 

ProAmniotic Cavity; PA, Parietal Endoderm (green dots); PrE, Primitive endoderm (green); 

TE, Trophectoderm (orange); VE, Visceral Endoderm (green). (B). Table displaying 

candidate genes enriched for GO terms. (C). Expression analysis of Lrp2, Lrpap1 and Dab2 

by RT-PCR at indicated stages. G3pdh is used as reference for sample normalization. 

 

Figure 2. Expression pattern of members of the LRP2 pathway in E4.5 embryos by 

fluorescent whole mount in situ hybridization (A-C) and fluorescent whole mount 

immunostaining (D, E ). (A-C) Lrp2, Lrpap1 and Amn mRNA detection. (D, E ) LRP2 and 

Cubilin (CUB) protein localization (red). Insets are magnifications of corresponding framed 

cells. Nuclei (green) were stained with YOYO1. 

 

Figure 3. (A- D) Fluorescent whole mount immunostaining of LRP2 (red) with blastocysts 

collected at different time points. Nuclei of the ICM are stained with YOYO1 (green). Yellow 

asterisks indicate LRP2 labelled cells. The arrowheads is pointing towards a polarized cell. 

(C’) Higher magnification of a LRP2 labelled cell (C, inset). (E) Number of LRP2 expressing 

cells in the ICM compared to the total number of ICM cells of embryos at different stages. N, 

nucleus.  

 

Figure 4. (A, B, C) Double fluorescent whole mount immunostaining for LRP2 and Nanog in 

three embryos. The number of ICM nuclei is 24 in A, 26 in B and 27 in C. Nuclei are stained 
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with Hoechst and cell boundaries are visualized with an immunostaining for E-cadherin. In 

(B), the embryo is observed along the abembryonic – embryonic axis. (D). Table and 

diagrams showing the numbers and percentage of LRP2 (LRP2 +) and Nanog (Nanog +) 

expressing cells in early (total 15-25 ICM cells) and late (26-32) blastocysts. 

 

Figure 5. (A, B, C). Double fluorescent whole mount immunostaining for LRP2 (red) and 

DAB2 (green) on E3.75 (A) and E4.5 (B,C) blastocysts. In (A) compare the expression 

between unpolarised (arrow) versus polarised (arrowhead) cells. (C) Higher magnification of 

an epithelial cell in (B). Nuclei were stained with Draq5 (blue).  

 

Figure 6. Model for PrE epithelialization. At E3.5, the ICM is randomly composed of pre-Epi 

and pre-PrE cells. TPs are protecting the ICM from the blastocoelic cavity. No cells are 

polarised. Few PrE cells express LRP2. At E3.75, the ICM is still randomly composed of pre-

Epi and pre-PrE cells. There are no data about the presence of TPs. More pre-PrE cells inside 

the ICM co-express LRP2 and Collagen-IV. Pre-PrE cells at the blastocoelic surface 

individualy polarise with an apical accumulation of LRP2 and Dab2. At E4.5 PrE epithelium 

is formed with an obvious basement membrane labelled by Collagen-IV. Dab2 and LRP2 are 

localised apically in all the cells. 
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