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Abstract: 

A relevant and accurate description of three-dimensional (3D) protein structures can 

be achieved by characterising recurrent local structures. In a previous study, we 

developed a library of 120 3D structural prototypes encompassing all known 11-

residues long local protein structures and ensuring a good quality of structural 

approximation. A local structure prediction method was also proposed. 

Here, overlapping properties of local protein structures in global ones are taken into 

account in order to characterize frequent local networks. At the same time, we 

propose a new long local structure prediction strategy which involves the use of 

evolutionary information coupled with Support Vector Machines (SVMs). Our 

prediction is evaluated by a stringent geometrical assessment. Every local structure 

prediction with a Cα RMSD less than 2.5 Å from the true local structure is considered 

as correct. A global prediction rate of 63.1% is then reached, corresponding to an 

improvement of 7.7 points compared to the previous strategy. In the same way, the 

prediction of 88.33% of the 120 structural classes is improved with 8.65 % mean gain. 

And 85.33% of proteins have better prediction results with a 9.43 % average gain. An 

analysis of prediction rate per local network also supports the global improvement and 

gives insights into the potential of our method for predicting super local structures.  

Moreover, a confidence index for the direct estimation of prediction quality is 

proposed.  Finally, our method is proved to be very competitive with cutting-edge 

strategies encompassing three categories of local structure predictions. 
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Introduction 

Three-dimensional (3D) structural information is very critical for 

understanding the functional properties of proteins. Therein, 3D structures are a 

valuable source of data for understanding their biological roles, their potential 

implication in diseases, and for progress in drug design 1-3.  

It is now admitted that the folded state of proteins, i.e. the native 3D structure, 

may be described by a limited set of recurring local structures 4,5. Besides, native-like 

local structures were experimentally observed during folding pathways and, thus, 

could have a guiding role in the folding process toward the global native structure 4,6. 

These observations support the idea that local structures are relevant in characterizing 

native folds and that the structural information encoded in sequence segments should 

be predictable and useful for proposing relevant structural models 7,8.  

In addition, costs and difficulties associated with experimental determination 

of protein 3D global structures led the prediction of pertinent structural models from 

sequence to become a major area of interest. In this context, prediction of accurate 

local structure characteristics is a promising field and, can provide relevant 

information and constraints for global structure prediction 9,10. Indeed, some of the 

most successful prediction methods in competition at CASP7 in the hardest category, 

the new fold prediction, used biased sampling of structural fragments and assembly 

techniques combined in different strategies 11. 

Accordingly, fragment libraries or structural alphabets were designed to 

characterize in the most suitable way, the local structures of all proteins with known 

3D structures. These alphabets consist of a finite set of representative structural 

fragments. They have been reviewed in 12. They differ by the number of local 
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structure groups and representatives, the fragments length and the selected criteria and 

methods used to design them, e.g., 10,13.  

We had previously developed such a structural alphabet named Protein Blocks 

(PBs), with the aim of not only characterizing the local structures observed among the 

largest set of known proteins 3D structures but also at identifying optimal sequence-

structure specificities for prediction purpose 14,15. It was developed by using an 

unsupervised cluster analyser and by relying on series of eight dihedral angles 

characterizing five-residue long fragments observed in protein structures.  Thus, this 

alphabet is optimally composed of 16 structural classes. Each class is represented by a 

PB, i.e. an average dihedral vector. The Protein Blocks alphabet takes into account the 

preference of consecutive fragments to occur in a sequence and, has been shown to be 

highly informative and to have the best predictive ability among those tested by 

Karchin and co-workers 16. PBs have been designed to describe protein 3D backbones 

15 and to predict local structures 13. They have been successfully used to predict short 

loop regions 17, to superimpose protein structures 18,19, to mine PDB 20, to help 

difficult modelling of transmembrane proteins 21, to study mutation structural 

consequences 22, to rebuild protein structure 23 and for the for the discovering of 

functional structural motifs 24. 

Recently, we proposed an extension of this description with a novel library 

consisting of 120 overlapping structural classes of 11-residues long fragments 25. This 

library was constructed with an original unsupervised structural clustering method 

called the Hybrid Protein Model (HPM) 26,27. The Hybrid Protein principle is similar 

to a self-organizing neural network 28,29. It was constructed as a ring of N neurons 

(here N=120), each representing a cluster of structurally similar 3D fragments 

encoded into series of PBs. Its training strategy consisted in learning the similarities 
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between protein fragments by aligning them according to their PB series. Once the 

HPM was trained, each neuron or cluster was associated with a set of fragments 

representing a structural class 25. For each class, a mean representative fragment, or a 

“local structure prototype” (LSP), was chosen. The 120 LSPs correctly approximated 

the local structure ensembles. The major advantage of this library is its capacity to 

capture the continuity between the identified recurrent local structures. Relevant 

sequence-structure relationships were also observed. This permitted us to develop an 

original method for the prediction of long local protein structures from sequence. The 

principal interest of this method is that, for a target sequence of 11-residue long, it 

proposes a short list of the best structural candidates among the 120 LSPs of the 

library. This prediction was assessed by a geometrical criterion, i.e. a prediction was 

considered as correct if the Cα RMSD between the best candidate and the true local 

structure was less than of 2.5 Å. The prediction rate based on single sequence 

information reached 51.2%, a satisfying result taking into accounts the very large size 

of the library and the long length of fragments 25. Compared to other local structure 

libraries, the long length of the fragments studied here is worth being stressed. As a 

matter of fact, until our previous work in 2006, no local structure library handled 

fragments as long as 11 residues for prediction purposes. Actually, libraries have 

often been developed for fragments encompassing 4 to 9 residues 12. Only Bystroff 

and Baker developed the I-sites library characterizing fragments of 3 to 15 residues. A 

prediction method was associated but the results were assessed for fragments of 8 

residue-long only 30. Recently, Beaten and co-workers constructed the BriX database 

encompassing more than 1000 frequent local conformations ranging from 4 to 14 

residues31. Similarly, Sawada and Honda  developed a database of structural clusters 

taking into account fragments of 5, 9, 11 and 15 residues32. But, in these cases, 
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prediction methods were not developed. Indeed, 11 residue fragments correspond to 

long patterns for analysis and prediction of protein local structures. Thus owing to the 

greater length of the fragments, the LSP library associated to its prediction method 

represents the first attempt to trap the consequences of long-range interactions at both 

sequence and structure levels. 

 

In the present work, three main points were addressed: i) the development of a 

new strategy for protein local structure prediction using LSPs, ii) the proposal of an 

index for directly assessing the relevance of the prediction at each sequence site and 

iii) the evaluation of the quality of prediction using an original description of long 

fragments that relies on the overlapping properties of prototypes. The novel prediction 

approach still takes advantage of the features of the LSPs library. In addition, the 

method benefits from the use of sequence information of proteins homologous to 

target. Evolutionary information is widely being used for different prediction purposes 

and is well known to improve the quality of prediction. 33. Moreover, the learning 

process is performed using Support Vector Machines (SVMs), a sophisticated 

classifier which has already been used successfully in various fields related to protein 

structure prediction 10,34-35 . We take care of preserving a well-balanced prediction rate 

for each one of the 120 structural classes. The results obtained were compared and 

discussed with other tested schemas of prediction.  

An index that directly estimates the quality of each prediction and the 

relevance of the structural candidates for each fragment sequences all along a protein 

sequence was also proposed. 

Finally, we analyze the results in the light of a new structural description. 

Taking into account the most frequent transitions between LSPs in the whole 
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databank, preferential sub-networks can be delineated. The latter encompass long 

structural fragments and even super-secondary structures. This representation 

reminds, at a different scale, the network representation of Protein Blocks we 

previously designed and that permitted to define Structural Words 36. Apart from its 

structural interest for defining rather long structures, this new representation was also 

used to assess the local structure prediction results.  

Methods 

Protein structural databank and datasets 

A databank of 1041 X-ray structures (available on request) was extracted using 

PDB-REPRDB 37 such that they share a resolution better than 2 Å, no more than 30% 

pair wise sequence identity and a Cα RMSD between them higher than 10 Å. Each 

protein structure was then analysed as overlapping fragments of 11 residues. The 

assignment of each fragment to a given HPM structural class was based on the 

minimal Cα RMSD criteria with the representative local structural prototype (named 

LSP) of the given class. A total of 251,497 fragments were obtained and encoded in 

terms of LSPs.  

Three protein datasets have been extracted from this databank (see Figure 1). 

Set 1 (half of the structure databank, i.e. 521 proteins, 125,074 fragments), was used 

as an independent set to deduce the relation between confidence index categories and 

prediction rate. Set 2 (the first quarter of the structure databank, i.e. 261 proteins, 

62,194 fragments, different from set 1) was used as a training set for the SVM 

prediction procedure and the confidence index calibration. Set 3 was a validation set 

used to assess the local structure prediction method and the relevance of confidence 
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index in inferring the prediction quality (the last quarter of the structure databank, i.e. 

259 proteins, 64,229 fragments).  

In addition, for each structural class s, a machine learning we named an 

“expert” was trained to discriminate between fragments associated to the class s and 

those which are not (see Figure 1). Henceforth, for a given class s, a “training subset” 

was derived from set 2. Half of this training subset was made of 3D fragments 

assigned to s (positive part) and half was composed of the same number of 3D 

fragments taken randomly from other clusters and showing a Cα RMSD structural 

dissimilarity superior to 1.5 Å compared to the LSP of s (negative part). 

Prediction strategy for long local protein structures 

Overview of the prediction method 

The prediction method relies on an expert system. For each local structural 

class s represented by its LSP, an expert (LSP-expert) is trained to optimally 

discriminate between fragment sequences associated to s (positive examples) relative 

to other classes (negative examples).  

Each LSP-expert computes a compatibility score of a target sequence window 

with the class considered. The 120 scores are then ordered and finally, a jury selects 

the 5 top-scoring classes and proposes their representative LSPs as structural 

candidates.  

Representation of the target amino-acid sequence 

Sequence profiles defined by Position-Specific Scoring Matrices (PSSM) were 

built using PSI-BLAST 38 to gather the evolutionary information. Similarly to our 

previous studies 13,25, we considered enlarged sequence windows that are 21 residues 
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in length (marked from -10 to +10 and centred at 0) to take account of the amino acid 

content in the neighbourhood.  

A PSSM was first computed starting with the complete target protein 

sequence: PSI-BLAST searches were carried out up to four iterations against the non-

redundant SWISS-PROT databank 39 with an the e-value threshold of 10-4. The 

software blastpgp v2.2.13 was used 

(ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.13). Then, the PSSM was cut into 

overlapping matrices corresponding to the sequence fragments composing the whole 

protein sequence. So, each fragment sequence is represented by a PSSM of dimension 

21 x 20 whose elements correspond to the log-likelihood of an amino-acid AAk 

substitution at a position y in the template. The values of the PSSM profiles were 

linearly scaled to the range [-1; +1] with the software LIBSVM 40.  

Definition of the expert predictors by support vector machines (SVMs) 

In this study, the prediction strategy is based on an expert system defined by 

SVMs. SVMs are a generalisation of the linear classifiers 41. We used SVMlight that 

provides a fast optimization algorithm for SVMs 42. The principle of the training 

stands in two steps. Firstly, the dataset is projected into a different space using a 

kernel function which defines the similarity between a given pair of objects 43. We 

chose a radial basis function kernel (RBF) that was successfully used in recent studies 

related to protein structure prediction 10,33. It first implies the selection of a parameter 

γ : 

dataset  theof examples  twoare et    where

  0for  )'exp()',(
2
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xxxxK >−−= γγ
 (1) 

In addition, SVM method consists in defining the optimal hyperplane that is 

the farthest from any training example and minimizes the training errors. The 
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procedure depends on an additional parameter, i.e. a parameter C that represents the 

trade-off between minimizing the training error and maximizing the margins. In 

addition to C, a parameter λ can also be optimized. It determines the extent by which 

training errors on positive examples outweigh errors on negative ones and, thus 

corresponds to an asymmetric regularisation of parameter C.  

The SVM experts were trained using the training subsets derived from set 2 

(see Figure 1). Optimal values for γ, C, and λ , were obtained for each structural class 

s through grid-searches and cross-validation. These parameters were optimized two by 

two,  i.e. γ vs. C and γ vs. λ for keeping manageable CPU time calculation. The 

parameter ranges proposed by Hsu and co-workers 44 were tested and empirically 

adapted to our optimization procedure. For each structural class s, a cross-validation 

procedure was performed: the training subset was randomly divided in 2 sets 

containing the same number of positive and negative examples. The first part, 

representing 2/3 of the data was used to train the SVM with a given parameter pair 

(γ,λ) or (γ,C); the remaining part was then used as a validation set. For each 

parameters pair (γ,λ) or (γ,C), this process was repeated 5 times and, the mean of the 

obtained classification rates was calculated. Finally, for a given class s, the selected 

parameters pair (γ,λ) or (γ,C) maximized the mean classification rate. Once an optimal 

pair (γ,λ) or (γ,C) was selected for each structural class, the definitive training of the 

SVM experts was carried out on all subsets. 

Only results concerning the parameters pair (γ,λ) leading to the best prediction 

performance will be presented. Results associated to the pair (γ,C) are presented in 

supplementary data I. 
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For the prediction of a given fragment sequence f, the LSP-SVM expert 

trained for class s computes a decision value vs that is proportional to the geometric 

distance of f from the maximum margin separating hyper plane fitted for s.  

 Jury and decision rule for prediction  

The compatibility of a fragment sequence f with a given LSP is measured by 

the decision value or score given by each LSP-expert. The 120 scores thus obtained 

are ranked in descending order and a jury selects the best structural prototypes as 

candidates for the local 3D structure. This strategy of ranking classifier outputs was 

used in our previous study which relied on experts defined by logistic functions 25. In 

the same way, Kuang and co-workers used the same strategy with SVM while 

predicting 9-residue local structures, i.e. they took the maximum margin given by 

SVM classifiers specialized for each class 45. Finally a list of five candidates was 

proposed reducing considerably the number of possible structures for a given target 

sequence fragment. 

 Evaluation of the predicted local structures 

The prediction strategies were assessed on set 3. Two types of evaluation 

schemes were tested. In the first one, a prediction for a target sequence window was 

defined as successful when the assigned LSP s was found among the predicted 

candidates. This evaluation was named Q120. In the second scheme, a geometrical 

assessment was done, i.e. the prediction was considered to be successful if the 

Cα RMSD between one of the LSP candidates in the list and the true local structure 

was lower than a given threshold. Three thresholds were considered, i.e. 1.5, 2.0 and 

2.5 Å. In order to simplify the reading of this study, the results with the two first 

approximations are summarized in supplementary data II. We will here mainly 
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concentrate on the latter approximation. As a matter of fact, we had shown in our 

previous study that this threshold was quite stringent. We studied the distribution of 

100.000 Cα RMSD values between 11-residue fragments randomly chosen from the 

databank. The Cα RMSD was calculated only if these fragments encoded into series 

of 7 Protein Blocks (PBs) differed by more than 5 PBs. The mean of this distribution 

was 4.5 Å (σ = 1.1 Å). The probability for a random match with Cα RMSD < 2.5 Å 

was 10-2  25.  For reference purpose, it is worth noting that this threshold is comparable 

to the value chosen by Yang and Wang (2.4 Å threshold) to evaluate the proportion of 

9-residue fragments that was correctly predicted by their methodology 6.  

Analysis of the prediction according to LSPs categories 

The 120 LSPs are necessary to give a correct approximation of known local 

structures. Nevertheless, for analysis purposes, regrouping of LSPs in different 

coarser categories of LSPs can be done. For instance, secondary-structure-like 

categories can be defined 25: Helical (H), Extended core (E), Extended edges (Ext) or 

Connecting (C) structures that respectively encompass, 16 LSPs, 13, 40 and 51 LSPs 

respectively. 

We defined a new description that is based on the overlapping property of 

LSPs and consists in grouping LSPs according to transition probabilities from one 

LSP to another in global structures. A network characterizing the chaining of all LSPs 

was defined accordingly (see Figure 2). The transition probability yxP →  from a LSP x 

to another LSP y was calculated as following: 

x

yx
yx

N

N
P

→
→ =   (2) 

where yxN →  was the number of observed transitions from x to y and xN the 

number of transitions from x. 



 - 13 - 

This global network was then iteratively divided into sub-networks. A sub-

network was definitely defined if composed of less than 20 LSPs and if its inner 

transition probabilities are higher than a probability p. p had an initial value of 0.20 

and was then increased by steps of 0.02. The process was stopped when no sub-

network of more than 20 LSPs was left. At this point p equaled 0.40. Hence, the last 

two sub-networks created, 6 and 7, encompassed very frequent transitions higher than 

0.40.  Considering all the defined sub-networks, 16.8 % of the transition probabilities 

considered (higher than 0.20) were higher than 0.50 and 4 % were higher than 0.70. 

The maximum probability value was 0.86 between LSPs 101 and 102 in network 5.  

Like a pruning process, this iterative procedure progressively yielded to 7 sub-

networks sufficiently populated and exhibiting significant transition probabilities. 52 

LSPs remained as components of small sub-networks composed of less than 5 LSPs 

and even as isolated LSPs. They were further clustered into three groups according to 

their size and their inner and outward transition probabilities. Thus, ten substructures 

composed of different LSPs with preferential transitions finally emerged. 

Evaluation of the efficiency of the method compared to other predictions. 

We compare the efficiency of our prediction strategy coupling SVM with 

PSSM (and thus named SVM_PSSM) with four kinds of predictions: 

i) A random prediction: five candidates for each fragment sequence in set 3 are 

selected randomly 25.  

ii) A “Naïve prediction”: for each sequence of 21-residue long of set 3, the 5 

most similar sequences in set 1 were selected. Similarity scores were computed using 

BLOSUM62 matrix. The corresponding fragment structures were superimposed to 

that of the target sequence, only considering the central 11-residue fragment 
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(positions 6 to 16 of the sequence fragment). This strategy is similar to the very first 

step of prediction associated with the use of fragment libraries like in Rosetta 46.  

iii) Different prediction schemas based on LSPs:  

• SVM_seq: SVM learning without the use of PSSMs, i.e. for a single 

sequence.  

• LR_seq: a logistic regression with single sequence, i.e. the prediction 

methodology developed in 25. 

• LR_PSSM: a logistic regression with PSSM matrices. 

iv) Other cutting-edge methods described in the Discussion section. 

All these predictions were assessed with the Q120 and the geometrical criterion 

Definition of a confidence index 

The confidence index (CI) was defined by making use of SVM expert decisions. A 

local structure prediction was performed on set 2 using the SVM_PSSM strategy. For 

each target fragment sequence, the 120 decisions of experts were retrieved and 

associated to correct or incorrect prediction classes according to the geometric 

criterion. This data was used for training a new SVM (namely SVMCI) to learn which 

expert decision ensembles lead to correct or incorrect prediction. The procedure was 

quite similar to what was done for local structure prediction and was carried out with 

the optimisation of γ and C parameters (for more details see supplementary data III). 

The Confidence Index CI is defined as the decision value of SVMCI model. This model 

was assessed on the prediction results obtained on two independent sets, set 1 and set 

3. The results obtained with set 1 were used for deciphering the optimal relationship 

between the CI categories and the prediction rate. This relationship was checked on 

set 3. 
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Results 

The grouping of LSPs according to their preferential transitions in protein 

structures is first described. Then, the new local structure prediction strategy using 

support vector machines coupled with PSSM is assessed (SVM_PSSM). The 

efficiency of the prediction is discussed for the different sub-networks that group 

LSPs according to their most probable transitions. Finally, a confidence index that 

gives a direct indication of prediction quality is assessed. 

Analysis of preferential structural transitions between LSPs 

An analysis of the LSP structural transitions in protein structures, led to the 

LSP network presented in Figure 2. Using an iterative pruning procedure of this 

network, we defined ten LSP groups characterizing preferential transitions of local 

structures in global protein structures. The composition and the transitions of the most 

significant categories, or sub-networks, are described in Figure 3 and supplementary 

data IV. Each sub-network comprises a limited number n of LSPs (n ranges from 5 to 

16). Owing to possible branching and transitions probabilities, it characterizes super-

local structures composed of at most n LSPs. 

Sub-networks 1 and 2 can characterize the fold of 15-residue sequences. Sub-

network 1 is composed of 5 LSPs and includes a helical LSP followed by four specific 

different connection LSPs defining a β-turn. Thus, this sub-network can be defined as 

a super-secondary structure, α-C
cap

-β-turn. It encompasses LSPs characterizing 2.74 

% of fragments. The LSPs 44, 45 and 46 are respectively assigned to 0.67, 0.74 and 

0.70 % of fragments. They are thus rather frequent LSPs given the great number of 

classes. As a matter of fact, each one of the 120 is assigned to 0.83 % of fragments in 

average (σ = 0.56) and the distribution has a median of 0.71 %. LSPs 47 and 48 are 
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less frequent, i.e. they represent 0.33 and 0.30 % of fragments. This relative rarity 

strengthens the significance of the succession of LSPs 46 and 47 observed in protein 

structures ( 4746→P =27.53 %). Sub-network 2 is composed of 12 LSPs encompassing 

6.57 % of fragments. As an example, the super-secondary structure shown in Figure 3, 

corresponds to a pathway involving transitions from LSPs 51 to 60. It is composed of 

four LSPs associated to extended edges leading to an extended core LSP. All super-

secondary structures defined by this sub-network begin with a β-turn followed by a 

small β-strand, and then a second one, longer than the first, and nearly orthogonal to 

this latter. We define this super secondary structure as a turn-ββ-corner. The core of 

this sub-network also encompasses frequent LSPs like 57, 58, 59 or 60 that 

characterize the more frequent type of corner, with occurrence frequencies of 0.91, 

0.78, 0.63 and 0.79 respectively. 

Sub-networks 3 and 4 comprise 6 LSPs. Sub-network 3 describes the chaining 

of 4 four successive LSPs while sub-network 4 characterizes the transition of at the 

most 5 successive LSPs, i.e. sequences of up to 14 and 15-residue long. Sub-network 

3 proposes alternative ways to enter a β-strand after a change in the direction of the 

backbone, always involving an α-turn. We thus named this sub-network α-turn-β-

strand. LSPs of this sub-network represent 4.05 % of fragments. LSPs 106 and 96, 

characterizing this pathway for entering a β-strand, are among the 35 % most frequent 

ones with frequencies of 0.89 and 0.91 % respectively. On the contrary, sub-network 

4 proposes a different situation where β-strand endings lead to a direction change in 

the backbone due to a β-turn. In general, this direction change leads to another 

extended structure. Nevertheless, in each case, this pathway includes bulge-like 

irregularities. Sub-network 4 was identified as an Irregular β-hairpin-turn. In this 

case also, LSPs 118, 84, 85, present in the core of this sub-network, are among the 
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most frequent ones as they represent respectively 0.73, 0.82 and 1.81 % of fragments 

respectively. The total percentage of fragments characterized by the LSPs of this sub-

network is 4.24 %. 

Sub-networks 5 and 6 are the longest (up to 20 residues) and the most complex 

super-structures. Sub-network 5 is composed of 16 LSPs encompassing 19.95 % of 

fragments and presents two main pathways for entering extended structures through 

an α-turn including a β-turn. The first pathway starts with helical structures while the 

second one begins with extended structures. This sub-network can thus be defined as 

an α/β-hairpin. The structural classes composing this sub-network are highly 

populated, i.e., 10 characterize more than 1 % of fragments each. Sub-network 6 

comprises 14 helical LSPs and connecting LSPs characterizing 12.11 % of fragments. 

It presents three main pathways to enter a helical structure. The first pathway connects 

two helical structures with a loop and the two others are constituted of long series of 

connection structures. In general, the latter follow extended structures. Sub-network 6 

can be defined as a α/β-loop-α super structure. Like sub-network 5, sub-network 6 

encompasses very frequent LSPs, 6 of them represent more than 1 % of fragment 

each. 

Finally, Sub-network 7 comprising 9 LSPs (up to 16 successive residues), 

presents alternative pathways to enter a helical structure, either only through 

connecting LSPs or through both extended edges and connecting LSPs. Owing to the 

orthogonal orientation of the connection or extended edge structures with reference to 

the helix, this sub-network was identified as a βα-corner. 7.14 % of fragments are 

characterized by the LSPs of this sub-network. LSPs 64, 65, 66, 67 and 68 represent 

0.86, 1.02, 1.19, 0.79 and 0.97 % of fragments respectively. 
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Together, these 7 sub-networks characterize 24.38 % of transitions observed in 

protein structures. 

According to their transition properties, the remaining LSPs were clustered in 

three categories referred to as groups 8, 9 and 10. Group 8 comprised 11 LSPs 

presented high inwards or outwards transition probabilities with more than one other 

LSP whatever its group. Group 9 was composed of 22 LSPs clustered in 9 small sub-

networks (2 or 3 LSPs) with very high inner transition probabilities. Finally, the group 

10 clustered 19 single LSPs associated to low transition probabilities with other LSPs, 

for two reasons: either they were quite rare and do not have strong transition 

preferences, or, they were very frequent and were a sort of hub toward many 

possibilities (see Methods section and supplementary data IV for details). 

SVMs using PSSMs achieve successful prediction of long local structures 

Global evaluation of predicted lists of local structure candidates 

It must be recalled that the prediction of a fragment sequence is considered as 

correct if the list of five candidates contains the true LSP (Q120) or if the Cα RMSD 

between at least one LSP in the list and the true structural fragment is less than 2.5 Å 

(geometric criterion). This value has to be compared with the intrinsic variability of 

each LSP that ranges from 0.28 to 2.44 Å 25. 

Coupling SVM experts with the evolutionary information represented in the form of 

PSSMs makes the proportion of true-positive predicted LSP, Q120, reach 38.8% (see 

Table I and supplementary data II). This result is quite significant given the large 

number of classes and the length of the predicted sequence fragments. It corresponds 

to a significant gain of 34.6 % over a random prediction and 18.3% for the naïve 

prediction, using a list of five candidates in both cases. Considering the geometric 
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criterion, the prediction rate increases to 63.1%. The gains compared to a random or a 

naïve prediction, are noteworthy, 38.0 % and 15.2% respectively. Table II (third 

column, first row) shows that for the fragments predicted as correct (i.e. 63.1% of 

samples), at least one candidate among the five proposed has an average RMSD of 

only 1.45 Å from the true local structure. For these sequence fragments, the mean 

approximation over the 5 candidates has an average value of 2.54 Å. By considering 

all samples, a satisfying 2.09 Å minimal approximation is still available in average 

among the 5 candidates and the mean approximation for all candidates is 3.03 Å.  

It may be noted that the prediction procedure is not biased towards the most frequent 

and the least heterogeneous classes. Indeed, the prediction of each of the 120 

structural classes is largely better than random. The mean true positive rate per class 

reaches 33.7 %, which corresponds to an average gain of 30.4 % over random. 

Considering the geometric criterion, the SVM_PSSM achieves a 58.1 % mean 

prediction rate per class, i.e. an average gain of 39.2 % over the random prediction. 

These gains are well balanced over all structural classes. The weakest gain was 

observed for the LSP 113, which still scores 13.3 points over random. This class 

presents the largest structural variability, i.e. a mean 2.44 Å Cα RMSD between the 

representative LSP and the fragments of this cluster 25. 

Assessing prediction through a secondary structure vision 

While considering the four secondary-structure-like LSP categories as done 

previously 25, the Q120 ranges from 28.4 % for Ext LSPs to 50.9 % for H LSPs 

corresponding to gains of 24.2 % and 46.5 % respectively over a random prediction 

and of 14 % and 23.5 % over a naïve prediction (see Table I). 

The prediction rates based on the geometrical criterion, ranges from 49.5 % to 

84.6 % (see Table I). Well-balanced gains of 43, 39.3, 36.5 and 33.9 % were obtained 
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for H, E, C and Ext local structures, respectively, over random. When compared with 

the naïve prediction, the gains remain very high, i.e. 23.9, 16.2 and 23.2 for E, C and 

Ext structures respectively, with one exception associated to helical structures, where 

the gain is only 3.5 %. This less significant performance may be attributed to i) the 

high sequence specificities of helical structures that make easier the prediction even 

by a simple sequence similarity search and ii) the choice of the geometric threshold 

2.5 Å, that is not stringent enough to accurately assess the prediction of helical 

structures. Considering a 1.5 Å threshold (see supplementary data II), our method still 

provides a 67.8 % prediction rate for Helical structures. In this case, a higher 6.5 

points gain over a naïve prediction is observed. 

While examining the correct predictions defined by the geometric criterion for 

all predicted fragments, the best available approximations reach in average 0.83, 1.78, 

1.75 and 1.93 Å for H, E, C and Ext fragments respectively, while the structural 

approximation had in average values of 1.21, 2.17, 2.48 and 2.41 Å respectively. 

These results are quite significant if one considers the structural variability existing 

inside the H, E, C and Ext LSP categories, i.e. respectively 1.29 Å (σ = 0.98), 2.14 Å 

(σ = 0.48), 3.34 Å (σ = 0.61) and by distinguishing extended structure entrances and 

exits, 2.87 (σ = 0.68) and 2.58 Å (σ= 0.53) 47.  

Assessing prediction with the view-point of super-secondary structures 

The four categories previously defined help for analysing the LSPs in 

comparison with well-known polypeptide descriptions. However, these categories are 

rather crude and fail to capture specific structural features particularly in coil 

category. To go further, we examined the prediction results obtained for the seven 

different frequent super-secondary structure types we described above, and, the three 
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remaining LSP groups characterizing their transition properties (see Result section: 

Analysis of preferential structural transitions between LSPs). 

With such a description, prediction rates based on geometric criterion range 

from 37% (sub-network 4/Irregular β-hairpin-turn) to 64 % (sub-network 1/α-C
cap

-β-

turn and 2/turn-ββ-corner) for the first seven categories (see Table III) and the rate 

even reaches 73 % for the three last groups. The gains are quite significant ranging 

from 25.5 % (sub-network 4/Irregular β-hairpin-turn) to 42.8 % (sub-network 5/α/β-

hairpin) compared to a random prediction, and from 8.8 % (group 9) to 29.1 % (sub-

network 2/turn-ββ-corner) when compared to a naïve prediction. Interestingly, the 

prediction rates are not related to the number of LSPs in sub-networks (data not 

shown). 

The accuracy of these predictions is well balanced over the different sub-

networks and groups (see Table II). For instance, considering all predicted fragments 

and the first 7 categories, the average geometric accuracy over the 5 LSP candidates 

ranges from 3.07 Å to 3.63 Å. And the optimal structural approximation (minimal 

RMSD over the 5 candidates), ranges from average values of 2.17 to 2.80 Å. The 

groups 8 and 9 are associated with a better accuracy with a mean RMSD of 2.93 and 

2.43 Å respectively. The average minimal RMSD drops in average from 1.94 to 1.56 

Å. This result is related to the high helical content of these two groups. 

More details on predictions and different representative examples of structural 

candidates are given in Supplementary data V, VI, and VII. The results for three 

different proteins belonging to different SCOP classes 48 (α/β , all-α, all-β) are 

described. The prediction rate for these three cases ranges from 71.5 to 74.5%.   
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Assessment of a confidence index 

All the results described above emphasize the importance of identifying the 

sequence regions with high predictive power. Thus an index aiming at estimating the 

quality of the prediction is strongly required. This question was previously addressed 

for accompanying different prediction methods: for instance PsiPred 49 or HYPROSP 

II 50 benefit from indices that estimate the probability to obtain the value by chance. 

Generally, they are related to the information content of the target object. We have 

previously proposed similar indexes, like Neq or confidence index, that effectively 

quantify the reliability of the prediction rate and permit us to focus on specific regions 

of the sequence 13,51,52. 

In the present study, we propose a Confidence Index CI based on the SVMCI 

decision values. This index gives an indication of the extent to which a predicted local 

structure corresponds to a correct prediction.  

The SVMCI decision values obtained on set 1 were divided into 30 equivalent 

parts. The first 8 and the last 5 categories representing only 1.15 and 0.95% of 

predictions respectively were gathered, yielding a final number of 19 categories of 

SVMCI decision values. 

The distribution of the prediction rates as a function of these 19 categories for 

sets 1 and 3 are given in Figure 4 A. The categories are ordered from low to high 

confidence. The curve representing the average prediction rates as a function of the 

categories of SVMCI decision values is clearly sigmoid. Whatever be the set 

considered, the average local structure prediction rate is high (61.3 % and 63.1 % 

respectively), and the distribution of rates as a function of SVMCI decision values is 

almost identical. SVMCI decision values inferior to -0.58 (categories 1 to 5) are 

associated to poor quality predictions, with prediction rates ranging between 20 and 
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30 %. Inversely, SVMCI decision values greater than 1.10 (categories 15 to 19) are 

associated with high quality predictions, the rates ranging from 83.9 to 96.8 %. 

Between these two extremes, the prediction rate increases rapidly according to 

SVMCI decision values categories.  

Hence, the SVMCI decision values are related to the reliability of the 

prediction: the larger they are, the more reliable is the prediction. Consequently, 

SVMCI decision values can be defined as CI values. 

The clear relationship existing between CI categories and the prediction rates 

can be estimated quantitatively using a linear regression after logarithmic 

transformation of results from set 1. This relationship permits the definition of a 

theoretical prediction rate (TPR) as a function of the CI category (Equation 3) 
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This relation can explain 96% of set 1 data (determination coefficient equal to 

0.96) and residue distribution followed a normal law (Lilliefors test; R software 53). 

The model found to be correct for set 1, was assessed on the validation set 3. The 

mean theoretical prediction rate (TPR) calculated on all predictions of set 3 equals 

61.80%, a value very close to the observed rate, i.e. 63.13%. Figure 4 B shows the 

correspondence between the estimated mean TPR for each protein of set 3 and their 

observed prediction rate. A significant linear correlation of 0.77 was observed (p-

value < 2.2 10-16). We also observe a significant correlation (0.86) between the 

estimated mean TPR per structural class and the observed prediction rate. Therefore, 

the confidence index defined here, along with the relation described in equation (3), is 

proved to be very relevant in the estimation of the quality of a prediction.  
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Discussion 

Our results show that the SVM_PSSM local structure prediction strategy can 

give results whose quality and accuracy are far better than a random prediction or a 

prediction based on sequence similarity searches. By reducing the structure space to 5 

relevant candidates for 11-residue long local structures, our method is efficient in 

simplifying the combinatory problem associated with the generation of structural 

models for longer protein sequences. Prediction rates and approximation accuracy 

when compared to simple prediction schemas like random or naïve predictions are 

noteworthy given the large number of classes, the length of the predicted fragments 

and the diversity of the structural classes. Moreover, the confidence index is relevant 

in the identification of regions corresponding to the best predictions. 

In the following section, we will discuss and compare the relevance of our 

strategy to more sophisticated schemas of prediction and state-of-art methods. 

Comparing SVM experts with LR experts 

The LR method, previously developed in 25, was based on a logistic regression 

with the use of single sequence information and supervised with a system of experts. 

These experts estimated the probability for a given sequence fragment to belong to a 

given LSP. All the candidates with a probability larger than a given threshold were 

considered. Hence, for each sequence fragment a list of structural candidates 

belonging to different structural classes was proposed. This list could contain a 

variable number of candidates (from 1 to 5 and 4.2 on average among 120 classes). 

The prediction rate of the method based on single sequence information reached 

51.2%. Compared to a random prediction, a significant gain of 29.3% was observed. 

Moreover, this method was also shown to be very competitive with cutting-edge local 
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structure prediction methods 25, i.e. with Yang & Wang prediction method 6 and with 

HMMSTR predictions based on the I-sites library 54. We also checked that the 

prediction was not biased towards a reduced set of structural classes, but well 

balanced between the whole set of LSPs, confirming the relevance of all structural 

classes and the sequence information they contained. 

 
In the present SVM_PSSM method, we have chosen to fix the number of 

candidates for each sequence (5 candidates in the list). Accordingly, for comparison 

purpose we re-assessed the original methodology defined by logistic regression (LR) 

with a fixed number of 5 candidates. As in our previous study 25, the approach, named 

LR_seq in the following discussion, was carried out using single sequence.  

We also evaluated the putative gain yielded by evolutionary information for 

each of the approaches, LR or SVM (LR_PSSM, SVM_seq respectively). For 

comparison purpose, all these strategies were developed using the non-redundant 

protein databank used in our previous study 25. In the same way, the datasets defined 

earlier were used.  

SVMs and LR show similar performances with single sequence 

When SVM approach was performed with single sequence information, the 

average Q120 equalled 30.61% (see Table I and supplementary data II). This is almost 

equivalent to the value obtained with the LR_seq strategy. With the geometric 

criterion, the SVM_seq prediction rate reached 55.54%. This result was again 

comparable to the result obtained with LR_seq. These similarities were observed for 

the four secondary-structure-like categories of LSPs. Therefore, LR and SVM experts 

behave in a similar way and have similar ability to trap relevant structural information 

with single sequence encoding. This capability is quite interesting in case of orphan 
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protein sequences since in such cases, LR_seq remains an interesting method because 

of to its low computational cost. 

 Improvement of prediction coupling SVMs with PSSMs 

The introduction of evolutionary information in the SVM strategy leads to a 

significant improvement of the prediction performance when compared to both 

approaches performed with single sequence information. This result is achieved as 

well by considering the true positive rate (Q120) as the geometric criterion (+7.3 and 

7.7% respectively). Detailed analyses show that the prediction is improved for all the 

four categories of LSPs based on secondary structures. The gain ranges from 4.5% for 

the connecting structures to 16% for extended structures (see Table I and 

supplementary data II). 

Overall, the significant improvements in the mean true positive rate were 

observed for the majority of the structural classes, independently of their frequency, 

i.e. the Q120 of 74.17% of structural classes was increased compared to the LR_seq 

strategy. Clearly, there is no correlation between the improvement in the prediction 

rate per class and the corresponding class frequencies (correlation coefficient r equals 

to 0.21). For instance, among the 35 weak populated classes (with less than 5% of the 

local structures), two-thirds exhibit an improved Q120 prediction rate. Half of them 

gain by least 10 % increase. Considering the geometrical criterion, the prediction rate 

for 88.33% of LSP classes was increased compared to LR_seq (see Figure 5). Only, 

12 C and Ext classes show limited losses ranging from 1.6 to 6.8 points. These classes 

represent only 7.4 % of fragments. 

Interestingly, when the ten transition categories were considered, significant 

gains were also obtained (on average 7.6%). The largest value was observed for sub-
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network 2 (16%) (see Table III) while the smallest gains of 4.2 and 4.9 % were 

obtained for sub-networks 4 and 5 respectively. 

Finally and more importantly, the prediction of 85.33% of the proteins was 

improved.  

Superiority of SVM with PSSM 

For comparison purpose, we also considered the influence of evolutionary 

information (PSSM) with LR strategy (LR_pssm). In this case, a drastic loss of 

performance was observed. A first explanation comes from the size of the databank 

which, for certain classes, affected the correct estimation of the coefficients of the 

logistic functions. Nevertheless, the main explanation for the reduced performance 

lies on the expert behaviour. Indeed, a detailed analysis showed that the distribution of 

probabilities, brought by the experts, which measured the compatibility between a 

target sequence and a given LSP, were not uniformly spread but mainly confined 

towards extreme values, i.e. 0 and 1. Since the selection and the ranking of candidates 

depend on these values, the introduction of PSSM clearly decreased the discriminative 

power of experts because a very large set of examples is required to appropriately 

train the experts (see supplementary data II).  

 Considering these results, the relevance of coupling SVM experts to PSSMs 

can be emphasized. 

Comparison to cutting-edge other local structure prediction methods 

Comparing local structure prediction methods is not trivial due to the large 

diversity of the existing strategies. Actually, different representations of the local 

structure space, different protocols of prediction and assessment have been defined. 
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We compared our results with three categories of local structure analysis and 

associated prediction methods.  

Backbone torsion angle prediction 

Bystroff and co-workers defined a backbone torsion angle prediction method 

(HMMSTR) relying on an alphabet of 11 conformational states for protein 

backbone54. These states characterized 11 torsion angle regions mapped onto the Φ-Ψ 

Ramachandran plot (see Figure 5 of Bystroff et al.54). In the same way, Yang and 

Wang 6 and Kuang et al. 55 defined local structure prediction methods specialized in 

the prediction of the backbone conformation of the central amino-acid of nine-residue 

sequence fragments. Four states, A, B, G, E, were defined. For comparison purpose, 

they grouped the Bystroff’s eleven main states into the four states they defined 55. 

Similarly, in our previous study 25, we extracted the φ,ψ angles defining each local 

structure candidate we proposed and allocated to the corresponding A,B,G or E states. 

We showed that LR_seq method with 4.2 candidates in average, evaluated in the 

context of backbone torsion angle prediction, yielded a prediction rate ranging from 

64 to 76%. This result, obtained for a single sequence, was comparable to the 75% 

accuracy obtained by Yang and Wang and to the 77% obtained by Kuang et al. while 

their methods profited from the use of information from the results of PSI-PRED 55. 

This result was also comparable to the 74% prediction accuracy obtained for 

HMMSTR. Thus, insofar as our previous strategy, LR_seq, was as efficient as these 

cutting-edge local structure prediction methods, and as the present SVM_PSSM 

strategy gives a larger prediction accuracy compared to LR_seq (~12%), so, the 

methodology we present here, can be considered as  a significant contribution to the 

field of local structure prediction.  
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 Prediction based on Structural Alphabet  

Recently, Sander et al. defined a new structural alphabet associated to an 

efficient prediction strategy 10. They defined 27 canonical local structures of 7-residue 

long by a discretization method taking into account both sequence and structural 

information. Several prediction strategies were tested; the most successful one used a 

combination of Random Forest (RF) classifiers with a representation of the sequence 

as profiles of amino-acid properties. Comparison with SVM_PSSM is arduous because 

of very different numbers of classes and lengths of local structures considered. 

Nevertheless, we tentatively tried to get closer to the Sander et al. prediction 

conditions and we mapped our 120 LSPs in the 27 classes they defined according to 

their structural proximities. Our prediction rate was then evaluated accordingly. Table 

IV reports the prediction rate Q27 obtained by Sander and co-workers 10 for 7-residue 

long local structures. The Q27 results ranged from 34 to 64% for 1 to 5 candidates (see 

10, Figure 10). These results are comparable with the prediction rates that we obtained 

with our SVM_PSSM strategy, which range from 32 to 61 % for 1 to 5 candidates. 

These rates are all the more satisfying in the sense that we predict 11-residue long 

fragments, i.e. 4 residues longer than those predicted by Sander and co-workers.  

The performance of our prediction method can also be evaluated through 

Receiver Operating Characteristic (ROC) curves for each structural class. These 

curves represent  the repartition of true positive rate versus false positive rate 56. They 

are class distribution-independent, and can be calculated for classifiers with 

continuous output.  

For each fragment, we thus computed the difference between the best SVM 

decision value and the decision value of the expert specialized for the class 

considered. The classification performance of each class was then represented by the 
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area under the ROC curve (AUC) that ranges between 0.5 (random prediction) and 1 

(perfect prediction). The AUCs that we obtained range from 0.71 to 0.92, and the 

average value is 0.82 (see Figure 6). The minimal and maximal values correspond to 

respectively the classes 55 (connection structure) and 33 (extended edge structure). 

Thus, even while considering the AUC values, our prediction method performs as 

good as or slightly better than Sander et al. approach, for which the AUCs range from 

0.68 to 0.88. 

An interesting application of LSP prediction: the long loop prediction 

Loop prediction is a major step and a difficult task (even the most difficult 

one) confronted in the context of homology modelling methods. Loop prediction is 

frequently performed on a protein structural framework where the secondary 

structures are already delineated. Thus, per se, the approach benefits from the 

complete or partial knowledge, of the rest of the protein structure. Interesting 

protocols have recently been proposed that generally comprise two main strongly 

imbricated tasks, even concomitant: the sampling of the conformational space of the 

loop fragment and the scoring of the corresponding sampled conformations (see 

below). The sampling may be carried out using a set of structures extracted from a 

dedicated database or using ab initio methods. The latter seems to be more effective 

for long loops 57. Most recent approaches perform rather well and accurately for loops 

comprising less than 10 residues. Above this limit, sampling becomes the stumbling 

block of the procedure because it requires tremendous cpu-time to be efficient and to 

yield accurate results 58. Thus prediction of long loops remains a challenging field.  

Consequently, the question we address here concerns the efficiency of the LSP 

description coupled with the use of SVM_PSSM to provide rapid predictions of 

conformations for a loop region. Accordingly, we compare the accuracy obtained with 
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ab initio prediction methods dedicated to loop prediction to  the accuracy that we 

observe for the connection structures (assigned to C LSPs) using our generic local 

structure prediction method. We focused on five loop prediction methods that were 

recently compared: LoopBuilder 59, the Modeller loop prediction method 60, LOOPY 

57, RAPPER 61 and PLOP 58. The comparison we propose is rather difficult for two 

main reasons: the definition of the loops region and the evaluation of the prediction 

accuracy. Indeed the “C” LSPs connection structures can correspond to loops shorter 

than 11 residues or, inversely can also be part of longer loops. In addition, the 

assessment is done for all protein loops, i.e. 24 856 fragments while most loop 

prediction methods carefully focus on specific loop datasets. For instance, 

LoopBuider discards structures crystallized at a non standard pH and loops found to 

be involved in interaction with a ligand. The datasets may thus be very small (for 

example, LoopBuilder is assessed on 54 loops which are 11 residues long). So, our 

results may be affected by artefacts due to ligands or experimental conditions. 

Briefly, we recall the main and the common features of the different 

approaches tested. All of them are all-atom prediction methods and rely on a two-step 

algorithm: first the sterically allowed backbone conformations are sampled and then 

they are scored and ranked based on the most favourable energy. Importantly, the 

selection is done after taking into account the conformation and the side chain 

coordinates of the rest of the protein.  

The Modeller loop prediction method samples all-atom loops in a Cartesian 

space and optimizes the energy function by coupling conjugate gradients and 

molecular dynamics with simulated annealing. Before selecting the conformation 

associated with the lowest energy value, 50 to 500 independent optimizations are done 

60. LOOPY relies on a colony energy filter that favours conformations having many 
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neighbours in configurational space. For a single loop prediction, 2000 random 

backbone conformations are generated and then filtered 57. In the same way, for a 

target, RAPPER generates 1000 backbone conformations using fine-grained Φ/Ψ 

tables. The best candidate is then selected by coupling the AMBER force field and the 

Generalized Born/Surface Area (GBSA) solvatation model 61. PLOP performs a very 

extensive multistage Φ/Ψ conformational sampling and scores the generated loop 

conformations using an OPLS all-atom force field combined with a generalized Born 

solvation and a new hydrophobic terms 58. Lastly, LoopBuilder relies on LOOPY for 

sampling and select best conformations using the DFIRE potential before minimizing 

62. 

 Our purpose is not to compete with these elaborated approaches that make use 

of force fields, minimization techniques and energy functions. They were assessed 

mostly on small and carefully selected samples while in our case, the assessment was 

done on a large and diversified set of examples, so with a wider variability. 

Nevertheless, our point is to show that our approach can provide interesting structural 

start points for a deeper analysis or a more elaborated algorithm. 

For assessing the accuracy, we choose to compute the local Cα RMSD 

between the predicted and the real local structure. Classically, the criteria used in loop 

prediction methods is a “global RMSD” on the loop main-chain heavy atoms after 

superposition of the main-chain atoms in the stem residues on each side of the loop60. 

Fiser and al. gave an idea of the relation between the two measures, i.e. the global 

RMSD is about 1.5 times the local RMSD for the heavy main-chain atoms for a 8-

residue loop, and, the local Cα RMSD is about the same as the local RMSD computed 

for all the heavy main-chain atoms60. For a comparison purpose and to give an idea of 

the scale, we will use this factor in the following discussion. 
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For 11-residue loops, after sampling and selection of the best structural 

candidate, the method implemented in Modeller achieves an average global RMSD 

value of 5.5 Å, LOOPY 3.52 Å, RAPPER 4.94 Å, PLOP 1.00 Å and LoopBuilder 

2.50 Å. Over the 5 candidates per target fragment that are predicted by our method, 

we obtained an average local Cα RMSD of 3.41 Å (see Table III, row untitled “C 

secondary structure categories”), which corresponds to a global RMSD near 5.12 Å if 

a scaling factor of 1.5 factor is considered. Among these 5 candidates, the best one 

succeeded to have an average Cα RMSD prediction accuracy of 2.48 Å that can be 

associated to a 3.72 Å global RMSD accuracy using a factor of 1.5. Moreover, if we 

now consider fragments correctly predicted according to our geometrical criteria 

(49.5% of fragments), the mean local RMSD accuracy over the 5 candidates was 2.93 

Å (4.40 Å with a 1.5 factor) and with the best candidates an average accuracy of 1.75 

Å was obtained (2.63 Å with a 1.5 factor). This last result is all the more interesting 

that the confidence index we have developed helps to give a direct assessment of 

prediction and thus indicates fragments that are well predicted.  

These results are comparable with Modeller, LOOPY and RAPPER 

accuracies. LoopBuilder and PLOP perform better. Nevertheless, the computational 

time for these prediction methods is very high. The average CPU time for one 11-

residue loop target is about 12 days for PLOP on a single processor 58. LoopBuilder, 

for which computational efficiency was a challenge, still perform in few hours 59. 

Thus, our results are all the more interesting considering the fact that the prediction is 

done instantaneously for a target sequence. In addition, it has to be noted that we do 

not introduce any constraint on the extremities of the loop regions or add any 

information on the rest of the protein and side-chain position. Moreover, there is no 

any energetic criterion that filters the results. So, our prediction method is so 
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competitive with some of the cutting-edge loop prediction methods. More 

importantly, it would be a noteworthy help for proposing few relevant and accurate 

candidates that could enrich this field of research by providing filter or by directing 

the sampling of the most performing strategies. 

Demanding parameterization of SVM experts 

A parameterisation of SVM experts is required before construction of models. 

We checked the influence of two pairs of parameters and selected the one that 

provided the largest prediction rates. We took care to avoid biased prediction that 

favour of the most populated classes. The results obtained with the pair of parameters 

(γ,C) that showed a lower performance, are discussed in supplementary data I. 

In addition, the choice of the kernel is a matter of discussion. Hsu et al. 

suggested that RBF kernel was a reasonable choice compared to other kernels because 

(i) linear kernel is a special case of RBF, (ii) sigmoid kernel behaves like RBF for 

certain parameters and is not valid under some others, and (iii) polynomial kernel 

requires the optimization of more parameters and could have more numerical 

difficulties 44.  

Further improvement could also be achieved by considering the fact that 

sequences and profiles are structured data, i.e. information organisation and order do 

matter. Few kernels specially designed for profiles were already defined 45, 63, 64 and 

could be used for defining various relevant feature spaces. 

Different nature of structural prediction using LR_seq or SVM_PSSM 

The comparison between the two strategies was not limited to the prediction 

rate. We also examined the overlap between lists of candidates yielded by each 

approach. Considering LR_seq and SVM_seq lists with very similar success rate, 



 - 35 - 

78.4% of correct candidates were found in common. This large but incomplete 

covering rate is probably due to the difference in the mapping of input data by LR and 

SVM classifiers. The difference in lists covering increases when PSSMs are included 

in the SVM strategy. Indeed, only 51.2% and 50.4% of the correct structural 

candidates were found in common between the SVM_PSSM lists and the LR_seq and 

SVM_seq lists. Thus, since correct predictions found by LR_seq were not found by 

SVM_PSSM and reciprocally, further improvement is still possible. 

 

Conclusions 

In this work, we have focused on the assessment of a new method we 

developed for predicting long local protein structures. We coupled efficient support 

vector machines classifiers with an enriched representation of the target segment 

sequences by using evolutionary profiles obtained from PSI-BLAST. Five structural 

candidates are predicted per sequence window. This combination yields a prediction 

rate of 63.1% for 120 classes of 11-residue local structures considering a geometrical 

approximation better than 2.5 Å as a correct prediction. This result corresponds to a 

very significant gain over other approaches aiming at predicting long structural 

prototypes. It is worth noting that this improvement encompassed all LSPs categories. 

Indeed, the average prediction rate of 88.3 % of structural classes is improved when 

compared to a previous strategy proposing lists of five structural candidates. 

We also focus on the overlapping properties of LSPs and propose transition 

sub-networks and groups characterizing their implication in frequent super-structures 

and their properties in a global structural network. This original description is an 

interesting way of assessing prediction for fragment structures longer than 11 
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residues. For instance, a significant 60.9 % prediction rate is obtained for the sub-

network 5 which can characterize sequences up to 20 residues in length.  

Moreover, we address the question of the structural “predictability” of a 

sequence by defining a confidence index for prediction. This index reflects the 

“informativity”, i.e. the information content, of a target sequence according to the 

experts’ ability to give a correct prediction. It is shown to be a valuable tool for 

estimating a theoretical correct prediction rate along a target protein sequence. 

Confidence indices can be useful tools to guide the generation of homology or de 

novo protein models involving local structure predictions. A hierarchical procedure 

for modelling a protein structure could be envisaged where first, the regions 

considered as accurately predicted would be selected and fixed and then regions with 

lower informativity would be examined more extensively, by considering for instance 

a larger number of candidates. As a whole, this procedure would significantly reduce 

the global conformational space sampling for the entire protein sequence.  

These promising results suggest that our approach will prove effective in real 

biological and biochemical applications. Indeed, applications for our local structure 

prediction strategy are numerous and diverse. It can be included in de novo or 

homology modelling of global protein structures and for the prediction of loops. 

Concerning the representation of the sequence, according to Pei & Grishin 9, 

combining evolutionary information with structural “preference” in amino acids 

should be a very promising way to improve local structure prediction methods. In our 

method this combination is implicitly done. An important point of our strategy is that 

PSSMs were derived from the complete target sequence. This choice made it possible 

to take into account the whole structural and physico-chemical environment of 

sequence fragments, and to learn amino acids preferences in sequence families. It 
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would be interesting to compare them with PSSMs calculated only on single 

fragments and to quantify the extent to which such fragment PSSMs capture long 

range interactions and properties. The quality of PSSM would also be an important 

point to study further. Actually, a benchmarking of the procedure for taking into 

account potential misalignments could lead to better prediction performances. As 

suggested by Altschul and co-workers, one way to refine alignments of PSI-BLAST 

would be to construct a multiple alignment of the sequences found and to calculate a 

new PSSM. This matrix can then be used in steps for rescoring and realigning 

database sequences 38. Another important point is the handling of sequences with very 

few homologues for which the use of PSSM could be inappropriate (see 

supplementary data VIII). An analysis of raw PSI-BLAST alignments could help in 

identifying these cases and elaborating an adapted strategy for prediction. 

Our future work will focus on global 3D structure prediction. Our approach will rely 

on one hand, on local structures prediction from sequence and on the other hand, on a 

fragment assembly strategy taking into account predicted global constraints. In this 

context, the use of the frequent sub-networks defined here will be particularly useful 

and the intrinsic flexibility of the structures will be taken into account. Beside its 

utility for better understanding the Hybrid Protein Model and for assessing prediction 

quality as done in this study, this new description will be particularly fruitful toward 

the proposition of 3D protein models. As a matter of fact, taking account of LSP 

transition probabilities should not only help to appropriately filter the results of the 

prediction by preventing the choice of incompatible LSPs in two successive sites, but 

also allow predictions for longer local structures.  
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Figures 

 

Figure 1 - Datasets organisation and usage 

Set 1 was used for learning the relation between confidence index categories and 

prediction rate. Set 2 was used as a training set for prediction and for the development 

of the confidence index. Set 3 for prediction and confidence index assessment. 
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Figure 2 - Global preferential structural transition network between prototypes.  

For a better representation, only transitions with a probability greater than 0.15 are 

shown. These represented transitions, does not represent the whole complexity of the 

protein structure space but it shows in average 45.56 % (σ ± 22.22) of transitions from 

a given LSPs to one, two or three others. It takes into account the 51% of the most 

frequent transitions observed. Actually, each LSP has at least a 0.15 probability to 

succeed or precede another given LSP. The only exception is the LSP 108. 

Transitions with a probability between 0.15 and 0.20 are shown in thin black arrows. 
Blue, green and yellow arrows show respectively 0.20 to 0.30, 0.30 to 0.50 and 0.50 
to 0.70 probability transitions. Red arrows show transitions with probability more 
than 0.70. Circular nodes with black and green border correspond to helical and 
connecting LSPs respectively. Rectangular nodes with red and blue border correspond 
to extended and extended edge LSPs respectively. Seven preferential transition sub-
network of LSPs have been defined (see Figure 3). Each node is filled with a color 
indicating its transition category. 
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Figure 3 - 7 LSP sub-networks represent significant transition probabilities. 

These sub-networks made it possible to assess of the prediction of LSPs involved in 

frequent super-local protein structures. Examples of these local structures in proteins 

are given next to the corresponding sub-network. Their position in proteins, their 

assigned prototypes chain and length are indicated.  

Only transitions greater than 0.2 are represented. Blue, green, yellow and Red arrows 

show 0.2 to 0.3, 0.3 to 0.5, 0.5 to 0.7 and more than 0.7 probability transitions 

respectively. Circular nodes with black and green border correspond to Helical and 

Connecting LSPs respectively. Rectangular nodes with red and blue border 

correspond to Extended and Extended edge LSPs respectively. 
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Figure 4 - Definition and assessment of a confidence index (CI).  

A: representation of the prediction rate associated with each category of CI on set 1 

and on set 3. A model of the relation between categories and prediction rate was fitted 

on set 1 and is shown by a dashed line. The histogram represents the number of 

correct (dark stripes) and of incorrect (light stripes) predictions for each CI category 

on set 3. CI Categories numbered from 1 to 19 correspond to the following intervals 

of SVM outputs: ]-∞, -1.32], ]-1.32, -1.14], ]-1.14, -0.95], ]-0.95, -0.77], ]-0.77, -

0.58], ]-0.58, -0.39], ]-0.39, -0.21], ]-0.21, -0.02], ]-0.02, 0.17], ]0.17, 0.36], ]0.36, 

0.54], ]0.54, 0.73], ]0.73, 0.92], ]0.92, 1.10], ]1.10, 1.29], ]1.29, 1.48], ]1.48, 1.67], 

]1.67, 1.85], ]1.85, +∞]. B: representation of the prediction rate per protein observed 

on set 3 according to the mean theoretical prediction rate (TPR) estimated per protein 

based on to CI values categories. The model corresponding to the linear relation 

between these 2 variables is shown by a solid line. 
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Figure 5 - Global improvement of the local structure prediction per structural 

classes using the SVM_PSSM strategy.  

Comparison of the 120 prediction rates obtained using the LR_seq and the 

SVM_PSSM strategies. 
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Figure 6 – ROC curves for the 120 structural classes  
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Tables 

Table I - Local structure prediction results 

 
 

Table II – Structural accuracy of the Local structure prediction.  
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Table III – Local structure prediction per transition category.  

 

Table IV – Comparison with Sander & al. 10 local structure prediction. 

 


