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During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity.
This paper is concerned with a physical approach to model this process in the case of ameboid
motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge.
The physical model we propose is based on previous reports which point out that membrane tension
regulates cell spreading. Using a phenomenological feedback loop to mimic stress dependent bio-
chemistry, we show that the actin polymerisation rate can be coupled to the stress which builds up
at the margin of the contact area between the cell and the substrate. In the limit of small variation
of membrane tension, we show that the actin polymerisation rate can be written in closed form.
Our analysis defines characteristic lengths which depend on elastic properties of the membrane-
cytoskeleton complex, such as the membrane-cytoskeleton interaction, and on molecular parameters,
such as the rate of actin polymerisation. We discuss our model in the case of axi-symmetric and non
axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental
elastic constants such as the strength of membrane-cytoskeleton adherence.

PACS numbers: 87.17.Jj,87.16.Qp,87.15La

Introduction

Cell motility is defined as the self-organized movement of living cells under the action of external stimuli[4]. Cells
respond to mechanical perturbations and to chemo-attractant concentration variations, and this response drives
slow differentiation and proliferation[33, 53, 62]. Using micro-contact patterning with sub-micrometer patterning,
recent reports have shown that cell adhesion and cell motility can be studied at the individual cell level[12, 15, 64].
Because the substrates can be made transparent to optical microscopy, the observable quantity is the area of contact
between the cell and the substrate. Red blood cells[10, 23], epithelial cells[61], fibroblasts[13, 18], neutrophils or
monocytes[46] all spread but with different characteristic time scales and with different geometries for the contact
line.The mechanisms involved in cell motility depend on the cellular type. Cells with focal adhesion and stress fibers
have small migrating speed of the order of 100 nm.s−1[57]. Ameobian cells with podosome-like adhesion[32] show,
however, a higher speed of the order of a few microns per second. For these cellular models, such as Dictyostelium

discoideum cells, hereafter referred as D.d. cells, the spreading characteristic time scale is of the order of the minute.
It has been shown in [67] that D.d. that amoeboid movement involve membrane protrusions initially free of F-actin
cortical layer. These protrusions where the membrane is locally detached from the underlying cytoskeleton form away
from the substratrum [7, 9] and are followed by a gradual increase of F-actin cortical layer[67]. Motivated by these
experimental findings, the physical model we consider assumes that actin polymerization at the margin of the contact
area is associated with a local softening of the membrane cytoskeleton complex[6]. In this framework, we compute
the kinetic of the increase of the contact area as a function of time.
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Modern biological tools have considerably increased the molecular knowledge of the cytoskeleton organization and
its relationship to cell motility and cell shape remodelling. In particular, the so-called dentitric nucleation model[48]
has successfully explained the treadmilling of F-actin which polymerizes at the barbed ends. At the molecular level,
it is known that actin remodelling involves phosphoinositide molecules, kinases and phosphatases as well as as small
GTPase molecules[42, 47, 48, 52]. Although essential, the knowledge of the different proteins involved in the actin
reorganization is not enough to understand macroscopic observables. Biochemical signals are mutually coordinated
at large scale with mechanical stresses[40] and observations are made at a scale well above the molecular size of a
typical protein. Different hypotheses have been proposed to explain actin-driven protrusions at larger scales both for
in vivo[21, 28, 37–39, 60] and for purified in vitro systems (see Ref.[49] and [36] for a review), and it is likely that
different cellular types use different mechanisms. As an example of stress-dependent signaling, we mention that Ref.
[16, 20, 27, 41] have already pointed out the role of Ca2+ signalling through stretched or G-protein-activated Ca2+

channels for motility assays.
The physical model we consider in this paper describes the kinetics of growth of the contact area between a cell

and the substrate. Our model is based on a few microscopic constants which characterize, for example, the adherence
of the membrane to the cytoskeleton and the rigidity of the cell margin (see ref.[6] for a short account of the present
work). Our analysis defines new characteristic length scales which may help to make the analysis of the rate of
spreading more systematic. We hypothesize :

• that passive to active cooperative events are triggered by the contact between the cell and the substrate[5, 45, 63]
;

• that cell spreading is controlled by the adherence of the membrane to the cytoskeleton[51, 55? ]

• that actin polymerisation and depolymerisation rates are stress sensitive through the stress which builds up at
the margin of the contact area when the cell spreads on the substrate.

The main result of this paper is that the characteristic curve of spreading has a linear regime as a function of time
with a slope determined by these constants. In the next paragraph, we detail the experimental observations for D.d.

cells which motivate the hypotheses of the physical model.
Our spreading model can be represented as a ”pastry roll” which, when rolling, forces the rest of the cell to be in

contact with the substrate. The rotation of the roll is due to actin polymerization in the adhesive belt. We make
the hypothesis that this polymerisation is more stimulated because of the stress which builds up at the margin the
contact area and we model this stress as a bending and a stretching energy for an imaginary line which symbolizes the
complex formed by the membrane and the actin cortex. Although the exact link between actin polymerization and the
contact with the substrate is not yet completely understood, experimental observations make this hypothese plausible.
For example, there is a 10-fold increase at short times of the adhesive strength between the cell and the substrate
after contact[19]. On the molecular side, talin which is a major link between the integrin and the cytoskeleton is
recruited at the early stage of contact (1 s) under the control of the phosphoinositide Pip2 also involved in actin
polymerization[34]. Third, the early steps of cell adhesion involve non-trivial time dependent membrane undulations
and egress of bulky molecules[45]. Fourth, adhesive structures such as podosomes are found in motile cells and they
display a very active actin turnover[8].

This active model differs from the viscous-elastic model proposed by Cuvelier et al. [11] which assumes that the
kinetics of spreading is dominated at short time by the trade-off of a viscous component, which gives a characteristic
time, and an elastic term. In this picture, spreading is seen as a passive phenomenon at short time. However,
references [29, 30] report experimental observations which motivate the hypothesis made in this paper that spreading
is an active phenomena. First, spreading of D.d. cell is highly anisotropic and is set by a polarization gradient set
by some specific kinases, namely the PI3K family[52]. Second, spreading involves a well-coordinated movement of
the contact line which shows protrusions with positive velocity parallel to the substrate, and retraction zones, with
negative velocity[68]. Ref.[16] has shown that the movement of these zones is well coordinated even at short time.
Third, cells can spread using more than one pseudopod at a time. This poses the question of what limits the extension
of a pseudopod. In this work, we assume that a biochemical feedback loop triggered by the surface tension imposes
a limit for the protrusion. In this paper, we do not consider the problem of what determines this quasi-periodic
activity. Our problem is to know what can we learn from the shape of the spreading curve and we concentrate on one
characteristic protrusion event.

This paper is organized as follows. The first section summarizes the hypotheses of the physical model. First, we
present the axi-symmetric problem of spreading and we define characteristic length scales to describe the mechanical
stresses in the adhesive belt. We introduce the shape problem to compute the speed parallel to the substrate as
a function of the polymerisation rate constant. The model is based on the hypothesis that the extreme margin of
the contact area can be modelled as a free membrane pushed towards the substrate as the contact area increases.
The kinetic problem is solved in the axi-symmetric geometry and the rate of spreading is determined as a function
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FIG. 1: Artist’s cartoon of the cell border. The membrane and the cytoskeleton form a complex in adhesion with the substrate
in the contact zone. We assume that this complex is softened in the immediate vicinity of the contact area on a length scale smax

( see Eq. (24)). This part corresponds to segment AB of Fig. 2 and is considered as an effective membrane of bending modulus
κm. The membrane-cytoskeleton complex in the dorsal part is a reservoir for the membrane pulled out during spreading.

of microscopic constants (see Eq. (47)). This section models the chemical feedback loop which regulates the actin
polymerisation rate as a function of the mechanical stress. In the limit of small variations for the membrane tension
during spreading, we show that the rate of biochemical reactions which govern actin polymerisation can be considerably
simplified. Linearizing around the point where the rate of polymerisation balances the rate of depolymerisation renders
the problem tractable without detailed knowledge of the biochemical mechanisms. The next section considers the
non-axisymmetric problem with a membrane protrusion model. To simplify our vocabulary we will coin the word
protrusion for these membrane protrusions, since they initially (i.e. before spreading) lack in F-actin cortex. This is
in agreement with the definition made in [67] and the fundamental hypothesis made in this section is that protrusion
occurs because of a local softening of the membrane-cytoskeleton interface at the margin of the contact area[3]. In
this zone, the adherence between the membrane and the cytoskeleton is softened and the the membrane protrudes
out. Because of actin polymerisation, the protrusion spreads on the substrate with a characteristic growth of the
contact area.

Five appendices complete this work. The first defines an effective rate of actin polymerization in the adhesive belt.
The second deals with the effect of a viscous flow for the membrane cytoskeleton attachment. The third details the
variational shape equation used to compute the effective membrane shape near the contact line. The fourth contains
geometrical calculations for the membrane protrusions. Finally, the fith shows using a peeling model that the junction
protrusion-cell is stressed during spreading.

I. THE MODEL

From the geometrical point of view, we represent the shape of the membrane-cytoskeleton complex by a geometrical
surface of height z(x, y) with respect to the substrate. In the most simple representation, the shape is an hemisphere
with contact angle θ. Actin polymerizes at the border of the contact area and the apparent contact angle increases
during spreading. Fig. I and Fig. 2 give the schematic representation of the model which is summarized as follows :

1. Actin polymerisation takes place preferentially at the border of the contact area between the cell and the
substrate. Thus, we assume that the contact between the cell and the substrate sends a molecular signal which
increases the rate of filamentous actin polymerisation in the vicinity of the contact line. We will demonstrate
that bending and stretching energy terms determine the shape problem.

2. The model includes the adhesion strength between the cell and the substrate. We mimic the link between the
cytoskeleton and the substrate using an elastic foundation with a spring stiffness k which connects the height
z(x, y) to the substrate[69]. We will assume that the distribution of these bonds is step like : in the referential of
the adhesive belt of Fig. 2, all bonds are connected for x < 0 but they are disconnected for x > 0. Cell spreading
takes place at mechanical equilibrium. Minimization of the mechanical potential energy fixes the forces which,
in turn, determine the rates at which actin is remodelled. Energies and stresses are calculated in the framework
of continuum elasticity theory which is valid at the sub-micron scale. We assume that the numerous species of
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proteins at work for cytoskeleton remodelling determine the elastic constants but we do not address the question
of the exact molecular links between the proteins and the elasticity.

3. The model takes into account the attachment of the membrane to the cytoskeleton. If spreading takes place at
constant volume, the membrane is pulled out of a reservoir to increase the apparent area of the cell at optical
scales. We assume a continuous adhesion energy with an effective elastic coefficient. To mimic membrane
traffic[1]during spreading, a chemical potential can be included[59]. The softening of the attachment of the
membrane to the cytoskeleton near the margin of the contact area is essential in our model. This point has
already been addressed in[3].

4. The actin polymerisation and depolymerization rates are stress-dependent at the margin of the contact area.
Since the stresses are concentrated in this zone, this part of the cell is very sensitive to mechanical stimuli and
this is where actin remodelling takes place. In particular, we will assume the cytoskeleton remodelling depends
on a chemical stimulus. As an example, we mention that biochemical studies have demonstrated the essential
role of external calcium in cell shape remodelling and adhesion. Since calcium fluxes control the concentration
of calcium inside the cell[41], this suggests to take into account the activation of Ca2+ ionic channels [16]. Thus,
the model assumes the following feedback loop : Channel activation → Increase of [Ca2+] concentration →
Cytoskeleton remodelling → Spreading → Adaptation of the stress at the margin of the contact zone. Other
schemes are possible. For example, integrin like proteins occupancy can lead to the recruitment of molecular
scaffold or adaptator proteins which in turn activate actin polymerisation and cytoskeleton remodelling[5]. The
main point of this work is to show that the variations of tension are small during spreading. The presence of
a small parameter from the physical point of view is crucial, since it allows to solve the kinetic problem by
linearizing the rate equation for small surface tension variations.

Point 1 is standard in contact signalling. The contact between the cell and the substrate is receptor dependent which
becomes, or which actives, an enzyme and catalyses the actin polymerization machinery. To compute the speed at
which the cell spreads on the surface, we assume that the polymerization rate is normal to the cell membrane. The
equation for the speed normal to the interface is the sum of an outward flux of polymerized actin minus an inward
flux (point 4). Anticipating what follows, we write at point A of Fig. 2

V⊥(τ) = V+[τ ] − V−[τ ] (1)

where τ is the shear stress at the border of the contact zone (see later). At the early stages of spreading, V+ > V−.
Spreading stops when the stress τ reaches τmax where V+(τmax) = V−(τmax). The exact functional form of V+,− is
very complex but we do not need to know it in details if we assume that the variations of the membrane tension are
small during spreading. In this case, we approximate Eq. (1) by its linear variation around τmax.

Thus, we write

V⊥(τ) = V+[τ ] − V−[τ ] ≈ dV ∗

dτ
(τ − τmax) (2)

At the early stages of spreading, τ is small, but it increases with the macroscopic angle of contact θ. Spreading stops
when the stress τ is equal to τmax. Linearizing Eq. (2) introduces the phenomenological constant dV ∗/dτ which
contains all the molecular biochemistry necessary to polymerize actin.

To compute the speed V‖ parallel to the substrate as a function of the speed V⊥ normal to the line z(x), we consider
the angle ψ between the tangent and the substrate. Since for θ fixed the profile must be stationary, differential calculus
[43] gives the functional form for V⊥(x) (see Fig. 3)

V⊥(x) = V‖(θ) sinψ(x, θ) (3)

which holds for any point of the line z(x) which represents the deformations of the adhesive belt.
Eq. (3) can now be inverted to yield at point A where x = 0

V‖(θ) ≈
V⊥(θ)

sinψ0(θ)
(4)

where V⊥(θ) can be replaced by the linear approximation Eq. (2). The reason for using point A to compute the
velocity parallel to the substrate is that point A is the point where the stress of the adhesive bridges between the
cytoskeleton and the substrate is maximum. Under the hypothesis made in Appendix A that dψ/dt ≃ −k0

onψ, or
equivalently that V⊥ is proportional to the curvature, taking any point in the vicinity of A will give the same result.
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FIG. 2: Schematic view of a D.d. cell spreading on a substrate. When spreading is uniform along the contact line, the cell is
represented an hemisphere with contact angle θ (top figure). The bottom figure illustrates the margin of the contact area where
the cell leaves the substrate (adhesive belt). The grey part represents the adhesive matrix which connects the cytoskeleton to
the substrate. The deformation energy stored in the adhesive belt is the sum of a curvature energy and of a stretching energy
which are studied in this paper using a line z(x). At the border of the contact zone, i.e. point A, the shape makes an angle
ψ0 with the substrate. At point B, the shape matches the dorsal part of the top figure with a macroscopic contact angle θ.
Between points A and B, the cell is described by an effective free membrane.

FIG. 3: Schematic view of the border of the contact area at two successive times. The cell adheres to the substrate via adhesive
bridges which are connected to the substrate when the height z(x) is smaller than a cut-off zmax. By definition, zmax fixes
the coordinate x0(t) of the contact zone. We make the hypothesis that adhesion activates actin polymerisation at the margin
of the contact area and induces an effective moment (schematized by the arrow, see Appendix A). When actin polymerizes,
it pushes the membrane towards the substrate and the arrow symbolises the activ moment defined in Appendix A. Between
time t and t + dt, the border of the contact zone moves from x0(t) to x0(t + dt). Assuming a layer by layer growth for actin
remodelling, the growth takes place normal to the shape profile. Geometry gives the relationship (3) between the speed normal
to the shape profile and the speed V‖ parallel to the substrate. When the tangent makes a small angle ψ with the substrate,
we have V‖ ≫ V .

Since τ(θ) depends on θ, V⊥(θ) depends on θ. Eq.(4) with Eq. (2) is used in this paper to compute the area of
contact as follows. Since for a circular area of contact of radius r(θ), we have V‖ = dr/dt, Eq. (4) is a differential
equation for the kinetics of the area of contact. Eq. (4) shows also that the measurable rate of polymerization parallel
to the substrate can be much larger than the physical polymerization rate perpendicular to line z(x).

The next step is to determine the angle ψ(θ) given by the balance of the mechanical forces. This is point 2. As
it is the case for D.d., we assume in what follows that the actin network forms a sheet of approximate thickness
ha ≈ 0.5µm with different elastic properties. In parts I and III of Fig. 2, the membrane is in adherence with the
cytoskeleton via a set of anchor proteins and it can invaginate within the cytoskeleton itself. According to this figure,
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we divide the margin of the contact area into three zones with different elastic constants :

• The contact zone we call zone I extends to the point A where the first adhesive bridge connects the membrane-
cytoskeleton complex to the substrate. Previous reports have concentrated on this adhesive belt and they have
shown that the typical width of the zone where the adhesive bridges are stretched is of the order ξ ≈ 0.1µm[17].
In physical terms, this zone is an elastic foundation with an elastic modulus k and an effective bending rigidity
κa ≈ few hundred kBT[54].

• In zone II, between points A and B, the interface is soft. This is the zone where actin remodeling is very active
and we consider this zone as an effective membrane with a bending rigidity κm ≈ 50kBT ≪ κa and a surface
tension σ. The maximum distance zmax under which the adhesives bridges are connected to the substrate scales
with ξ as[17]

zmax =
ξ2

2RA
(5)

where RA is the radius of curvature of the osculating circle at the contact line (at point A).

• Finally, in zone III, the membrane and the cytoskeleton form a complex. This part gives the reservoir from
which the membrane can be pulled out when the cell spreads on the surface.

Pulling out the membrane from this reservoir implies that the surface tension σ in part II increases by an amount
proportional to the relative increase of area :

dσ = C
dA
A + η

d

dt

[

dA
A

]

(6)

where A is the total area (see point 3). The first term is the elastic contribution to the stress. By definition, C is a
constant which measures the strength of the attachment of the membrane with an order of magnitude of 50 pN.nM.
The second term is proportional to the rate at which the relative area is pulled out and it simulates the effect that
the relative increase of area pulled by a sudden increase of tension ∆σ is equal to 1/C∆σ only after a time η/C.
It characterizes the long time behavior of the viscoelastic response and it simulates membrane flow[2]. We show in
Appendix B that this term does not affect the short time behavior for spreading since the short time is independent
of the increase of tension.

Finally, point 4 is an assumption based on biochemical studies. Experiments on motility have shown that Ca2+

ionic channels activated by G-protein-coupled receptors play an important role in cell motility. These receptors can be
activated upon application of forces in the pN range[22]. Thus, the concentration of stress at the margin of the contact
area implies that the actin turnover is amplified at the rim and that the rates of polymerisation and depolymerisation
depend on τx,z ( the shear stress τx,z(x) is proportional to the surface tension σ and is defined in section IV).

The rest of the calculation follows this framework. We compute the speed at which the membrane spreads with
formula (3) calculated at point A at the border of the adhesive belt. When the contact area increases, the angle ψ
increases, since tension is build in part II. In turn, increasing the tension increases the shear stress and limits the
actin polymerisation rate.

II. AXI-SYMMETRIC SPREADING

This section is concerned with the calculation of the surface tension σ(θ) which controls the rate at which actin is
polymerized. For simplicity, we will ignore the viscous component in Eq.(6), i.e. η = 0. We schematize the shape
of the cell as an hemisphere. The dorsal part is a spherical cap of radius R(θ) with a macroscopic contact angle θ.
When the cell starts spreading R = Ri. It increases with time as the contact radius r(θ) does. The area of contact is
A = πr2(θ) and between time t and t+ dt the radius r increases from r to r + dr (see Fig. 2).

Geometry gives the relationship between Rs(θ) and θ

Rs (θ) = 41/3 Ri

[(1 + cos θ)2(2 − cos θ)]
1/3

(7)

so that the contact radius is

r(θ) = Rs(θ) sin θ (8)
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TABLE I: List of symbols with their order of magnitude

Parameter Notation Value

Size Ri 5 µm

Characteristic tension for channel opening[22, 58] σ1/2 5 pN.nm−1

Polymerization speed at zero stress[4] V 0
+ 100nm.s−1

Parameter dV ∗/dσ ≈ −V 0
+/σ1/2 -20 nm2.pN−1.s

Width of the adhesive belt ξ 0.1 µm

Actin rigidity characteristic length λ−1
a ≈ ξ

Screening length of the adhesive matrix λ−1
m ≈ ξ

Membrane correlation length λ−1 > 10 nm

Membrane-cytoskeleton attachment[58] C 50 pN.nm−1

contact angle[56] θmax 1 rad.

For what follows, it will be useful to consider other geometries. For an hemi-cylinder of radius RA(θ)

RA(θ) = π1/2Ri

[

1

π − θ + 0.5 sin 2θ

]1/2

(9)

with an equivalent formula as before for the contact radius.
In order to compute the surface tension σ, we define Ad as the area of the dorsal part. Ad is also a function of θ as

Ad(θ) = 2πR2
s(θ) (1 + cos θ) (10)

When the cell spreads by an infinitesimal amount, θ → θ + dθ, the contact area increases by dAr(θ) = 2πrdr and
membrane has been taken out of the reservoir by an amount

dA
A =

1

A(θ)
[Ad(θ + dθ) + dAr(θ) −Ad(θ)] (11)

where dAr is the small piece in contact with the substrate when θ increases. Using Eq. (6) with η = 0, we compute
the tension σ(θ) as (in circular geometry)

σ(θ) = σ0 + C ln

[ Ad(θ)

Ad(θ = 0)

]

+ C

∫ θ

0

du
2πr(u)

Ad(u)

dr

du
(12)

When θ is small, it is enough to approximate σ(θ) by the leading terms

σ(θ) = σ0 +
1

16
Cθ4 + . . . circular geometry (13)

σ(θ) = σ0 + 0.053(. . .)Cθ3 + . . . cylindrical geometry (14)

Eqs. (13) and (14) are still valid when θ is large. The reason for this is that the divergence of σ(θ) is only logarithmic
when θ approaches π

σ(θ) ∝ C ln(π − θ), θ → π (15)

where the proportionality constant depends on the geometry.

III. CELL CONTOUR AT MECHANICAL EQUILIBRIUM

A. Soft zone

Let us consider the zone II of Fig. (2). In this zone, the cell cortex is soft with an effective bending rigidity κm

and a tension σ(θ). The surface tension σ is taken as constant, since there is no tangential force to equilibrate surface
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FIG. 4: Side view of the cell body when the macroscopic contact angle θ varies. As explained in the text, to increase the
contact area A(t) = πr2(t), membrane is taken out of a buffer which supplies the part between r and r + dr and the increase
of the dorsal part. The figure applies to the spherical geometry where the cell is viewed as an axi-symmetric hemisphere or to
the cylindrical geometry where the axis is perpendicular to the figure. In the spherical geometry, the radius of the hemisphere
is noted Rs(θ).

tension gradient. The profile can be parametrized using the angle φ between the tangent and the direction fixed by
the macroscopic angle θ. If ψ is the angle between the tangent and the substrate, geometry gives

ψ + φ = θ (16)

To find ψ(s), we minimize the Helfrich-Caham potential at fixed macroscopic angle θ. Let uθ be the unit vector in
the direction θ and t(s) = dx/dsux + dy/dsuy be the tangent along the arc (between A and B in Fig. 2). The total
potential which includes the work done by the tension in the direction uθ is

F =
1

2
κm

∫ B

A

ds

(

dψ

ds

)2

− σ

∫ B

A

dsuθ.t(s) (17)

with uθ.t(s) = cosφ(s). Taking the scalar product is necessary, since the work done by the tension is proportional to
the displacement of B in the direction uθ with

σuθ.

∫ B

A

ds t(s) = σuθ.AB (18)

To solve the variational problem, we use φ(s) as the independant variable (see appendix C). The Euler equation reads
as

κm
d2φ

ds2
− σ(θ) sinφ(s) = 0 (19)

where the solution satisfies the boundary conditions :

1. On the one side, the shape matches tangentially to the contact zone. Both the force in the direction normal
to the substrate, κay

′′′(x = 0−) = κmy
′′′(x = 0+), and the bending moment, κay

′′(x = 0−) = κmy
′′(x = 0+)

equilibrate at point A. These conditions assume small bending and they are only valid if the radius of curvature
RA of the rim is large enough for the force normal to the substrate to be approximated by the third derivative.
We will see that this condition is fulfilled is the limit RAλa ≫ 1, where λ−1

a is an elastic characteristic length scale
(to be defined in Eq. (27)). Explicit expressions for second and third derivatives can be found by multiplying
Eq. (19) by dφ/ds.
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2. On the other side, the shape matches tangentially the contact sphere at point B where the membrane adheres to
the cytoskeleton again. Thus we have φ = 0 and dφ/ds = 1/R(θ). These conditions assume that the membrane
is pulled out of from the cytoskeleton at angle θ. To define an angle of contact θ, we must demonstrate that
smax is small compared to the radius R(θ).

To see this, we integrate Eq. (19) with λ =
√

σ(θ)/κ. We get :

dφ

ds
= λ(θ)

[

2 + λ−2R2(θ) − 2 cosφ
]1/2

(20)

with dφ/ds = 1/R(θ) when φ = 0 at B. Thus

smax =

∫ φ=φ0

φ=0

dφ

[

ds

dφ

]

(21)

= λ−1(θ)

∫ φ=φ0

φ=0

dφ

[

1

2 + λ−2R2(θ) − 2 cosφ

]1/2

(22)

(23)

where φ0 is the angle between the tangent at point A. In general, 0 ≤ φ ≤ θ. This equation shows that the membrane
correlation length λ−1(θ) sets the length smax. This integral is only logarithmic divergent when θ approaches π as

smax ≈
[

−κm

C
ln (π − θ)

]1/2

(24)

within a numerical factor which depends on the geometry. Thus smax is of the order of the length λ−1(θ) and it
remains small as long as θ does not approach π. As a result we can define a contact angle independent of the cell
shape.

B. Contact zone

In zone I, the cell is connected to the substrate via a complex set of proteins we call adhesive bridges. The simplest
approach assumes a uniform density of connectors nb with spring constant k between the membrane - cytoskeleton
complex and the substrate. The equilibrium height profile z(x) obeys the Euler equation

κa
d4z

dx4
− σ

d2z

dx2
+ nbkz(x) = 0 (25)

where σ is the in-plane tension and κa the bending rigidity. In continuum mechanics, σ is proportional to a force
applied to the membrane-cytoskeleton complex parallel to the substrate before bending. We take σ = 0 since the
adhesive belt is a zone which is dominated by curvature and, to leading order, surface tension gradients which scale
with maximum value of z(x), i.e. zmax, appear only in the tangential force balance equation (see section IV) . The
characteristic equation of Eq. (25) has the solutions :

λ = ± 1√
2

(1 ± i)λa (26)

with a new characteristic length

λa =

(

knb

κa

)1/4

(27)

where λ−1
a is of the same order of magnitude than the adhesive belt width ξ. Since the shape profile must match the

substrate for x→ −∞, we solve Eq. (25) as

z(x) = [A(θ) sin(λax) + B(θ) cos(λax)] exp [λax] , x < 0 (28)

where the two constants A(θ), B(θ) are determined by matching with the outer solution (see Eq. 19) where the
membrane is free. The next section presents this calculation.
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C. Matching conditions

To derive the matching conditions at point A of Fig. 2, we make useof the fact that the mechanical constraints
balance each other at x = 0. Equality of the tangent, of the normal forces (third derivative of the shape profile) and
of the bending moments (second derivative of shape profile) leads to the system of equations[31, 35]

λa (A(θ) + B(θ)) = ψ0(θ) (29)

2λ3
a (B(θ) −A(θ)) =

κm

κa
λ2(θ) sin(θ − ψ0(θ)) (30)

2λ2
aA(θ) =

κm

κaR(θ)

[

1 + 4
κ2

a

κ2
m

λ2(θ)R2(θ) sin2 (θ/2 − ψ0(θ)/2)

]1/2

(31)

To make analytical progress, we first assume the following two limit cases :

κ2
a

κ2
m

λ(θ)R(θ) ≫ 1 (Large protrusion) (32)

λ−1
a ≪ λ−1(θ) (Small tension) (33)

and we get simple results

A(θ) = B(θ) (34)

2λ2
aA(θ) = 2λ(θ) sin(θ/2) (Curvature at point A) (35)

ψ0(θ) = 2
λ(θ)

λa
sin(θ/2) (36)

As a consequence, the angle ψ0 between the tangent and the substrate at the margin of the contact area increases
with the contact angle θ. Using the last two equations of (35) shows that the product of ψ by the radius of curvature
RA is constant on the scale 1/λa of the adhesive belt :

ψ(θ)RA =
1

λa
( independent of θ) (37)

This property is used in Appendix A to show that Eq. (3) is equivalent to define the velocity V⊥ as proportional to
the curvature along the meridian.

Because the constants A(θ) and B(θ) are known, the shape profile z(x) follows from Eq. (28). The total energy
stored in the adhesive belt can now be calculated as :

Ebelt = 2κaλ
−4
a λ(θ)3 sin2(θ/2) (38)

where the respective contribution of the stretching and bending elastic term are equivalent. This formula shows that
the increase of energy stored in the adhesive belt is quadratic with the macroscopic contact angle θ.

To conclude, we note that the matching conditions for the bending moment and the normal force at the border of
the adhesive belt specify the height z(x = 0). We have :

z(x = 0) =
λ(θ)

λ2
a

sin θ/2 ≪ λ−1
a (39)

Eq. (28) demonstrates that the shape profile is a damped sinusoid with a scale λ−1
a along the normal of the contact

zone and parallel to the substrate (see Fig. 5). Thus our solution predicts that the adhesive zone is compressed at
the margin of the contact area and that the distance between the cell and the substrate is larger in the core of the
adhesive area than at the rim. The width of this compressed zone is set by the density of density nb of adhesive
bridges, and it is of the order of λ−1

a ≈ 0.1µm. Thus experiments probing the strength of the adhesion in the contact
zone should see a dark rim when the contact zone is imaged from below by reflection contrast contrast microscopy.

IV. TANGENTIAL FORCES

Eq. (25) is the equation for the mechanical forces in the direction normal to the substrate. In this section, we
concentrate on the direction tangent to the substrate and we include surface tension gradients. To derive the condition
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(a)

(b)

FIG. 5: Plot of the height profile exp (λax)(cos(λax+ sin(λax)) as a function of λax. By definition, the margin of the contact
area ends at x = 0. This plot shows that the adhesive zone is first compressed at the rim of the contact area between the cell
and the substrate. Near the frontier at x = 0, on a width which scales as λ−1

a , the adhesive bridges are streched. Thus, the
force normal to the substrate changes sign in the adhesive belt whose frontier is at x = 0. Case (b) : Plot of the derivative of
the shape profile as a function of λax. Since V⊥ ∝ ψ (see Eq. (3)) with ψ ≈ dh/dx, the speed normal to the line can change
sign.
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for equilibrium, we include the typical distance ha ≈ 50 n.m. between the cell and the substrate in the contact zone
(x→ −∞). Let hb ≈ 100 n.m. be the thickness of the actin layer in the contact zone (see Fig. IV).

The calculation of Ref.[35] illustrates this point. Let us consider a displacement u in the x-direction. The shear
stress τx,z = µau/ha in the adhesive matrix equilibrates the tensile stress σxx = Edu/dx in the actin layer with

dσxx

dx
=
τxx(x)

hb
(40)

E and µa are the Young modulus of the actin layer and µa is the shear stress elastic constant for the adhesive bridges.
By definition of the tensile stress, we have σ = hbσxx where σ is the surface tension. Solving these equations gives
that the shear stress and the tensile stress σxx are screened on a characteristic distance

τxz(x) =

{

τxz(0) exp [λmx] for x ≤ 0

0 for x > 0
(41)

with

λm =

(

µa

Ehbha

)1/2

(42)

This exponential dependence explains the independence of the mechanical equilibrium in the adhesive belt of the
contact area. Depending on the geometry, two cases are of interest (see Fig. IV).

1. When matching the actin layer with the membrane in done on the mid-plane of the actin layer at z(x), we find
:

τxz(0) = σλm cos θ (43)

2. However, it is likely that the matching should be done at the lower layer z(x) − hb/2 where the flexion stress
σxx = Ez′′(0)hb/2 is maximum, since the actin cortex is always beneath the membrane. Thus we sum up the
tensile stress and the flexural stress so that by Eq. (35)

τxz(0) = Ehbλ(θ) sin θ/2 + σλm cos θ (44)

Taking E ≈ µa gives λ−1
m ≈ a few tenth of nm. Thus, all characteristic length scales, λm, λa and ξ are of the same

order and we will take them as equal.
To study the influence of the elasticity of the substrate we add a third layer with shear rigidity µs (see Fig. IV).

Thus the composite layer adhesive matrix + substrate has an effective rigidity µeff dominated by the rigidity of the

substrate (µ−1

eff = µ−1

substrate + µ−1
a for two elastic springs in series) if the former is sufficiently soft. Going back to

the definition (42) of the screaning length, we see that the shear stress is less localized on soft substrates than they
are on rigid ones. This result is consistent with the hypothesis that position and force dependent phosphorylation
mechanisms for actin polymerisation may depend on the shear rigidity of the substrate.

V. SPREADING WITH UNIFORM POLYMERIZATION ALONG THE CONTACT LINE

In the framework of our model, see Eq. (1), the rate of polymerization is fixed by the ratio V+/V− which is larger
that one when actin polymerization is more enhanced in the adhesive belt. In the limit case, where the tension build
in the membrane does not increase too much, we can linearize the rate of polymerization as in Eq. (2) so that

V‖ ≈ dV ∗

dσ

σ(θ) − σmax

ψ(θ)
(45)

with dV ∗/dσ < 0 and V‖(σ(θmax)) = 0. Since both σ(θ) and ψ(θ) are known functions of θ (see Eqs. (12) and (36)),
Eq. (45) is a differential equation for the kinetics of the contact growth as a function of time, since V‖ is proportional
to dθ/dt.

To integrate this equation, we use the angle θ as a variable.

d

dt

[

θ2

θ2max

]

= − α

θ4max

(

θ4 − θ4max

)

(46)
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FIG. 6: Schematic view of the actin layer of thickness h and Young modulus E. This Figure concerns section IV. The adhesive
bridges are represented as an elastic foundation of height ha and shear rigidity µa. The effect of flexible substrate can be
studied by adding a third layer of shear rigidity µs. The displacements u are tangent to the substrate. The two cases of section
IV are schematized in this Figure. If the matching between the actin cortex and the membrane is done at x=0 in the midlayer
(see Eq. (43)) the tension is applied along the dashed line. If the matching is done in the lower layer (see Eq. (44)), this
corresponds to a tension applied along the long-dashed line.

where the characteristic time α−1 is given by

α = − 1

Ri

λa

λ0

√
C

2

dV ∗

dσ

√
σmax − σ0 (47)

with λ0 =
√

σ0/κm. Because α depends on the square root of the relative increase of tension, ∆σ/σ, this indicates
that the rate of spreading is very sensitive to small variations of the tension at rest σ0. Integrating now Eq. (46), we
find that the growth of the contact area behaves as

Acontact

Amax
= tanhαt (48)

where the growth is linear at short time before it saturates on a characteristic time scale 1/α. The linear regime is
only valid for large protrusions where κa/κmλ(θ)R(θ) sin(θ/2) ≫ 1. This condition gives a crossover angle

θcrossover ≈
1

λ0Ri

[

κm

κa

]1/2

(49)

Since κm/κa ≈ 0.1, θcrossover is observable for small enough protrusions of the order of the micron. To get the area of
contact as a function of time, we solve Eqs. (29) numerically. As shown in Fig. 7 , the growth of the contact area is
quadratic at short time and it crosses over to the linear regime predicted by (48) above.

Eq. (47) predicts that the kinetics of spreading depends on characteristic parameters which vary from cells to cells.
Its order of magnitude can be estimated using Table I and the following reasoning. The derivative dV ∗/dσ is of the
order of V 0

+/σ1/2 where σ1/2 is the characteristic tension where half of the channels are open[22]. Using a maximum

contact angle of θmax = 1 rad and assuming a size of 5µm gives α = 0.03 s−1 which compares with experimental data
(see the discussion section at the end of the paper).

We now turn to the cylindrical geometry where the cell spreads perpendicular to its axis. Calculations are similar
as before. Using Eq. (14) for the variation of surface tension at small contact angle gives

dθ2

dt
=

2

Ri
bC

λa

λ(θ)

(

−dV
∗

dσ

)

(

θ3max − θ3
)

(50)

where b is a numerical constant (0.053...). In the cylinder case, the contact area is proportional to θ and not to θ2,
since

A(t) ≈ RiθL (51)
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FIG. 7: Growth of the contact area with time for the axi-symmetric case. Curves are obtained by solving numerically the
matching conditions (see Eqs. (29)). This Figure illustrates how the shape of the spreading curve depends on the ratio of
the size of the protrusion to the characteristic length λ−1

0 . When the size of the protrusion Ri is small enough, the quadratic
behavior at short time scale is clearly visible (see the definition of θcrossover defined in Eq. (49)). From the bottom curve to the
top one, κm/κaRλ0 = 1.6, 2.3, 50. Time is scaled by k0

on(= 1)R(θ = 0)λ(θ = 0)/λa.

where L is the width of the cylindrical protuberance. As before, we write the equation of the kinetics of the contact
area

d

dt

[A2(t)

A2
m

]

= α′

(

1 −
(A(t)

Am

)3
)

(52)

where the time scale factor α′ is different from above

α′ ≈ −0.28
dV ∗

dσ

C1/3σ
1/3

0 λa

λ0Ri
(σmax/σ0 − 1)

1/3
(cylinder) (53)

From Eq. (52), the contact area scales as
√
t instead of t at short time. The time scale factor is a non-integer

power of ∆σ/σ with a numerical estimate of 10−3 which is smaller than before. This calculation illustrates how the
geometry changes the spreading curve, but the cylindrical case is specific since the growth rate is independent of the
width L of the protuberance.
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FIG. 8: Model for the non-axi-symmetric spreading case. A protrusion is schematically represented as an hemispherical cap of
radius R2(θ2) spreading out of a mother cell. We assume that the membrane-cytoskeleton complex is fully intact in the mother
cell. The protrusion spreads on the substrate because actin polymerizes at the edge of the spherical cap.

VI. NON AXI-SYMMETRIC SPREADING

From now on, we consider the non-axisymmetric spreading problem, and we assume that the membrane-cytoskeleton
adhesion can be locally softened around the margin of the contact area. Fig. 9 schematizes the geometry we will
consider henceforth. The membrane cytoskeleton-complex is intact around the cell border, but it is locally softened
along the top arc of circle of the figure. This softening occurs because of a biochemical reaction which ruptures the
linkage between the membrane and the cytoskeleton. When the membrane is free, it can be pushed outwards by
osmotic pressure. It produces a hyaline spherical protrusion called a bleb in the biological literature. It is not the
purpose of the model to characterizes the process of bond rupture. We simply assume that the membrane is detached
from the cytoskeleton between the two end points at a distance 2d(θ02).

This problem is geometrically equivalent to the one we have studied before and our variational calculation is based
on the following hypotheses :

1. In order for the stress parallel to the substrate to be decoupled from the stress normal to the substrate we
assume[31]:

R(θ2)λa ≫ 1 (54)

In the other limit, the force normal to the substrate depends on the radius of curvature in the plane of the
substrate and the previous calculation does not apply.

2. The rate of polymerisation is constant along the contact line formed by the protrusion and the substrate. This
constraint imposes that the contact line with the substrate is a circle. Thus, we cannot solve the mechanical force
balance equations on the line of contact between the cell and the protrusion and we will only give asymptotic
results using effective contact angle.

Let R2 be the radius and θ2 the contact angle. Because of actin polymerisation, the protrusion spreads on the
substrate with θ2(t) being a function of time t and θ1 being constant. We work in the limit where of small protrusion,
R2(θ2) ≪ R1(θ1) with θ1 is fixed. In this limit, the position of the contact line on the substrate is labelled by the
height variable h(y). During spreading on the substrate, we assume that the contact line describes a family of circular
arcs labelled by the angle β between the tangent and the h = 0 axis (see Fig. 9 and Appendix D)

Two cases are of interest :
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1. The protrusion is a spherical cap and the membrane is taken from the protrusion itself without membrane traffic
between the cell and the protrusion.

2. The protrusion is a spherical cap but membrane is taken out of the cell with membrane exchange between the
cell and the protrusion.

Case 1 is equivalent to the one studied before, since the protrusion and the cell are independent. The spreading
curve starts linearly and it saturates at longer time. The slope of the spreading curve sets a characteristic time
proportional to the size of the protrusion (see Eq. (47)). This conclusion applies if the size of the protrusion is large
enough with respect to the other lengths defined in the problems. The time at which the spreading curve attains
2/3 of the limit sets another characteristic time. When the cell and the protrusion cannot exchange membrane, this
characteristic time is equivalent to the one defined by the slope at short time. From now on, we concentrate on case
2.

Scaling shows that if membrane exchange between the protrusion and the cell takes place, the scale at which the
surface tension increases during spreading differs by a factor R2

2(θ)/R
2
1 from the uniform spreading case. This scaling

factor comes from the definition of the surface tension

dσ = C
dA
AT

(55)

where AT is set by the cell of radius R1(θ1) which serves as a reservoir. This factor does not play a role a the early
stages of spreading. Thus, we conclude :

1. The slope at short time is still inversely proportional to the size of the protrusion R2(0) (see Eq. (47)).

2. The time at which the contact area is 2/3 of the saturation limit depends, however, on geometry. We find that
the surface tension increases with θ2 as

∆σ ∝ C
R2(0)2

R1(θ1)2
θ32 (56)

so that small protrusions have large contact angles. Assuming that α3t3sR2(0)2/R1(0)2 = const gives the
characteristic time at which saturation occurs, we find that ts ∝ R2(0)1/3 instead of ts ∝ R(0) in the uniform
case.

To conclude this section, we note that a stress builds up on the two sides of the protrusion when the contact area
increases (see Appendix E). In turn, this quadratic increase of energy can be used as a mechanical signal to start a
new protrusion on the sides of the existing protrusion, as suggested by experiments [29, 30].

Conclusion and outlook

The purpose of this paper it to point out that the characteristic spreading curve of the contact area can be analyzed
within a simple physical model which contains the regulation of the actin polymerisation rate. The model assumes
that this rate is controlled by the shear stress at the border of the contact area. The key parameter of the theory is
the relative increase of tension during spreading. This parameter controls not only the rate of spreading but also the
dependence of the spreading rate upon variations of the microscopic parameters. As a result the model can explain
how the macroscopic observables change upon variations of these parameters, but it cannot explain the molecular basis
of this regulation. The key point is to correlate how these parameters vary with the concentration of the molecular
species at work in shape remodelling.

To conclude, we summarize some of the key elements of our work :

1. It should be interesting to measure the mechanical forces normal to the substrate. Our model predicts that
bending is enough to get a non-trivial variation of the height variable with normal forces which change sign at
the margin of the contact area.

2. The slope of the relative increase of contact area for each protrusion is linear at short time and it depends on
the size of the protrusions before spreading. Only in the case of axisymmetric spreading, the characteristic time
at which the spreading curve saturates is given by the characteristic time set by the initial slope. In all other
cases, we expect geometrical factors and non-linear dependence as a function of the size of the protrusion.



17

FIG. 9: Geometrical model for a pseudopod which is schematized as a spherical protrusion protruding out a cell. The two
figures on the left represent the side views of a protrusion spreading on the substrate. The top figure on the right column is
the top view of the contact lines when the size of the cell is much larger than the characteristic size of the protrusion, so the
cell corresponds to the h = 0 line in the (y, h) plane of the substrate. During spreading, its center moves downward and R2(θ2)
increases(see Appendix D). Viewed from the top, the contact line is half of a circle which intersects the line h(y) = 0 at right
angle when the center moves along a straight line perpendicular to the substrate. The characteristic height hmax is defined in
Appendix E using a peeling geometry. It is of the order of a few 10 of n.m. During spreading, d(θ2) increases linearly with θ2
and so β0. The inset is a cartoon which represents the elastic foundation which mimics the membrane-cytoskeleton attachment
near the points where the protrusion intersects the cell and it describes the peeling of this elastic foundation with increasing
the contact area.

3. The slope of the spreading curve depends on the membrane cytoskeleton adherence which, in turn, depends
on a number of lipid species and on some motor proteins. Among the lipids involved in the attachment of
the membrane to the cytoskeleton, phosphoinositide lipids such as Pip2 play a central role in the signalling
pathway[66]. The increase in Pip2 strengthens the adhesion between the two components. Moreover, the
production of Pip3 from Pip2 favors actin polymerisation[14, 26]. Thus a concomitant decrease in Pip2 with an
increase in Pip3 decreases C but increases kon, two of the parameters which are taken into account in the model.
The adherence of the membrane to the cytoskeleton may also be altered by using mutant cells. Knocking out
motor proteins ezrin, myosin I or using talin-defective cells may be therefore appropriate to test how the rate
of spreading depends on these proteins.

4. When spreading stops, the contact area between the cell and the substrate depends on the relative increase
of surface tension for the effective membrane which is not in adhesion with the underlying cortex. Decreasing
the surface tension before spreading should increase the contact area after spreading and increase the rate of
spreading at constant polymerization rate. This result is consistent with Ref. [50] where a detergent was used
to change the membrane tension. We note, however, that the surface tension must be sufficiently large enough
to have a well defined mechanical stress in the adhesive belt in order to stimulate actin polymerization.

5. Our model points out the role of the mechanical stress localized at the margin of the contact area. This stress
is not uniformly distributed around the contact line with the substrate. The protrusion of Fig. 9 shows, for
example, that it is localized on the two sides corners of the pseudopod and that it increases with spreading.
Under the hypothesis that biochemistry is stress dependent, this indicates that the next spreading event may
be localized in the vicinity of the two sides of an existing pseudopod. This remark seems to be confirmed by the
analysis of experimental data[30], but it has to be confirmed by analyzing the exact molecular links with actin
polymerisation.
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APPENDIX A: EFFECTIVE POLYMERIZATION RATE

We define in this appendix an effective polymerization rate k0
on. We show that the matching conditions at the

frontier A of the adhesive belt allow to compute V‖ as a function of k0
on and that this condition is equivalent do define

V⊥(ψ) proportional to the curvature (1/R = dψ/ds) in the adhesive belt. We show that :

V⊥ =
k0

on

λ2
aR

(A1)

Defining the actin polymerization rate in this way is useful, since it has been reported that curvature enhances the
activity of key proteins involved in actin polymerization (see [25] for example). This appendix shows also that if V⊥
is defined this way, we can compute the speed V‖(θ) not only at point A but also in its vicinity without changing the
value of V‖ since the product ψR is constant along the arc in the vicinity of A.

Let us consider the rate of change of the line which simulates the deformations of the adhesive belt as a function of
the angle ψ that makes the tangent with the x-axis. Because the rate of polymerization couples to the change of ψ
per unit time, i.e. dψ/dt, we define this rate as M(ψ) and we write

∂ψ

∂t
= M(ψ) (A2)

The problem is to find a definition of M(ψ). Since ψ is small in the adhesive belt, we can expand M(ψ) to lowest
order in ψ to get the changes of ψ with time in a coordinate system fixed with respect to the substrate

∂ψ

∂t
= −k0

onψ (A3)

where k0
on is an effective polymerisation rate in units of sec−1. The minus sign gives that the angle ψ that makes the

tangent with the substrate decreases when the cell spreads.
In principle, k0

on should be determined from a more microscopic model to include the effect of the branched
polymerization of actin in the adhesive belt (i.e. the dentitric nucleation model) . In this work, k0

on is a constant
for fixed macroscopic contact angle θ. The product k0

onψ simulates the enhancement of actin polymerization in the
adhesive belt at the margin of the contact area where ψ increases.

To get a second equation for the variations of ψ, we write that the rate of variations of ψ is the first derivative of
the velocity normal to the line z(x). This exact formula can be simplified for small angle ψ, and we have using Eq.
(3)

∂ψ

∂t
= −dV⊥

dx
≈ V‖

dψ

dx
(A4)

where dψ/dx is the inverse of the radius of curvature at point A. Let RA be this radius. Since for small θ, V‖ is a
characteristic polymerisation rate independent of the macroscopic angle θ, Eqs (A3) and (A4) are consistent if the
product RAψ(x = 0) is independent of θ.

We can now use Eqs. (35) and (36) which result from solution of the shape problem. We find

R(θ)ψ(θ) =
1

λa
(A5)

which independent of the macroscopic angle θ. Thus, the speed V‖ is proportional to the effective polymerization rate

k0
on

V‖ =
1

λa
k0

on (A6)

where the length 1/λa is the characteristic length of the adhesive belt. Using V⊥ = V‖ψ gives Eq. (A1).
In conclusion, the hypothesis of a constant speed of translation (Cf. Eq. (A4) plus the constraint of mechanical

equilibrium (Cf. Eq. (A5) ) give a speed V⊥ proportional to the curvature.
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FIG. 10: Plot of the function w(t) defined in Eq. (B3) for two values of the parameter η (dot-dashed line, η = 0.01, dashed
line, η = 0.9). Both curve have the same tangent at the origin.

APPENDIX B: EFFECT OF VISCOUS DRAG

We study in this appendix the effect of the viscous term η defined in Eq. (6) on the shape of the spreading curve.
This term is conventionally used in viscoelastic theory to simulate membrane flow. To make notations simple, we
renormalize η so that it is dimensionless. When η is non-zero the kinetics of the spreading curve for a sphere is
described by an equation similar to Eq. (46)

d2w

dt2
= −α

(

dw2

dt
+
η

α

d2w2

dt2

)

(B1)

with the intermediate variable

w =
θ2

θ2m
(B2)

proportional to the contact area when θm is small. The solution of this equation is

ArgTanh(w) − η ln
(

1 − w2
)

= αt (B3)

so that w ∝ αt when t goes to zero. Thus adding a visco-elastic component leaves the slope of the spreading curve
unchanged near the origin, but the characteristic time at which it saturates is larger.

APPENDIX C: EULER EQUATION

Eq. (17) is the potential we want to minimize. It differs from the usual bending potential for membranes[24] because
of the surface tension which is usually taken as a Lagrange’s multiplier for the constraint of total area. In our case,
σ is a tensile stress in the direction uθ. To minimize Eq. (17) with respect to ψ(s) (or φ(s) since ψ(s) + φ(s) = θ)
we choose ψ(s) and x(s) as independent variables. Therefore, we introduce a Lagange’s multiplier[44] λx(s) with a
potential L

L(ψ, ψ̇, x, ẋ, λx) =

∫

dsL = F +

∫

ds λx(s)(
dx

ds
− cosψ) (C1)

Independent variations with respect to x→ x+ δx, ψ → ψ + δψ and λx → λx + δλx lead to

L =

∫ sB

sA

ds

[

∂L
∂ψ

− d

ds

[

∂L

∂ψ̇

]]

+

∫ sB

sA

ds

[

∂L
∂x

− d

ds

[

∂L

∂ẋ

]]

+

∫ sB

sA

ds

[

∂L
∂λx

− d

ds

[

∂L

∂λ̇x

]]

= 0

(C2)

with the boundary conditions

[

∂L
∂ẋ

δx(s)

]sB

sA

+

[

∂L
∂ψ̇

δψ(s)

]sB

sA

+

[

∂L
∂λ̇x(s)

δλx(s)

]sB

sA

+ L(sB)δsB − L(sA)δsA = 0 (C3)
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From (C2), we get :

κm
d2ψ

ds2
+ σ sin(θ − ψ) − λx(s) sinψ = 0

dx

ds
= cosψ

dλx

ds
= 0

(C4)

The last equation gives λx(s) = const. To recover Eq. (17), we now show that λx = 0.
By analogy with a mechanical problem, we define a conserved Hamiltonian H, since L does not depend explicitly

on s (with s playing the role of the time)

H = L − ψ̇
∂L
∂ψ̇

− ẋ
∂L
∂ẋ

− λ̇x(s)
∂L

∂λ̇x(s)
(C5)

Now we use the boundary condition at A and B . Since the angles ψ(sA) qnd ψ(sB) are fixed, we have

(ψ + δψ)(sA + δsA) = ψ(sA) ⇒ δψ(sA) = −ψ̇(sA)δsA

(ψ + δψ)(sB + δsB) = ψ(sB) ⇒ δψ(sB) = −ψ̇(sB)δsB

(C6)

with similar equations for δxA and δxB . Using now Eq. (C3), we get

[

∂L
∂ẋ

(δx(s) − ẋδs)

]sB

sA

+ H(δsA − δsB) = 0 (C7)

We now compare different paths with fixed length between A and B, sB = sA + const. Thus δsA = δsB . Since

∂L
∂ẋ

= λx

and, since δxB is arbitrary we show that λx is zero.

APPENDIX D: GEOMETRICAL MODEL FOR THE PROTRUSION

Let us consider the family of spheres of radius R2(θ2) whose centers are positioned on a straight line perpendicular
to the substrate. We define the volume V (θ2) as the part of the sphere of radius R2(θ2) lying above the substrate and
outside the sphere of r adius R1(θ1). As before, R1(θ1) simulates the cell. When R1(θ1) ≫ R2(θ2) the two volumes
intersect each other along a circular arc. This defines an area A1,2(grey part in Fig. 9) with

A1,2 = (π − θ2)R
2
2(θ2) +

1

2
R2

2(θ2) sin(2θ2) (D1)

with a distance 2d(θ2) between the two points defined by the intersection of this circular arc and the substrate

d(θ2) = R2(θ2) sin(θ2) (D2)

Finally, the constraint of equal volume V (θ2) independent of θ2 fixes the relationship between R2(θ2) and θ2.
We choose arbitrarily one member of this family θ02 as the protrusion before it spreads. Thus, θ02, R2(θ

0
2) and d(θ02)

are fixed by the local softening of the cytoskeleton.
What happens next is geometrically equivalent to what has been described for uniform spreading. The center of

the sphere moves downward and its radius R2(θ2) increases to keep the volume constant. To keep a minimal set of
parameters, we will assume that the center of the sphere of radius R2(θ2) moves along the line perpendicular to the
substrate. Viewed from below, the area of contact is defined by a family of concentric half circles with radius d(θ2).

Keeping the spherical variational calculation, we can compute the surface tension from

dσ = C
dA
A

(D3)
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Since the cell is much larger than the protrusion, A in the denominator is constant. The integration is now straight-
forward and one finds

σ = σ0 + C (Ad(θ2) + Ac(θ2)) (D4)

where the area of the dorsal part is

Ad(θ2) = πR2
2(θ2)(1 + cos θ2) −A1,2(θ2) (D5)

and the contact area

A1,2(θ2) = πR2
2(θ2) sin2 θ2 (D6)

Note that the area A1,2(θ2) must be subtracted from the gain area taken from the cell. Finally, Taylor expanding Eq.
(D4), one finds that σ increases as θ32 because of the A1,2(θ2) term.

APPENDIX E: PEELING MODEL FOR THE PROTRUSIONS

The calculation for the protrusion being variational, the force balance equation between the protrusion and the cell
is not satisfied. If we concentrate on the contact plane between the cell and the substrate, we see from Eq. (D2) that
d(θ2) increases linearly with θ2. This indicates that the junction between the protrusion and the cell is stressed during
spreading. We model this elastic contact using a peeling mechanism for the membrane attached to the cytoskeleton.

To model this stress we concentrate on a 2-d geometry. We describe the contact region protrusion - cell - substrate
by an elastic foundation of modulus kl, where kl is the rigidity of a linker molecule. Assuming weak cohesion forces,
the number of bound linkers is given by

nl(h) =
n0

1 + exp
[

B − 1

2
kl(h− h0)2)/kBT

] (E1)

where kl(h−hmax) is the strain. B ≈ 20 kBT is the activation energy of an unstressed bond. This defines a maximum

displacement hmax above which the linker is broken (hmax = 2h0 = 2 (2B/kl)
1/2 ≈ 20 − 200n.m.[65]).

Returning to the protrusion model, we can model the contact line on the substrate as an arc of circle if h(y) > hmax

and as an elastic foundation for h(y) < hmax. The calculation is similar to the one made for the adhesive belt and
the shape of the elastic foundation is a damped exponential (λl ∝ (n0kl/κa)1/4).

h(y) = exp [−λly] {hmax cos(λly) + C sin(λly)} (E2)

where for y < 0, h(y) < hmax. For the shape (E2) to match the arc of circle at angle β0, we have

C = λ−1

l (β0 + λlhmax) (E3)

Since

cos(β0) =
hmax

d(θ2)
(E4)

increasing the area of contact, increases θ2 which, in turn, increases d(θ2) (Cf. Eq. (D2)) : Thus, by Eq. (E4), β0

increases and the elastic foundation is more and more stressed with an asymptotic value reached for d(θ2) ≈ 10hmax.
In conclusion, stress builds up at the junction between the cell and the protrusion during spreading. Breaking

the bonds releases the elastic energy stored in the junction and equilibrium can be maintained as θ2 increases. This
places an upper bound on the angle β0 above which the membrane is detached from the cytokeleton. To compute
this threshold, let G(β) be the energy stored in the junction. We find :

G(β0) = κλl

[

λ2
l h

2
max + (β0 + λlhmax)

2
]

(E5)

Let dG/d[d(θ2)] be the rate of increase of energy in the junction when d(θ2) increases by d[d(θ2)] and let w be the
adhesion energy between the membrane and the cytoskeleton. We compute the maximum angle in the junction from
the condition

dG/d[d(θ2)] = w (E6)
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or β0 ≈ w/(2κ) if λlhmax ≈ 1. For β0 larger than this value, the membrane will spontaneously detach from the
cytoskeleton.
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