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Abstract

The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are two of the most computational intensive

operations in MPEG audio coding standards. A new mixed-radix algorithm for efficient computing the MDCT/IMDCT is presented.

The proposed mixed-radix MDCT algorithm is composed of two recursive algorithms. The first algorithm, called the radix-2

decimation in frequency (DIF) algorithm, is obtained by decomposing an -point MDCT into two MDCTs with the length /2. TheN N 

second algorithm, called the radix-3 decimation in time (DIT) algorithm, is obtained by decomposing an -point MDCT into threeN 

MDCTs with the length /3. Since the proposed MDCT algorithm is also expressed in the form of a simple sparse matrixN 

factorization, the corresponding IMDCT algorithm can be easily derived by simply transposing the matrix factorization. Comparison

of the proposed algorithm with some existing ones shows that our proposed algorithm is more suitable for parallel implementation

and especially suitable for the layer III of MPEG-1 and MPEG-2 audio encoding and decoding. Moreover, the proposed algorithm

can be easily extended to the multidimensional case by using the vector-radix method.
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Introduction

The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are extensively used to realize the analysis/synthesis

filter banks of time domain aliasing cancellation scheme for subband coding , . This filter bank is equivalent to the modulated lapped[1 ] [2 ]
transform (MLT) introduced by Malvar . The MDCT/IMDCT has been adopted in several international standards and commercial audio[3 ]
coding products such as MPEG-1 , MPEG-2 , and AC-3  to achieve high quality audio compression. However, the direct[4 ] [5 ] [6 ]
computation of the MDCT in MPEG audio encoding and IMDCT in MPEG audio decoding involves an extensive number of arithmetic

operations. Therefore, efficient algorithms for their computation are of great importance.

In the past, many fast algorithms have been reported in the literature for computing the MDCT and IMDCT. These algorithms can

generally be categorized into two kinds: direct method and indirect method. The term of indirect method means that the MDCT or IMDCT

is first converted into other unitary transforms such as discrete Fourier transform (DFT) or discrete cosine transform (DCT), and the latter

transforms are then calculated by fast algorithm. These algorithms generally lead to the parallel in and parallel out architecture . This is[7 ]
the most widely used technique for efficient implementation of both MDCT and IMDCT. For example, by decomposing the MDCT kernel

and using the symmetry property of cosine function, Iwadare et al.  presented an efficient MDCT algorithm that is composed of[8 ]
pre-processing (data shifts, differential calculation and complex pre-multiplication), an /2-point FFT followed by complexN 

post-multiplications. Fan et al.  developed two IMDCT algorithms based respectively on DCT and on the fast Hartley transform for[9 ]
performing the IMDCT quickly. Britanak and Rao ,  proposed an efficient approach for implementing the MDCT and IMDCT[10 ] [11 ]
based on the /4-point DCT/DST and corresponding /4-point IDCT/IDST. Lee  then suggested an improvement of this algorithmN N [12 ]
in the computational speed. Jing and Tai  derived a new fast MLT algorithm which first converts an -point MLT into the 2-point[13 ] N N/ 

DCT-IV by using Malvar s algorithm , and the latter transform is then calculated via 4-point complex-valued FFT with data’ [3 ] N/ 

shuffling. By using a matrix representation, Cheng and Hsu  presented a systematic method for realizing the MDCT and IMDCT. A[14 ]
fast algorithm based on the DCT for computing the MDCT and IMDCT was presented by Truong et al. . Shao and Johnson [15 ] [16 ]
recently derived a new fast algorithm for computing the MDCT and IMDCT based on a modified split-radix FFT algorithm reported in [17

. A comprehensive list of references on this subject can be found in , . A notable merit of indirect method is that many mature] [11 ] [18 ]
algorithms and implemented architectures can be used to the fast computation and effective implementation of DFT (for example, , [17 ] [19

) and DCT (e.g., ). However, a common drawback of the FFT-based method is the need for complex arithmetic and storage–22 ] [23 –28 ]
of complex values. The disadvantage of the DCT-based method is generally the introduction of recursive structure, which is not suitable
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for parallel implementation . The direct method for efficient calculating the MDCT and IMDCT is mainly based on the use of a[29 ]
regressive formula. Among this kind of methods, Chiang and Liu  proposed a regressive algorithm, which can be implemented by[30 ]
parallel VLSI filters. This algorithm was further improved by Chen et al.  and Nikolajevic and Fettweis . These regressive[31 ] [32 ]
algorithms in general emphasize on the merits of serial in and serial out structures . More recently, Shu et al.  presented a radix-3[7 ] [33 ]
decimation in frequency (DIF) algorithm for the fast computing the MDCT and IMDCT. In their algorithm, an -point MDCT andN 

IMDCT was realized via the computation of three /3-point MDCTs and IMDCTs, respectively. Their algorithm also belongs to theN 

direct method, but seems to be more similar to the DCT-based algorithm ( , , ).[10 ] [12 ] [15 ]

In this paper, we propose a new mixed-radix algorithm to compute the MDCT/IMDCT, which is composed of two recursive

algorithms. The first algorithm, called the radix-2 DIF algorithm, decomposes an -point MDCT into two /2-point MDCTs. ThisN N 

algorithm is inspired by a research work presented in  where an -point DCT is decomposed into two DCTs of length /2. The[23 ] N N 

second algorithm, called the radix-3 decimation in time (DIT) algorithm, is different from Shu s DIF algorithm , and decomposes an ’ [33 ] N

-point MDCT into three /3-point MDCTs. We then combine the radix-3 MDCT algorithm and radix-2 MDCT algorithm to produce theN 

mixed-radix MDCT algorithm, which is similar to Chan s mixed-radix DCT algorithm . The mixed-radix algorithm for computing the’ [24 ]
IMDCT can be easily derived from that of MDCT.

The paper is organized as follows. In section II, we introduce the definitions and some properties of the MDCT and IMDCT. Section

III describes the radix-2 algorithm for the efficient computation of MDCT/IMDCT. Section IV presents the radix-3 algorithm for

calculating the MDCT/IMDCT. The analysis of the computational complexity and comparison of the proposed algorithm with some

existing ones are given in section V. Section VI concludes the work.

Definitions and some properties of the MDCT and IMDCT

Let ( )  be an input data sequence, the MDCT and IMDCT are respectively defined as {x n } [2 ]

where is the window length. In general, the recovered data sequence ( )  does not correspond to the original data sequence ( )N {x ̂ n } {x n 

. ( )  has the following symmetries } {x ̂ n } [14 ]

Therefore, only ( ), for  0, 1, , /4 1 and  /2, /2 1, , 3 /4 1, need to be calculated.x ̂ n n = … N − n = N N + … N −

Let kind of methods, Chiang

where denotes the transposition. Then and can be written asT Eqs. (1) (2) 

where is an ( /2)  MDCT matrix.M ( N /2)  × N N × N 

From ( ) and ( ), we know that if a realization of the MDCT is developed, then a realization for the IMDCT can be obtained by7 8 

transposing the signal flow graph of the MDCT.

Radix-2 algorithm for THE MDCT/IMDCT computation
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In this section, we derive a new radix-2 DIF MDCT algorithm, which is obtained by decomposing the -point MDCT into twoN 

MDCTs with the length /2, and we get its sparse matrix factorization. Then, the corresponding IMDCT algorithm can be easily derivedN 

by transposing the MDCT matrix factorization. In the remaining part of this section, the window length is assumed to be divisible by 4,N 

i.e.,  4 .N = p 

Let us consider the following two sub-sequences

Computation of A(k)

where

Using the trigonometric identity

where   denotes the lower integer part of . becomes⌊ x ⌋ x Eq. (11) 

For the computation of ( ), we further decompose into the formA 1 k Eq. (12) 

where

Similarly, can be rewritten asEq. (13) 
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where

From ( ) and ( ), it can be easily verified that19 21 

Substituting ( ) and ( ) into ( ) and using ( ), we get18 20 17 22 

where

with

shows that ( ) is the MDCT of sequence ( ) whose length is /2. Moreover, the sequence ( ) possesses the evenEq. (23) A k a n N a n 

symmetry property, that is

Computation of B(k)

From ( ), we have10 

where

Proceeding with the computation of ( ) in a similar way as for ( ), we haveB k A k 

where
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Here ( ) is given by .a ′ n Eq. (25) 

shows that ( ) is the MDCT of the sequence ( ) with the length /2, and ( ) shows that ( ) possesses the evenEq. (30) B k b n N 31 b n 

antisymmetry property

Computation of X(k), k  0, 1, , N/2  1= … −

From ( ) and ( ), and using the relationship ( 1)  ( 1) , we have23 30 −  ( ⌊ k 1)/2  + ⌋ = −  k   + ⌊ k /2  ⌋

where

Using ( ), ( ) and ( ), we have24 25 31 

where

It can be easily deduced from ( ) that36 

The computation of (2 1) can be realized in a similar way, and we haveX k +

and show that the computation of -point MDCT can be realized via the calculation of two /2-point MDCTs. NoteEqs. (33) (38) N N 

that we can perform the decomposition in ( ) and ( ) recursively until the required small-length MDCTs, i.e., 4- or 6-point MDCT, is33 38 

reached. shows the flowgraph for computing the length-8 MDCT.Fig. 1 

To make the proposed radix-2 MDCT algorithm more clear for the readers, we get the MDCT sparse matrix factorization in the

following. Based on the proposed radix-2 MDCT algorithm, the matrix in ( ) can be decomposed into the following sparseM ( N /2)  × N 7 

matrix product

where is the identity matrix and is the reverse identity matrix. denotes ( /4) ( /2) MDCT matrix withIN JN M ( N /4) ( × N /2) JN /2 N × N 

reversed order of its columns. is the rotation matrix given byGN 
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is the permutation matrix. For clarity, for  16 is shownQN /2 QN /2 N =

is the diagonal sign-changing matrixDN /2 

Substituting ( ) into ( ), we can easily get the corresponding IMDCT algorithm, which is in fact the radix-2 DIT IMDCT algorithm.39 8 

The realization of IMDCT can be easily obtained by reversing the flowgraphs for the MDCT computation.

Radix-3 algorithm for the MDCT/IMDCT computation

In this section, we describe a radix-3 DIT MDCT algorithm which is obtained by decomposing the -point MDCT into three MDCTsN 

with the length /3, and get its sparse matrix factorization. Then, the corresponding IMDCT algorithm is easily obtained by transposingN 

the MDCT matrix factorization. The window length is further assumed to be divisible by 12, i.e.,  12 .N N = p 

can be decomposed as followsEq. (1) 



. Author manuscript

Page /7 16

where

Note that for  12 , can be rewritten as followsN = p Eq. (46) 

Furthermore

can be computed as followsEq. (43) 

where the range of index in ( ) ( ) is from 0 to /6 1.k 50 – 53 N −

, and show that the computation of -point MDCT can be realized via the calculation of three /3-point MDCTs.Eqs. (44) (45) (49) N N 

It should be noted that the above radix-3 DIT MDCT algorithm is also recursive; furthermore, it is more efficient than the radix-3 DIF

algorithm proposed in . shows the flowgraph for computing the length-12 MDCT by using the proposed radix-3 DIT algorithm.[33 ] Fig. 2 

Based on the proposed radix-3 MDCT algorithm, the matrix in ( ) can be decomposed into the following sparse matrixM ( N /2)  × N 7 

product

where denotes ( /6) ( /3) MDCT matrix with reversed order of its rows. corresponds to the input dataJN /6 M ( N /6) ( × N /3) N × N PN 

permutation of ( ) and ( ). corresponds to the permutation of ( ), ( ) and ( ) by obtaining ( ),  0, 1, , /2 1,45 49 EN/ 2 FN/ 2 51 52 53 X k k = … N −

from ( ), ( ) and ( ),  0, 1, , /6 1. Let  12 for example,C k D k E k k = … N − N =
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Substituting ( ) into ( ), we can easily obtain the corresponding IMDCT algorithm, which is in fact the radix-3 DIF IMDCT54 8 

algorithm. The realization of IMDCT can be easily obtained by reversing the flowgraphs for the MDCT computation.

Complexity analysis and comparison results

In this section, we consider the computational complexity of the proposed MDCT and IMDCT algorithms and compare them with

some known algorithms.

Computational complexity for the radix-2 MDCT/IMDCT algorithm

The computation of ( ) and ( ) defined by , for  0, 1, , /4 1, requires /2 additions;x (1) n x (2) n Eq. (36) n = … N − N 

The symmetry property given by ( ) shows that in order to obtain the values of ( ) defined by ( ), we only need to calculate (37 xk n 35 x ′

) and ( ) for  0, 1, , /4 1. Therefore, can be expressed as follows:n x ″ n n = … N − Eq. (35) 

which generally needs 4 multiplications and 2 additions for each . However, ( ) can be rearranged as follows :n 58 [34 ]
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which needs 3 multiplications and 3 additions for each . Therefore, the computation of ( ) needs 3 /4 multiplications and 3 /4n 35 N N 

additions.

The computational complexity of the radix-2 MDCT algorithm is therefore given by

One may use ( ) recursively until the 4-point or 6-point MDCT is reached. For the special case of  2 ,  3, radix-2 MDCT60 N =  n n ≥
algorithm requires 3( 1) /4 multiplications and 5( 1) /4 additions with  and . For 3 2 ,  3, the algorithmn − N n − N N = ×  n n ≥
requires 3( 7/9) /4 multiplications and 5( 1/5) /4 additions with  and  (See ).n − N n − N appendix A 

Similarly, the computational complexity of the radix-2 IMDCT algorithm is given by

For the special case of  2 ,  3, radix-2 IMDCT algorithm requires 3( 1) /4 multiplications and (5 7) /4 additions with N =  n n ≥ n − N n − N 

 and . For  3 2 ,  3, the algorithm requires 3( 7/9) /4 multiplications and 5( 7/15) /4 additions with N = ×  n n ≥ n − N n − N 

 and  (See ).appendix B 

Computational complexity for the radix-3 MDCT/IMDCT algorithm

The computation of the input data of ( ) and ( 6 1  ) in and requires 2 /3 additions;D k E N/ − − k Eqs. (45) (49) N 

The computation of ( ), ( /3 1  ) and ( /3 ) in ( ) ( ) requires 2 /3 multiplications and additions; However,X k X N − − k X N +k 51 – 53 N N 

when  ( /4 1)/2, we have  /4, . In such case, 2 multiplications can be saved.k = N − θk = π

The computational complexity of the radix-3 MDCT algorithm is given in both recursive and non-recursive forms as follows

with  and .

For the computation of IMDCT, by using the symmetries presented in ( ), we can further save /3 additions in the post-processing of3 N 

IMDCT algorithm, corresponding to the pre-processing of MDCT algorithm (see ). The computational complexity of the radix-3Fig. 2 

IMDCT algorithm is therefore given by

with  and .

Mixed-radix MDCT/IMDCT algorithm and comparison with some existing fast algorithms

Since the radix-3 MDCT/IMDCT algorithm is relatively more efficient than the radix-2 MDCT/IMDCT algorithm, therefore, for  3N =
2 ,  2,  2, we first use the radix-3 algorithm until  3 2 ,  2, which is then computed by the radix-2 algorithm. To makem ×  n m ≥ n ≥ N 1 = ×  n n ≥

the proposed mixed-radix algorithm more clear, we give the 12-point and 36-point MDCT flowgraphs in and , respectively.Fig. 3 Fig. 4 
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We first consider the case where the length of the sequences is  2 ,  2. lists the computational complexity of the radix-2N =  n n ≥ Table I 

MDCT/IMDCT algorithm and that of the algorithms presented in ,  and . It can be observed from this Table that the[9 ] [11 –13 ] [15 ]
proposed algorithm for computing the MDCT and IMDCT require more number of arithmetic operations than the algorithms presented in [

 and . However, our proposed algorithm uses real arithmetic only compared to Jing s algorithm . The radix-2 IMDCT11 –13 ] [15 ] ’ [13 ]
algorithm is more efficient than the second algorithm but less efficient than the first one presented in . In , the authors showed the[9 ] [9 ]
flowgraphs of two algorithms for  16. But for higher value of , the generalized flowgraph is difficult to obtain. Furthermore,N = N 

compared to the algorithms presented in  and , our algorithm as well as those reported in ,  and  do not introduce the[12 ] [15 ] [9 ] [11 ] [13 ]
recursive structure as mentioned in , which will be discussed in detail in the following.[29 ]

To test the performance of the proposed mixed-radix MDCT/IMDCT algorithm for  3 2 ,  1,  2, we compare it with JingN =  m ×  n m ≥ n ≥
s algorithm /Fan s algorithm  for which the zero-padding is included, and Lee s algorithm  for which Bi s algorithm presented’ [13 ] ’ [9 ] ’ [12 ] ’
in  is used to compute the scaled DCT (SDCT). lists the number of arithmetic operations needed by these algorithms for[25 ] Table II 

computing the MDCT and IMDCT of length  3 2 ,  1,  2 ( is less than 500). It can be seen from the Table that, in mostN =  m ×  n m ≥ n ≥ N 

cases, the mixed-radix MDCT/IMDCT algorithm is more efficient than Jing s algorithm  for MDCT and Fan s algorithm  for’ [13 ] ’ [9 ]
IMDCT in terms of overall computational complexity, but less efficient than Lee s algorithm .’ [12 ]

It should be pointed out that there are other important issues for designing a good algorithm besides the computational complexity. As

indicated by Yun , considerations such as data access scheme, modularity, and regularity are also of great importance for a good[35 ]
algorithm. The above design criteria will affect the effectiveness of the algorithm when implementation is concerned . In the[23 ]
following, we will compare these criteria comprehensively of our algorithm with the algorithms reported in ,  and , which are[10 ] [12 ] [15 ]
more similar to our algorithm.

Data access scheme

Both Lee s algorithm  and Truong s algorithm  introduce the recursive structure in the course of post-processing. As noted in ’ [12 ] ’ [15 ] [
, the potential drawback of the recursive structure is that it does not support parallel processing. Britanak s algorithm  does not29 ] ’ [10 ]

introduce this recursive structure directly. However, the main process of the algorithms presented in ,  and  is converting the[10 ] [12 ] [15 ]
MDCT/IMDCT computation into DCT computation. To the authors  knowledge, all the radix-type DCT algorithms  seem to’ [23 –25 ]
introduce the recursive structure. and show that our algorithm does not introduce recursive structure and mainly useFigs. 3 4 

butterfly-style structure, which seems to be more suitable for parallel-in and parallel-out implementation and in-place computation. Just

like , we take I/O form into consideration for comparison purpose, the result is shown in .[29 ] Table III 

Modularity and Regularity

The proposed algorithm is completely recursive in nature, as noted in , which makes it very regular and modular structure suitable[23 ]
for VLSI implementation. However, the algorithms presented in ,  and  need to transform the MDCT/IMDCT to DCT (or[10 ] [12 ] [15 ]
IDCT) first, and then can be computed by recursive DCT algorithm ( ), which we call it incompletely recursive  in .[23 –25 ] “ ” Table III 

Furthermore, our algorithm can easily be extended to higher dimensional MDCT/IMDCT by using the vector-radix method, e.g., 2-D

MDCT/IMDCT , which could find its applications in image coding  and digital image watermarking .[36 ] [37 ] [38 ]

Suitability for the layer III of MPEG-1 and MPEG-2 audio encoding and decoding

The layer III of MPEG-1 and MPEG-2 specifies two different MDCT/IMDCT block sizes:  12 (short block) and  36 (longN = N =
block). Since the algorithms presented in ,  and  are mainly proposed for MPEG audio encoding and decoding, so we study[10 ] [12 ] [15 ]
the performance of our algorithm with those algorithms for these special cases.

Arithmetic complexity

In , we give the number of arithmetic operations required by the proposed algorithm and that of the algorithms presented in Table III [
,  and  for computing the 12- and 36-point MDCTs/IMDCTs. It can be seen from this Table that for 12-point MDCT/IMDCT,10 ] [12 ] [15 ]

the proposed algorithm has the best performance in terms of the arithmetic complexity. However, for the computation of 36-point

MDCT/IMDCT, the proposed algorithm requires more number of arithmetic operations than the algorithms reported in  and , but[12 ] [15 ]
less than .[10 ]

Basic module

In , we give the basic module of our algorithm and the algorithms presented in , , and . shows that theTable III [10 ] [12 ] [15 ] Fig. 5 

structure for implementing 6-point IMDCT module is almost identical to that of 3-point DCT module; however, the implementation of

6-point MDCT module is easier than that of 9-point DCT module. Of course, 9-point DCT module could also be implemented by 3-point

DCT module by using the radix-3 DCT algorithm , however, this course introduces recursive structure again. Therefore, the[24 ]
implementation of basic module for the proposed algorithm seems to be simpler than that of the algorithms reported in ,  and .[10 ] [12 ] [15 ]
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Module sharing

As indicated by , sharing module leads to reduced hardware in implementation. Lee s algorithm  employs the same module to[12 ] ’ [12 ]
realize the MDCT and IMDCT, that is, 12-point (36-point) MDCT and 12-point (36-point) IMDCT can be computed by the same 3-point

(9-point) SDCT module. However, in his algorithm, 12-point MDCT/IMDCT and 36-point MDCT/IMDCT can not be shared module. As

noted in , in the short block mode, three short blocks (  12) replace a long block (  36) so that the number of MDCT/IMDCT[39 ] N = N =
samples for a frame of audio samples remains unchanged regardless of the block size selection. The process of the work mode is similar to

that of our algorithm which uses three 12-point MDCTs/IMDCTs to compute a 36-point MDCT/IMDCT. That is, 12-point MDCT/IMDCT

and 36-point MDCT/IMDCT share the same 12-point MDCT/IMDCT module. Furthermore, one of the most important applications for the

layer III of MPEG-1 and MPEG-2 is MP3 player. Generally speaking, the process of encoding, where MDCT is used, is more complicated

than the process of decoding, where IMDCT is used. So, the music is often encoded previously and uploaded to the internet. And then, we

download it from the internet to our MP3 player, which performs the process of decoding, using the 12- and 36-point IMDCTs only. For

this important application, the utilization of MDCT and IMDCT is divided. It seems to suggest that the sharing module of 12-point

MDCT/IMDCT and 36-point MDCT/IMDCT is more important than that of 12-point (36-point) MDCT and 12-point (36-point) IMDCT.

Conclusion

A mixed-radix algorithm is presented for computing the MDCT and IMDCT of a sequence with length  3 2 ,  0,  2.N =  m ×  n m ≥ n ≥
Compared to other existing algorithms, the main improvement achieved is to derive an efficient decomposition method which is recursive

in nature and is very regular and modular. Because the recursive structure in the course of post-processing is not included in our algorithm,

the in-place computation can also be implemented, which is more suitable for parallel implementation and especially suitable for the layer

III of MPEG-1 and MPEG-2 audio encoding and decoding. Note also that for  12, the proposed radix-2 approach for computing theN =
MDCT and IMDCT requires fewer or the same number of arithmetic operations than those of the known algorithms. Moreover, because

the proposed algorithm is expressed in a simple sparse matrix form, it allows for an extension to the multidimensional case.
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Appendix A
Computation of Length-6 MDCT: 1 multiplication and 6 additions

The input data sequence is , , , , ,  and the output data sequence is , , . First consider the length-6 MDCT matrix{x 0 x 1 x 2 x 3 x 4 x 5 } {y 0 y 1 y 2 }

with the input data sequence , , , , , , the length-6 MDCT is given by{x 0 x 1 x 2 x 3 x 4 x 5 }

where  1/2 and .d 0 =

The output data sequence , ,  of MDCT is given by{y 0 y 1 y 2 }

Since the multiplication by (1/2) is simply a right-shift operation, hence, the computation of the length-6 MDCT only requires 1 multiplication

and 6 additions.

Appendix B
Computation of Length-6 IMDCT: 1 multiplication and 4 additions

The input data sequence is , ,  and the output data sequence is , , , , , . The length-6 IMDCT is given by{x 0 x 1 x 2 } {y 0 y 1 y 2 y 3 y 4 y 5 }
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The output data sequence , , , , ,  of IMDCT is given by{y 0 y 1 y 2 y 3 y 4 y 5 }

Notably, the length-6 IMDCT requires 1 multiplication and 4 additions.
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Fig. 1
Flowgraph of a length-8 MDCT ( )radix-2 DIF 

Fig. 2
Flowgraph of a length-12 MDCT ( )radix-3 DIT 

Fig. 3
Flowgraph of a length-12 MDCT ( )mixed-radix 
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Fig. 4
Flowgraph of a length-36 MDCT ( )mixed-radix 

Fig. 5
Flowgraph of a length-6 MDCT (a) and a length-6 IMDCT (b).  signifies that input is set to zero or output equals to zero.“°”
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Table I
Comparison of our radix-2 MDCT/IMDCT algorithm with some existing algorithms in terms of arithmetic complexity for  2 ,  2. M and IM correspond to MDCT and IMDCT, respectively.N =  n n ≥

Algorithm The number of multiplications The number of additions Recursive structure?

radix-2 algorithm 3(  1) /4n − N 5(  1) /4 Mn − N –
(5  7) /4 IMn − N –

no

[15 ] (  1) /4n + N (3  1)N/4 Mn − –
3(  1) /4 IMn − N –

yes*

[12 ] (  1) /4n + N (3  1) /4 Mn − N –
3(  1) /4 IMn − N –

yes*

[11 ] (  1) /4n + N 3(  1) /4 Mn + N –
(3  1) /4 IMn + N –

no

[13 ] (  1) /4n + N (3  1) /4 Mn − N – no

[9 ]-I

-II[9 ]

(  1) /4n + N 
(3  4)n − N

3(  1) /4 IMn − N –
(3  2) IMn − N - 

no
no

 * denotes that the algorithm introduces recursive structure in the course of post-processing.

Table II
Comparison of our mixed-radix MDCT/IMDCT algorithm with Jing s algorithm/Fan s algorithm and Lee s algorithm in terms of arithmetic complexity for  3 2 ,  1,  2 ( is less than 500).’ ’ ’ N =  m ×  n m ≥ n ≥ N 

M and IM correspond to MDCT and IMDCT, respectively.

proposed algorithm Jing s algorithm  /Fan s algorithm -I’ [13 ]  * ’ [9 ] * Lee s algorithm ’ [12 ]
N Mul Add (M/IM) Mul Add (M/IM) Mul Add (M/IM)

6 3 2= 1 × 1 1 6/4 8 16/12 8* 16/12*

12 3 2= 1 × 2 11 27/23 20 44/36 11 29/23

24 3 2= 1 × 3 40 84/76 48 112/96 26 72/60

48 3 2= 1 × 4 116 228/212 112 272/240 64 180/156

96 3 2= 1 × 5 304 576/544 256 640/576 152 432/384

192 3 2= 1 × 6 752 1392/1328 576 1472/1344 352 1008/912

384 3 2= 1 × 7 1792 3264/3136 1280 3328/3072 800 2304/2112

36 3 2= 2 × 2 55 141/117 112 272/240 43 133/115

72 3 2= 2 × 3 166 372/324 256 640/576 104 312/276

144 3 2= 2 × 4 442 924/828 576 1472/1344 244 732/660

288 3 2= 2 × 5 1102 2208/2016 1280 3328/3072 560 1680/1536

108 3 2= 3 × 2 235 603/495 256 640/576 195 527/473

216 3 2= 3 × 3 640 1476/1260 576 1472/1344 444 1216/1108

432 3 2= 3 × 4 1612 3492/3060 1280 3328/3072 996 2756/2540

324 3 2= 4 × 2 919 2349/1917 1280 3328/3072 771 2045/1883
 * denotes that the zero-padding is included.
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Table III

Comparison of our algorithm comprehensively with the algorithms presented in ,  and . M, IM, D, and ID correspond to MDCT, IMDCT, DCT, and IDCT, respectively.[10 ] [12 ] [15 ]

Algorithm Proposed algorithm [15 ] [12 ] [10 ]

Data access I/O form
Parallel-in

Parallel-out
Serial-in

Serial-out
Serial-in

Serial-out
Serial-in

Serial-out

Modularity Regularity Recursive completely incompletely incompletely incompletely

Suitability for the layer III of MPEG-1 and MPEG-2 audio encoding and decoding

Arithmetic complexity

12N = 11/27-M
11/23-IM

11/27-M
11/23-IM

11/29-M
11/23-IM

13/39-M
13/33-IM

36N = 55/141-M
55/117-M

43/129-M
43/115-IM

43/133-M
43/115-IM

47/165-M
47/151-IM

Basic module 6-point M and IM 3- and 9-point D 3- and 9-point D 3-point D and ID
9-point D and ID

Module sharing M and M
IM and IM

no M and IM no


