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 Abstract  

Three-dimensional structural information is critical for understanding functional 

protein properties and the precise mechanisms of protein functions implicated in 

physiological and pathological processes. Comparison and detection of protein 

binding sites are key steps for annotating structures with functional predictions and 

are extremely valuable steps in a drug design process. In this research area, MED-

SuMo is a powerful technology to detect and characterise similar local regions on 

protein surfaces. Each amino acid residue's potential chemical interactions are 

represented by specific Surface Chemical Features (SCF). The MED-SuMo heuristic 

is based on the representation of binding sites by a graph structure suitable for 

exploration by an efficient comparison algorithm. We use this approach to analyze 

one particular SCOP superfamily which includes HSP90 chaperone, MutL/DNA 

topoisomerase, histidine kinases and α-ketoacid dehydrogenase kinase C (BCK). They 

share a common fold and a common region for ATP-binding. To analyze both similar 

and differing features of this fold, we use a novel classification method, the MED-

SuMo Multi approach (MED-SMA).  We highlight common and distinct features of 

these proteins. The different clusters created by MED-SMA yield interesting 

observations. For instance, one cluster gathers three types of proteins (HSP90, 

topoisomerase VI and BCK) which all bind the drug radicicol. 
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 Introduction 

Protein three-dimensional (3D) structural information help to understand 

functional protein properties and the precise mechanisms of proteins implicated in 

physiological and pathological processes (Wendt, Weiss et al. 2008). Knowledge of 

3D protein structures linked to small-molecules can be used for structure- and ligand-

based drug design approaches. (Guido, Oliva et al. 2008; Waszkowycz 2008) It also 

gives direct hints to the protein functional mechanisms. A protein’s activity often 

depends on a small, highly conserved set of residues within the binding site (Bartlett, 

Porter et al. 2002; Porter, Bartlett et al. 2004). Comparison and detection of protein 

binding sites are key steps for annotating structures with functional predictions. In this 

field, Structural Genomics consortia have radically changed mankind's base of protein 

structural knowledge. Their endeavours have permitted the resolution of numerous 

structures characterized as “Unknown function”, and multiple functional sites are not 

associated with any known binding partner (Fox, Goulding et al. 2008). 

Consequently, the development of computational methods to functionally annotate 

protein structures has become a major research area.  

The simplest approaches are based on sequence analogy, e.g., PSI-BLAST 

(Altschul, Madden et al. 1997), or on the characterization of functional patterns or 

profiles, e.g. PROSITE (Bairoch 1991). They help to draw on knowledge and 

assumptions of protein functions in assigning predicted functions.  However, they 

cannot embrace the complexity of local 3D folds. During the past years, various 

methods to compare and detect binding sites have been elaborated; they use diverse 

types of descriptors. Their general purpose is often to create automated functional 

annotation methods independent from amino acid sequence or from global fold 

similarity, e.g., CavBase (Schmitt, Kuhn et al. 2002), SiteEngine (Shulman-Peleg, 

Nussinov et al. 2005), FLAP (Baroni, Cruciani et al. 2007), CPASS (Powers, 

Copeland et al. 2006) or eF-seek (Standley, Kinjo et al. 2008). 

Some of these approaches share gross features but they also have notable 

distinctions. For instance, SiteEngine and CavBase both associate physico-chemical 

proprieties to structural characteristics. However, SiteEngine allows the comparison 

of entire protein surfaces to a binding site database, whereas CavBase is restricted to 

cavity comparisons. The web-based version of SiteEngine is restricted to the 
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comparison of a single site versus one protein structure (Shulman-Peleg, Nussinov et 

al. 2005). CavBase detects related cavities based on a clique detection algorithm 

(Schmitt, Kuhn et al. 2002) while CPASS comparison uses an alignment of binding 

site pairs through a root-mean-square-difference (RMSD) scoring function (Powers, 

Copeland et al. 2006). Roterman has developed an innovative methodology based on 

irregular hydrophobicity distribution (Brylinski, Prymula et al. 2007). A few other 

methods are based on the detection of conserved residues to characterise binding sites, 

e.g. Evolutionary trace method (Lichtarge, Bourne et al. 1996; Mihalek, Res et al. 

2006; Morgan, Kristensen et al. 2006)  or sequence alignment with a dedicated dataset 

as Catalytic Site Atlas (CSA) (Porter, Bartlett et al. 2004). 

In this research area, SuMo is a powerful technology to localize similar local 

regions on protein surfaces i.e., binding sites (Jambon, Imberty et al. 2003). Each 

chemical property, or interaction, of an amino acid residue is represented by a specific 

Surface Chemical Feature (SCF). These are gathered in triangles to constitute a SuMo 

graph vertex. Since each SCF is associated with heterogeneous geometrical 

properties, and that triplets have specific superimposition rules (distance, angle), the 

comparison heuristic is extremely rapid. The comparison of a 3D motif against all the 

binding sites of the PDB can be performed in a few minutes (Jambon, Andrieu et al. 

2005). MED-SuMo is the latest evolution of SuMo software developed by MEDIT-

SA (MEDIT-SA). Recent developments have improved its binding site database, and 

have included novel functional annotation tools as presented in a recent study 

(Doppelt, Moriaud et al. 2007). 

Proteins are also classified according to their folds (Jefferson, Walsh et al. 

2008), e.g., SCOP (Structural Classification of Proteins) (Murzin, Brenner et al. 1995; 

Andreeva, Howorth et al. 2008), that provides a manually refined classification with 

detailed and comprehensive descriptions of the structural and evolutionary 

relationships of the known protein structure (Murzin, Brenner et al. 1995; Andreeva, 

Howorth et al. 2008). However, a critical limitation of these fold-based classifications 

is the use of complete protein folds or protein domains. Similarity of fold does not 

necessarily correspond to a similarity of function. In this paper, we focus on an 

interesting SCOP superfamily which includes the Heat Shock Protein 90 SCOP 

family (HSP90, see Figure 1).  

HSP90 is one of the most abundant proteins. Its different forms exhibit mainly 

chaperone functions associated to protein folding, cell survival, (Picard 2002), 
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apoptosis and tumour repression (Whitesell and Lindquist 2005). It binds ATP (see 

Figures 2a and 2b) and is the target of some innovative drugs including geldanamycin 

which has enables 50% reduction of tumour growth (Goetz, Toft et al. 2003) and  

celasterol which disrupts interactions between HSP90 and Cdc37 in pancreatic cancer 

cells (Zhang, Hamza et al. 2008). Some recent research focussed on a new potential 

drug, radicicol. This molecule has a very high affinity for HSP90 (20 nM) (Roe, 

Prodromou et al. 1999). Figure 3 shows the association of the drug with the HSP90 at 

the binding site normally filled with a natural ligand (Roe, Prodromou et al. 1999). 

However, radicicol is not specific to HSP90 as it binds bacterial Sensor Kinase PhoQ 

(Guarnieri, Zhang et al. 2008), and topoisomerase VI (Corbett and Berger 2006). An 

interesting detail is that HSP90 chaperone, MutL/DNA topoisomerase or histidine 

kinases share (see Figure 1) a common fold and that a common region of ATP-

binding has been detected (see Figures 2c and 2d).  

To analyze the similar and different features of this fold, we use a novel 

classification method, MED-SuMo Multi approach (MED-SMA), based on the MED-

SuMo technology. In this work, binding sites from the SCOP superfamily ATPase 

domain of HSP90 chaperone / DNA topoisomerase II / histidine kinase proteins are 

gathered in a dataset, compared pairwise and classified using the Markov Clustering 

algorithm (MCL) (van Dongen 2000). Results from this method highlight common 

and distinct functional features between the analysed proteins. 

 

 Materials and methods 

 Protein structure database. 

SCOP web site provides the list of proteins associated to a selected fold (Murzin, 

Brenner et al. 1995). The “ATPase domain of HSP90 chaperone / DNA 

topoisomerase II / histidine kinase” superfamily contains 116 PDB structures 

(http://scop.berkeley.edu/data/scop.b.e.ccg.A.html). The protein binding sites were selected to 

perform the classification. 
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 MED-SuMo Algorithm  

MED-SuMo is designed to localize similar regions associated to a defined function 

(Jambon, Imberty et al. 2003; Jambon, Andrieu et al. 2005; Doppelt, Moriaud et al. 

2007). A key advantage is its ability to detect binding site similarities even when local 

flexibility is observed. Its heuristic is based on a 3D representation of macromolecules 

using precise Surface Chemical Features (SCFs). For MED-SuMo, a protein structure 

is represented by a set of functional groups including, for example. unbound hydrogen 

bond (Hbond) donors or acceptors, accessible sides of aromatic rings and carboxylate, 

charges, hydroxyl groups. Each feature encodes its chemical characteristics with 

precise geometrical properties. The overall MED-SuMo comparison methodology is 

presented in Figure 4. SCFs are displayed on the protein structure through a 

lexicographic analysis of the atoms in the PDB files, i.e., a residue is represented by a 

set of representative SCFs (cf. figures 4a and 4b). Their positions and orientations are 

filtered as shown in figure 4c. Remaining SCFs are assembled into triplets with 

specific geometric characteristics e.g. edge size, perimeter, angles. (cf figure 4d). The 

full triplet network is stored in the MED-SuMo database as a graph data structure 

where triplets are the vertices and edges connect adjacent triangles (i.e., those sharing 

at least two SCFs). 

To compare graphs, MED-SuMo looks for compatible triplets; composed of 

compatible SCF (cf figure 4e). These triplets are called comparison “seeds”. When a 

seed is detected, MED-SuMo extends the comparisons to the vertices of the 

neighbourhood, until no more similarities are found. This process enables the 

formation of similar patches (common groups of SCFs) between two graphs, 

weighted up by the MED-SuMo score (Jambon, Imberty et al. 2003). These 

comparisons are usually performed between a query and a database of precompiled 

graphs. Two kinds of MED-SuMo database are commonly used: The binding site 

database that is composed from the SCFs around co-crystallized ligands and the full 

surface database, composed from SCFs covering the whole surface of each studied 

protein, typically the entire PDB. The database characteristics are defined by three 

essential parameters: the size of the ligand environment taken into account by MED-

SuMo (named ligand _radius and only concerning the binding site database), the 

maximal distance between two SCFs to be included in a triplet (named edge_max) 

and the maximal perimeter for a triangle (named max_edge_sum).  
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 Classification of protein binding sites.  

As noted, MED-SuMo has an interesting and original approach to detect 

structural and functional similarities between protein binding sites (Jambon, Imberty 

et al. 2003; Jambon, Andrieu et al. 2005; Doppelt, Moriaud et al. 2007). We decided 

to apply this approach to classify defined sets of structures. This new method, named 

MED-SuMo_Multi Approach (MED-SMA), enables the comparison of all binding 

sites from a set of proteins using a pairwise comparison system. Matching regions are 

found in the binding sites to derive a similarity graph. This graph is classified with the 

Markov Clustering algorithm (MCL (van Dongen 2000)). Figure 5 illustrates the 

overall procedure. For this work, MED-SMA is only applied on the MED-SuMo 

binding sites database. 

To begin, a set of proteins is selected (see previous paragraph, cf. Figure 5a). 

Ligands' characteristics are used to decide which binding sites to include in the MED-

SuMo database. Once the ligands parameters are set, the database is created and the 

pairwise comparison is launched using the standard MED-SuMo comparison 

procedure.  

These comparisons highlight similar region between pairs of binding sites (cf 

figure 5b) represented by groups of SCFs called patches. Only comparisons with a 

MED-SuMo score higher than a fixed cut-off (parameter score_min) are accepted. 

Patches associated to the same binding sites are analyzed: if two patches share enough 

SCFs (defined by a threshold parameter named covering_factor), they are merged in a 

multipatch (cf figure 5c). A multipatch is a set of SCFs common to several binding 

sites of the protein set; they can also be called sub-sites. They represent the true 

meaningful common regions of binding sites. They have two properties: (i) enough 

SCFs are in common, such that binding sites are structurally and chemically similar, 

and (ii) they can provide a measure of sub-pocket similarity. These measures are used 

to compute a similarity matrix.  For this matrix, the MED-SuMo score between 

matching multipatches is calculated (cf figure 5.d). MCL is used to interpret the 

matrix through classification of the protein binding site set into clusters of sub-sites 

(cf figure 5e). A 2D plot of the clusters can be visualized using tools such as 

Biolayout (Enright and Ouzounis 2001; Goldovsky, Cases et al. 2005).  
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 Results 

 MED-SMA Classification 

To generate the MED-SuMo database, only binding sites co-crystallized with ligands 

with more than ten atoms are selected. 101 of the originally selected 116 PDB 

structures satisfy this filter. This yields a total of 146 binding sites in the final 

database. Several kinds of ligands are present, purines e.g. Adenosine Tri-Phosphate 

or N-Ethyl-5'-Carboxamido Adenosine, or potential drugs, e.g. Radicicol or 

Novobiocin. Of these 146 binding sites, 78 are from HSP90, 38 from Topoisomerase / 

MutL, 26 are from Histidine Kinase and 4 are from α-ketoacid dehydrogenase kinase 

C (BCK). The database parameters are set to a ligand radius of 6.0 Ǻ and triangle 

parameters of 13Ǻ and 39 Ǻ (respectively edge_max and max_edge_sum). To classify 

this dataset, MED-SMA takes around 2 minutes on a 4 CPU machine. The 

classification parameters are set to a minimal compatibility score (score_min) of 4.0 

and a covering_factor of 0.6. 

Here, the MED-SMA approach produces 5 clusters. The distribution of these 

clusters in regards to the SCOP families is shown in Table 1 and the composition of 

each cluster is available in supplementary data 1.  

Two types of MED-SMA clusters are seen. Three clusters are homogeneous as 

they contain only proteins from a unique SCOP family (MED-SMA clusters 1, 3 and 

5). Two clusters are heterogeneous as they contain at least two SCOP families (MED-

SMA clusters 2 and 4). MED-SMA clusters 1 and 3 are specific to Topoisomerase / 

MutL while cluster 5 is specific to Histidine kinase. MED-SMA cluster 2 contains 

binding sites from two families (i.e., BCK and histidine kinase) and MED-SMA 

cluster 4’s binding sites are from three of the four families (HSP90, 

Topoisomerase/MutL and BCK). 

 

 MED-SMA clusters 1 and 3 

MED-SMA clusters 1 and 3 contain respectively 22 and 6 binding sites of the 38 

proteins of the topoisomerase / MutL / DNA gyrase family. The two forms of 

topoisomerases IV structures of Escherichia coli (PDB code 1S14 and 1S16) share 

99.5% sequence identity except for a 23 residue insertion in 1S16. These two proteins 

are separated by MED-SMA. A precise look at their ATP binding sites highlights 
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structural similarities but, above all, some strong distinctions. Figure 6 shows a 3D 

superimposition of these proteins. The region noted (1) on Figure 6 shows an 

excellent superimposition of several β-sheets and 2 α-helixes. Moreover a part of the 

binding sites is also similar, with a set of five SCFs well superimposed (noted (2) on 

Figure 6). Conversely, the other side of the binding site (noted (3) on Figure 6) is 

quite diverse. Ligands of these two topoisomerases are novobiocin for 1S14 and 

Phosphoaminophosphonic Acid-Adenylate Ester (ANP) for 1S16. They are not 

located at the same spatial position and their overlap is small (~10 atoms) compared 

to their respective sizes (44 atoms for novobiocin and 31 atoms for ANP). 

Furthermore, novobiocin can not fit at all in the 1S16 binding site, otherwise a steric 

clash appears with 1S16’s α helixes (noted (4) on figure 6). Thus, binding sites from 

MED-SMA clusters 1 and 3 do not share sufficient similarities to be gathered by 

MED-SMA, neither can they bind the same kind of molecules. Interestingly, the two 

forms are very close but the residue insertion causes strongly diverging affinities to 

ligands of this class (Bellon, Parsons et al. 2004). So, our results reinforce the study of 

Bellon and co-workers. Moreover, it characterizes with elegance the fact that these 

two distinct local conformations are found in different related proteins. 

 MED-SMA cluster 4 

As mentioned earlier, MED-SMA cluster 4 gathers three different SCOP families. It is 

the largest cluster, containing 89 binding sites. All HSP90s of the dataset are present 

(78 binding sites), 10 from mutL/DNA topoisomerase family (with 1 topoisomerase 

VI, 5 MutL and 4 PMS2) and 1 from BCK family. Only the histidine kinase family is 

not represented in this MED-SMA cluster. The ligands are highly diverse with 48 

unique ligands found. 

Binding sites in this MED-SMA cluster share a common set of SCFs. Figure 7 shows 

a global superimposition of one structure of each family. The white rectangles show 

similarities whereas the remainder is very different as represented in the global 

superimposition of all the protein families in Figure 1. Figure 8 shows a close view 

around the radicicol. The eight labelled SCFs (circled in yellow) are shared by all 

superimposed structures in figure 7. They are located all around the ligand meaning 

that the similarities concern the whole binding site. 

The fact that MED-SMA gathers the binding sites from three different SCOP families 

implies a high probability that the binding modes are related. Considering the non-
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specific drug radicicol which binds HSP90 and topoisomerase VI (Corbett and Berger 

2006), we could easily make the hypothesis that this drug would also bind the 

different proteins included in this MED-SMA cluster. 

 

 MED-SMA clusters 2 and 5 

MED-SMA clusters 2 and 5 mostly consist of histidine kinase. MED-SMA cluster 2 

is heterogeneous while MED-SMA cluster 5 is homogeneous. Cluster 5 is very 

worthwhile because it is pure and that the dimensions of its binding sites are very 

similar as they all bind purine ligands. Since the binding sites gathered by MED-SMA 

share binding modes to ligands, this type of cluster could be used to search for 

specific drugs; here, drugs to inhibit histidine kinase CheA action.  

Interestingly, MED-SMA cluster 2 also contains two histidine kinase CheA 

(PDB codes 2CH4 and 1I5D). The separation of proteins from the same family in two 

different clusters is due to differences between their binding sites. When 1I5D’s 

binding site is compared to histidine kinase CheA from cluster 5, the MED-SuMo 

score is less than 4.0 (which is the cut-off we chose for the pairwise comparison step). 

So, a drug designed to inhibit binding sites of cluster 5 would not bind (or not with 

the same affinity) the two excluded histidine kinase CheA binding sites. 

Another interesting point on MED-SMA cluster 2 is that it contains both BCK 

and anti-sigma factor spoIIab. These two proteins are inhibited like HSP90 by the 

radicicol. However, as they are not associated to MED-SMA cluster 4, it may reflect a 

specific binding mode.  

 

 Discussion 

The detection of functional sites on protein surfaces is important for the identification 

of biological activity. Ligand-protein interactions occur for the majority of protein 

structures and they are implicated in major biological processes. However, with no 

help from known related sequences or structures their detection is difficult (Brylinski, 

Prymula et al. 2007). Several innovative approaches have been proposed, i.e. the use 

of hydrophobicity distribution on protein structures based on the fuzzy oil drop model 

(Dessailly, Lensink et al. 2007), the destabilization of limited protein regions (Brown, 

Krishnamurthy et al. 2007), phylogenomic classification of protein sequences 
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(Ramensky, Sobol et al. 2007) or the classification of known protein catalytic sites 

(Mao, Wang et al. 2004). Prediction of protein functional sites is an important step to 

identify small-molecule interactions for drug discovery (Niefind, Putter et al. 1999) 

and it can be very useful to optimize drug design (Yde, Ermakova et al. 2005). 

Another valuable application is as a pre-processing step to reduce the search space for 

rigorous computational docking algorithms. 

Methods to compare binding sites have been developed using various kinds of 

structural descriptors, e.g., CavBase uses pseudocenters (Nebel, Herzyk et al. 2007), 

and the strong hypothesis that chemical similarity and activity are linked. In this field, 

MED-SuMo has an interesting approach using Surface Chemical Features (SCF). 

Each SCF represents a pertinent chemical property and is described with specific 

geometric rules. The search for equivalent binding sites is preformed by detection of 

similar graphs (Wu, Liang et al. 2008). The specific geometric rules of each SCF 

enable the heuristic to be quite fast. So, MED-SuMo provides interesting and original 

method to detect structural and functional similarities between protein binding sites. 

Unlike MED-SuMo, very few methods enable functional classification of sets of 

binding sites (Kuhn, Weskamp et al. 2007) and specific binding sites are usually 

chosen (protein kinase) for the published work. Comparing our protocol with others is 

quite difficult. 

Here, it is applied in a new clustering approach where the ligand environment is 

classified. An application to a particular protein fold, the Bergerat ATP-binding fold 

characterised as the ATPase domain of HSP90 chaperone / DNA topoisomerase II / 

histidine kinase SCOP superfamily is described here. The constituent families are 

quite different but their ATP binding sites appear quite alike. MED-SMA detects five 

different clusters. 3 out of 5 are specific to a single family. These three MED-SMA 

clusters highlight the specificity of the binding sites; for example; no molecule 

binding to cluster 1’s binding site would also bind MED-SMA cluster 2 sites with the 

same interactions. The fact that the ligands are similar in MED-SMA cluster 1 and 2 

(e.g. ADP) emphasizes the previous observation.  The ligands are the same whereas 

the binding modes are different. Oppositely, MED-SMA cluster 4 gathers three 

different families. The 3D superimposition from MED-SuMo, points out the 

difference of the global fold whereas the Bergerat fold can be observed (white 

rectangle on figure 7). Interestingly, SCFs can be found all around the query ligand 

(cf figure 7), meaning that there is a global similarity of the binding sites from the 
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three SCOP families. Moreover, this result is consistent with the experimental data as 

the proteins from these three SCOP families all bind radicicol (Roe, Prodromou et al. 

1999; Besant, Lasker et al. 2002; Corbett and Berger 2006; Guarnieri, Zhang et al. 

2008). 

These different results demonstrate the ability of the method to gather binding 

sites with related binding modes. This kind of relationship between families is very 

interesting and their identification is a direct application for MED-SMA. Moreover, 

with this kind of association, we can validate the assertion that functions can be 

assigned to unknown proteins by associating them to a specific best matching cluster.  

Matching clusters rather than to single structures overcomes most of the noise in both 

the assignments and in the functions of those assigned matches. Other applications are 

planned, for example, a more general kinase classification using MED-SMA is under 

investigation. 

 

 Conclusions 

This example clearly shows that our approach is well suited for finding common and 

distinct characteristics of ligand binding pockets. Thus, close proteins can have 

different local binding modes, while more distant ones can share common binding 

features i.e. a potential cross-reaction may be possible. For instance, proteins 

associated to radicicol are found in the same MED-SMA clusters. This approach is 

clearly applicable in structural genomics research. As noted by Ferrè et al. functional 

patches associated to a large collection of protein surface cavities can be used to 

provide functional clues for protein with unknown structures (Ferre, Ausiello et al. 

2005). This observation can be shared from our study. Thus, MED-SuMo is an 

approach that may improve the efficiency and effectiveness of early steps along the 

drug discovery path, improving early lead choices, enhancing poor leads, or, aiding 

multivariate optimizations. This study further demonstrates that MED-SuMo is 

appropriate for both annotating protein structures and for deriving structural 

functional classifications.  

Finally, its effectiveness at dealing with the entire PDB, and the parallelisation 

of the computational process in course, show that MED-SuMo is well-suited to large-

scale applications. In fact it is currently used to resolve the big challenge of the POPS 
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project (http://www.pops-systematic.org/) in classifying every binding site 

represented in the PDB.  

 Software Licensing.  

Commercial information regarding MED-SuMo is available at www.medit.fr. 

Questions about MED-SuMo licensing should be addressed to info@medit.fr. 

Researcher from the Inserm Institute UMR-S 726 has no financial interests in MEDIT 

and collaborates with this company only for the present project. Therefore, MEDIT 

SA has the exclusivity for MED-SuMo sales. 
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Figure legends 

 

Figure 1: Heat Shock Protein 90 (HSP90) SCOP superfamly: GHKL: HSP90, MutL 

proteins, pyruvate dehydrogenase kinases and DNA topoisomerases VI all share this 

fold. 
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Figure 2: An example of Heat Shock Protein 90 bound to its natural ligand. The 

protein shown is an HSP90 of Saccharomyces cerevisiae (PDB code 1AMW). (a-b) 

underlines the close contacts (in red) of the ADP (in blue). (c-d) underlines in green 

the common binding region of this SCOP superfamily. 
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Figure 3: An example of Heat Shock Protein 90 (HSP90) bound to radicicol. Both 

views represent an HSP90 of Saccharomyces cerevisiae (PDB code 1BGQ) bound to 

the drug radicicol shown in blue (see Figure 2 to compare with the natural ligand of 

HSP90).    
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Figure 4: MED-SuMo comparison procedure. (a) Localisation of an interesting part 

of the protein surface often characterized by the presence of a co-crystallized ligand. 

(b) Surface Chemical Features (SCFs) are displayed on the protein structure through a 

lexicographic analysis of the PDB files. (c) SCFs are gathered in triplets. (d) The 

triplet network is then stored as a graph data structure with the triplets as vertices and 

with edge connecting adjacent triplets. (e) The query graph (in blue) is compared to 

the database graphs (in green and brown); they usually represent all binding sites of 

the PDB. Compatible triplets are detected, i.e., they are formed by compatible SCFs. 

At last, the corresponding graphs (hits) are ranked in regard to their compatibility 

score.  

 



 - 18 - 

 

 

Figure 5: Global steps of binding site classification heuristic. MED-SuMo_Multi 

approach (MED-SMA) can be divided in 5 steps: (a) Database construction: all 

selected binding sites are stored as graph in the MED-SuMo database. (b) Pairwise 

comparisons: all binding sites are compared to each other to detect similarities 

between pairs (lines with different colors). These similarities are called patches (c) If 

overlapping patches have a certain amount of common SCFs (more than a threshold 

value: parameter covering_factor), they are merged in multipatches (grey circles). (d) 

MED-SuMo scores between pairs of multipatches are calculated and used to create a 

similarity matrix which is classified by MCL (Markov clustering algorithm) to create 

clusters of binding sites. (e) Biolayout 2D view of the MED-SMA clusters.  
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Figure 6: Superimposition of 2 topoisomerase VI separated by MED-SMA. PDB 

codes 1S16 (red) and 1S14 (green) are superimposed. They are both topoisomerase 

but their binding sites do not share enough similarity to be grouped in the same 

cluster. This figure is divided by several numbered regions: (1) Protein structure 

similarities. two α helixes and several β-sheets are common to both structures. (2) 

Low similarity in binding sites underlined by five SCFs. (3) Difference between the 

two structures on the other side of the binding site. (4) Potential clash between the 

query ligand and the hit protein structure. 
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Figure 7: Superimposition of four proteins from three distinct SCOP families but 

gathered in the same cluster by MED-SMA. (PDB codes 2HKJ (green), 2CCT (cyan), 

1B63 (pink) 1JM6 (yellow)).  The white rectangles show similarities around the 

ligands and also the helices from the Bergerat fold. The rest of the superimposition is 

quite messy, as protein global folds are very different.  
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Figure 8: A close view around the radicicol ligand. The eight labelled SCFs (circled 

in yellow) are shared by all superimposed structures in figure 7. They are located all 

around the ligand meaning that the similarities concern the whole binding site. 
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Tables 

 

  SCOP superfamily 

  HSP90 DNA gyrase MutL Histidine 

Kinase 
α-ketoacid 

dehydrogenase kinase C 

MED-SMA 

clusters 

1 0 22 0 0 

2 0 0 15 3 

3 0 6 0 0 

4 78 10 0 1 

5 0 0 11 0 

Table 1 - Confusion matrix of the SCOP families within the clusters. The MED-SuMo 

clusters are arranged vertically whereas the SCOP families are arranged horizontally. 

MED-SuMo clusters #1, #3 and #5 are homogeneous clusters; they only contain 

protein from respectively:  SCOP DNA gyrase/MutL family (for #1 and #3) and 

Histidine kinase. MED-SuMo clusters #2 and #4 are heterogeneous 
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