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Abstract

Heart sounds, measured via cardiac micro-acceleration

(CMA), carry valuable information about the mechanical

and hemodynamic function of the heart. The aim of the

present study is to estimate systolic and diastolic time in-

tervals from CMA features, extracted by segmentation of

the first two heart sounds, i.e. onset, maximum energy

and end instants. CMA, ECG and echocardiographic au-

dio signals were acquired simultaneously on 60 patients

under different hemodynamic conditions. Linear models,

fitted between CMA features and echo timings, were eval-

uated with their correlation coefficient, model error and

coefficient stability. Models for mitral valve closing, aor-

tic valve closing and opening instants showed satisfactory

results, whereas the estimation of the opening instant of

the mitral valve was more difficult. This work suggests the

potential utility of CMA for monitoring cardiac function

and defining optimal, adaptive pacing configurations.

1. Introduction

Cardiac Resynchronization Therapy (CRT) is indicated

for patients suffering from drug-refractory congestive heart

failure (CHF) associated with inter-ventricular dyssyn-

chrony [1]. The implantation of a bi-ventricular stimulator

makes it possible to re-synchronize the electrical activation

of both ventricles. In order to maximize the cardiac me-

chanical function for a given patient, the atrio-ventricular

(AV) and inter-ventricular (VV) activation delays of the de-

vice have to be optimized.

This optimization process is a difficult task that often

involves an echo-Doppler acquisition, in order to evaluate

the ventricular mechanical function, while scanning differ-

ent values for AV and VV delays. This cumbersome tech-

nique is not applied systematically and is only done at rest,

in supine position. Instead, the possibility of using a car-

diac acoustic signal to monitor the mechanical function of

the heart would be interesting from several points of view:

i) it will ease the application of the optimization stage, re-

ducing costs, ii) it will allow the evaluation on different

conditions (rest, exercise, etc.), and iii) it could eventually

be embedded into a pacemaker in order to perform an au-

tomatic and adaptive CRT optimization.

The study of cardiac acoustic signals has shown to be

useful for the evaluation of the mechanical function of

the heart. Methods for the analysis of the phonocardio-

gram (PCG) or the seismocardiogram (SCG) have been

proposed to extract useful information and to perform

heart sounds segmentation [2–5]. The arrival of Doppler

echocardiography significantly reduced the clinical use of

these signals, but the precision and reproducibility of echo-

Doppler measurements have been repeatedly criticized [6].

This fact might lead to a renewed interest in quantitative

analysis of cardiac acoustic signals, especially in the field

of CRT [7].

In this context, previous studies have shown that the

measurement of heart sounds via endocardial acceleration

(EA) (see Fig 1), developed by Sorin Group CRM, may be

valuable for an online follow-up of the cardiac mechani-

cal function. In particular, the peak to peak amplitude of

first component of the EA signal (EA1) is well correlated

to the maximum rate of rise of left ventricular pressure [8]

and has been successfully used to optimize CRT [1].

The present study focuses on a non-invasive cardiac

micro-acceleration (CMA) device, based on an external

version of the EA sensor, placed on the chest of the pa-

tient. The potential use of CMA in the context of CRT is

evaluated by a quantitative comparison between extracted

CMA timings and Doppler-based time intervals. An eval-

uation methodology is proposed to assess the performance

of different heart sounds segmentation algorithms.
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2. Methods

2.1. Protocol

This study is based on a non-interventional multi-centre,

prospective registry, including 51 CHF patients, and 9

healthy subjects.

Each patient recording was collected during a routine

follow-up including echocardiographic measurements. 51

heart failure patients, with implanted CRT pacemakers

have been studied. In order to change the systolic and di-

astolic time intervals, different pacing configurations were

tested: i) biventricular pacing, ii) right ventricular (RV)

pacing, iii) left ventricular (LV) pacing, and, when possi-

ble, iv) spontaneous rhythm. For some patients, different

AV and VV delays were tested.

Echo stress tests were performed on 9 healthy volun-

teers at rest, during exercise (cycling), and during recov-

ery. These subjects are important, because focusing on

CRT patients only would lead to a limited exploration of

the possible values of the studied parameters. For exam-

ple, healthy subjects show shorter left pre-ejection interval

(LPEI) values and shorter cardiac cycles during controlled

exercise.

For each configuration, a simultaneous recording of

CMA, 2-Lead ECG and pulsed-wave Doppler audio sig-

nal, taken from the audio output of a GE Vivid7, were ac-

quired with a Biopac MP35 acquisition system at 10kHz.

The CMA sensor was clipped with a standard surface ECG

electrode on the sternum of the patient and analogically fil-

tered in the [15-100Hz] range. Data was processed off-line

with custom Matlab signal processing routines.

2.2. Gold standard Doppler measurements

ECG signals were used to segment CMA and Doppler

signals into cardiac cycles. We performed an automatic

beat detection from ECG signals, and then manually veri-

fied and corrected the results. This first step, yet simple, is

a real improvement regarding the method used in every day

clinical practice. We attached much importance to the ac-

curacy and reproducibility of the Doppler measurements.

Mitral and aortic blood flow were reconstructed from the

Doppler audio signal by applying short-time FFT, with a

Hamming window of 64 samples (Fig. 1). To ease the

annotations, a flow envelogram was estimated by first in-

tegrating the Doppler velocities at each time sample and

then applying a moving-average filter.

Four valvular events were annotated by a trained opera-

tor and validated by an expert echocardiographist: i) tMC

= tREF to mitral valve closing, ii) tAO (LPEI) = tREF

to aortic valve opening, iii) tAC = tREF to aortic valve

closing, iv) tMO = tREF to mitral valve opening, where

tREF is either the beginning of the pacing spike or the be-
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Figure 1. ECG, CMA and aortic flow Doppler. The be-

ginning of each beat, the opening and closing of the aortic

valve appear as dotted lines on the lower panel.

ginning of the Q wave in spontaneous rhythms. When the

echo measurements confidence on a segment was judged

too low by the echocardiographist, the segment of data was

rejected from the database.

2.3. Extraction of CMA timings

For each configuration, 15 cycles of CMA signal, oc-

curring during the acquisition of the pulsed wave Doppler,

are considered for standard ensemble averaging of the two

main components of the CMA signal, EA1 and EA2 (cor-

responding respectively to the first and second heart sound

in the PCG), separately: i) the phase shifts that maxi-

mize the correlation between each cycle are calculated, ii)

the cycles are aligned according to a reference component

(first cycle of the analysis window) and iii) the two aver-

age components EA1 and EA2 are computed. Only highly

correlated cycles are averaged.

Envelograms are computed on this average CMA cycle,

by applying both the Shannon and Homomorphic trans-

forms. These transforms have already been applied to the

segmentation of PCG signals [3, 4].

Finally, a threshold-based segmentation algorithm is ap-

plied to the envelograms. Again, EA1 and EA2 envel-

ograms are normalized and processed separately, in or-

der to estimate their start and end instants (tEAxStart and

tEAxEnd respectively) and their instant of maximum en-

ergy (tEAxmaxenergy
). Scanning different values of w (de-

fined as the duration of the moving-average window for

the Shannon transform and the low-pass filter cut-off fre-

quency for Homomorphic envelograms) and threshold

(from 0.1 to 0.7 by steps of 0.1) generates different CMA

instants.
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2.4. Performance assessment

We first removed outlier points (typically outside the

30ms model error boundaries). A linear model (tV. =

a · feat + b, where tV. is the reference event for valve

V and feat is a CMA feature) was then estimated by

standard RMSE minimization. Two complementary ap-

proaches were used to evaluate each model:

• Single-pass: a single model is estimated per feature on

N points (all patients and configurations included). This

model is globally evaluated with its correlation coefficient

rL, its average absolute error µerr, and the percentage of

points outside the 20ms error limit %out.

• Monte-Carlo: on the entire database (DB), we generate

27 different pairs of learning DB (60 % of the DB), on

which the model is estimated, and test DB (40 % of the

DB), on which the model is evaluated. In each case, rT

and the model error are calculated. We can then estimate

the average correlation coefficient µrT
and the stability of

the models for each feature: the standard deviation of each

model’s coefficient (a and b) is calculated (σa and σb).

3. Results and discussion

The best CMA feature for each one of the 4 reference

echo timings are detailed in Table 1, with their correspond-

ing optimal segmentation parameters. It is worth to note

that these optimal parameters vary for different echo tim-

ings, even if the same CMA feature is selected. For tAO,

we specified 2 different CMA features because they pro-

vide similar performance.

• Valves Closing Times (tMC and tAC): tMC can

be estimated accurately from several tEA1Start features :

µerr = 12ms, rL = 0.89 and %out = 16. Similarly,

several tEA2Start timings are good estimators of tAC:

µerr = 9ms, rL = 0.98 and %out = 7. Figure 2 presents

an example of the estimation of tAC from tEA2Start by

using a Homomorphic envelogram with w = 15Hz and

threshold = 0.6.

Moreover, these models are very stable: σa values for

tMC models are relatively low (2.6 % variations of their

corresponding a value) and for tAC models (0.6 % varia-

tions). The same stability is observed on the b coefficients

for tMC and tAC models (σb = 3ms).

• Valves Opening Times (tMO and tAO): a satisfactory

estimation of the absolute value of tAO with the present

extracted CMA timings was difficult to obtain, in compar-

ison with those obtained for valve closing instants, but the

best model involving a tEA1Start feature presents over-

all interesting properties: µerr = 17ms, rL = 0.86 and

%out = 35. This can be explained by the fact that several

complex physiopathological phenomena (including tMC

and tAO) are at the origin of EA1 (as for the first heart

sound in the PCG) and their relative time of occurrence

may vary in an intra and inter-patients fashion. However, a

good correlation exists between tEA1Start (see Fig. 3) or

tEA1maxenergy
and the Doppler LPEI, as shown in Table 1.

Concerning tMO, we are not currently able to locate this

particular time instant in the CMA signal. In this case,

the presence of healthy subjects at rest and performing ex-

ercise has a great influence on the correlation rL = 0.9,

despite a high model error µerr = 27ms and a signifi-

cant proportion of patients out of the 20ms error bound-

aries %out = 62.

The Monte Carlo analysis demonstrates that these models

are more unstable, especially on tMO. σa are high for

tAO models (8% variations of their respective a value for

tEA1Start and 11% for tEA1maxenergy
) and tMO models

(8 % variations). This is particularly true for the b coeffi-

cients on tAO (σb = 14ms for tEA1Start and 21ms for

tEA1maxenergy
) and tMO models (σb = 46ms).

It should be observed that tEA1Start features correlate well

to both tAO and tMC, despite the lack of a significant cor-

relation between these two Doppler instants (r = 0.59).

This may be due to the fact that i) tEA1Start detection

instants are more stable than those of tEA1maxenergy
(re-

spectively σa = 0.094 and 0.118) and ii) the delay sepa-

rating tMC and tAO (the isovolumic contraction time) is

absorbed by the model’s coefficients (b = 37ms for tAO

and 5ms for tMC). This phenomenon is similar to the

one observed on tAC (small model error) and tMO (large

model error), except that here the two Doppler instants are

significantly correlated (r = 0.87).
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Figure 2. tAC model estimation from tEA2Start

3.1. Conclusion

Results clearly demonstrate the feasibility of estimat-

ing the mitral and aortic valve closing instants from car-

diac micro-acceleration features and suggest their poten-

tial application in a clinical context. Regarding tAO, we
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Table 1. Model performances
CMA feature Method w thres. N µerr σerr rL %out µrT

σa σb

tMC tEA1Start Shannon 40ms 0.4 172 12 ms 8 ms 0.89 16 0.88 0.025 0.003

tAO tEA1Start Shannon 80ms 0.6 170 17 ms 13 ms 0.86 35 0.81 0.094 0.014

tAO tEA1maxenergy
Shannon 150ms - 170 17 ms 14 ms 0.83 37 0.78 0.118 0.021

tAC tEA2Start Homomorphic 15Hz 0.6 172 9 ms 7 ms 0.98 7 0.96 0.006 0.003

tMO tEA2Start Shannon 80ms 0.2 182 27 ms 17 ms 0.9 62 0.83 0.098 0.046
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Figure 3. tAO model estimation from tEA1Start

obtained suitable models for two different types of EA1

features. Ongoing work is directed to the improvement of

the estimation of mitral valve opening instant. The pro-

posed algorithms showed to be robust with respect to envi-

ronmental noise and artifacts, usually present on this kind

of surface acoustic signals. It would now be relevant to

evaluate the stability of the CMA timings during a given

hemodynamic configuration, on successive groups of car-

diac cycles.

We chose echocardiographic measurements as a gold

standard, despite its drawbacks, (i.e. operator dependency,

position of the transducer, limited number of beats), be-

cause it is still recognized by the physician community as

a reference method. These limitations have to be kept in

mind, even though we significantly enhanced the reliabil-

ity of this reference with specific signal processing tools.

To conclude with, the clinical potential of these CMA

features seems really promising, and, combined with ap-

propriate implantable sensors and stimulators, could set

the grounds for a significant advance in CRT.
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