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Abstract

The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are two of the most computational intensive
operationsin MPEG audio coding standards. A new mixed-radix algorithm for efficient computing the MDCT/IMDCT is presented.
The proposed mixed-radix MDCT algorithm is composed of two recursive algorithms. The first algorithm, called the radix-2
decimation in frequency (DIF) algorithm, is obtained by decomposing an N -point MDCT into two MDCTswith the length N /2. The
second algorithm, called the radix-3 decimation in time (DIT) algorithm, is obtained by decomposing an N -point MDCT into three
MDCTs with the length N /3. Since the proposed MDCT algorithm is also expressed in the form of a simple sparse matrix
factorization, the corresponding IMDCT algorithm can be easily derived by simply transposing the matrix factorization. Comparison
of the proposed algorithm with some existing ones shows that our proposed algorithm is more suitable for parallel implementation
and especially suitable for the layer Il of MPEG-1 and MPEG-2 audio encoding and decoding. M oreover, the proposed algorithm
can be easily extended to the multidimensional case by using the vector-radix method.
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I ntroduction

The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are extensively used to redlize the analysig/synthesis
filter banks of time domain aliasing cancellation scheme for subband coding [1 1, [2]. Thisfilter bank is equivalent to the modulated lapped
transform (MLT) introduced by Malvar [3]. The MDCT/IMDCT has been adopted in several international standards and commercia audio
coding products such as MPEG-1 [4 ], MPEG-2 [5 ], and AC-3 [6 ] to achieve high quality audio compression. However, the direct
computation of the MDCT in MPEG audio encoding and IMDCT in MPEG audio decoding involves an extensive number of arithmetic
operations. Therefore, efficient algorithms for their computation are of great importance.

In the past, many fast algorithms have been reported in the literature for computing the MDCT and IMDCT. These algorithms can
generally be categorized into two kinds: direct method and indirect method. The term of indirect method means that the MDCT or IMDCT
isfirst converted into other unitary transforms such as discrete Fourier transform (DFT) or discrete cosine transform (DCT), and the latter
transforms are then calculated by fast algorithm. These algorithms generally lead to the parallel in and parallel out architecture [7 ]. Thisis
the most widely used technique for efficient implementation of both MDCT and IMDCT. For example, by decomposing the MDCT kernel
and using the symmetry property of cosine function, lwadare et al. [8 ] presented an efficient MDCT algorithm that is composed of
pre-processing (data shifts, differential calculation and complex pre-multiplication), an N /2-point FFT followed by complex
post-multiplications. Fan et al. [9 ] developed two IMDCT algorithms based respectively on DCT and on the fast Hartley transform for
performing the IMDCT quickly. Britanak and Rao [10 ], [11 ] proposed an efficient approach for implementing the MDCT and IMDCT
based on the N /4-point DCT/DST and corresponding N /4-point IDCT/IDST. Lee [12 ] then suggested an improvement of this algorithm
in the computational speed. Jing and Tai [13 ] derived a new fast MLT algorithm which first converts an N -point MLT into the N/ 2-point
DCT-IV by using Malvar's algorithm [3 ], and the latter transform is then calculated via N/ 4-point complex-valued FFT with data
shuffling. By using a matrix representation, Cheng and Hsu [14 ] presented a systematic method for realizing the MDCT and IMDCT. A
fast algorithm based on the DCT for computing the MDCT and IMDCT was presented by Truong et al. [15 ]. Shao and Johnson [16 ]
recently derived a new fast algorithm for computing the MDCT and IMDCT based on a modified split-radix FFT algorithm reported in [17
1. A comprehensive list of references on this subject can be found in [11 ], [18 ]. A notable merit of indirect method is that many mature
algorithms and implemented architectures can be used to the fast computation and effective implementation of DFT (for example, [17 ], [19
-221) and DCT (e.g., [23 -28]). However, acommon drawback of the FFT-based method is the need for complex arithmetic and storage
of complex values. The disadvantage of the DCT-based method is generally the introduction of recursive structure, which is not suitable
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for parallel implementation [29 ]. The direct method for efficient calculating the MDCT and IMDCT is mainly based on the use of a
regressive formula. Among this kind of methods, Chiang and Liu [30 ] proposed a regressive agorithm, which can be implemented by
parallel VLSI filters. This algorithm was further improved by Chen et a. [31 ] and Nikolgjevic and Fettweis [32 ]. These regressive
algorithms in general emphasize on the merits of serial in and serial out structures [7 ]. More recently, Shu et al. [33 ] presented a radix-3
decimation in frequency (DIF) algorithm for the fast computing the MDCT and IMDCT. In their algorithm, an N -point MDCT and
IMDCT was realized via the computation of three N /3-point MDCTs and IMDCTS, respectively. Their algorithm also belongs to the
direct method, but seems to be more similar to the DCT-based agorithm ([101], [12], [15]).

In this paper, we propose a new mixed-radix algorithm to compute the MDCT/IMDCT, which is composed of two recursive
algorithms. The first algorithm, called the radix-2 DIF algorithm, decomposes an N -point MDCT into two N /2-point MDCTSs. This
algorithm is inspired by a research work presented in [23 ] where an N -point DCT is decomposed into two DCTs of length N /2. The
second algorithm, called the radix-3 decimation in time (DIT) agorithm, is different from Shu’s DIF algorithm [33 ], and decomposes an N
-point MDCT into three N /3-point MDCTs. We then combine the radix-3 MDCT algorithm and radix-2 MDCT algorithm to produce the
mixed-radix MDCT algorithm, which is similar to Chan’s mixed-radix DCT agorithm [24 ]. The mixed-radix agorithm for computing the
IMDCT can be easily derived from that of MDCT.

The paper is organized as follows. In section 11, we introduce the definitions and some properties of the MDCT and IMDCT. Section
Il describes the radix-2 agorithm for the efficient computation of MDCT/IMDCT. Section 1V presents the radix-3 agorithm for
calculating the MDCT/IMDCT. The analysis of the computational complexity and comparison of the proposed algorithm with some
existing ones are given in section V. Section VI concludes the work.

Definitions and some properties of the MDCT and IMDCT

Let {x (n)} be an input data sequence, the MDCT and IMDCT are respectively defined as [2 ]

N-1
Zx cos[2N2n+1+ )(2k+1)] k=01 ... N/2-1,
NIE 1

&(n) = Z X(k cos[zw n+1+= )(2k+1)] n=0,1 .. N-1

where N is the window Iength. In general, the recovered data sequence {X (n )} does not correspond to the original data sequence {x (n)
}. {X (n)} has the following symmetries [14 ]

RXBN /4+n)=%3N/4-1-n), n=0,1, ..., N/4-1.
XIN/2-1-n)= —X(n),

Therefore, only X (n), forn=0,1, ..., N/4-1landn=N/2, N /2+1, ..., 3N /4-1, need to be calculated.

Let kind of methods, Chiang

— [X(0), X (1), ~, X(N/2-1) ,
— [x(0), X(1), -, X(N - 1] ,
T

X = [%(0), X(1), ~, XN - 1),

where T denotes the transposition. Then Egs. (1) and (2) can be written as
X =My iz nX,
T
f?. =M N2 KNX ’

where M ;p)x yisan (N/2) x N MDCT matrix.

From (7 ) and (8 ), we know that if arealization of the MDCT is developed, then a realization for the IMDCT can be obtained by
transposing the signal flow graph of the MDCT.

Radix-2 algorithm for THE MDCT/IMDCT computation
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In this section, we derive a new radix-2 DIF MDCT algorithm, which is obtained by decomposing the N -point MDCT into two
MDCTs with the length N /2, and we get its sparse matrix factorization. Then, the corresponding IMDCT algorithm can be easily derived

by transposing the MDCT matrix factorization. In the remaining part of this section, the window length N is assumed to be divisible by 4
i,e,N=4p.

Let us consider the following two sub-sequences

Alk)=X(2k)+ X(2k+1), k

= ,L L N/4-1,
B(k)=X(2k) - X(2k+1), k=0, 1, .

1L ...,N/4-
Computation of A(K)

A(k) = Shzo x| cos |rn+ 1+ 3k + 1| + cos |a-2n + 1+ Fyak+3)|

= Zn;{;. 2x(n) cos [Z+ Bn] % COS [N(2n+1+ )2k + 1)+ (2k+ 1)]
= 2C0S (% +RTTT}Al( — 2sin (TT kﬂ)AE(k)

where
N-1 T
Ay (k) = ngbx(n) Cos (E + Bn] oS @, 1
N-1 -
Aa(k) = nzgx(n) COS (E + Bn] sin @, .,
T
8, = mfzﬂ + 1),
®, = Ten+ 1+ S)2k+ 1),
Using the trigonometric identity
kT koo kT
cos (F+47F) = (=" sin (F+ 7
k+ 1) /20
(- L

where | X | denotes the lower integer part of x . Eq. (11) becomes

[+ 1) /2] k
A(k) = 2(-1) [A1(K) — (= 1) A(k)].
For the computation of A ; (k ), we further decompose Eq. (12) into the form
k)= 5 Lo 'x(

cos(4 +6 )CUS @t Zn N;EX( CDS(%Jan)cns P,
= 22 x(n)

cos (E + Bn] s, , — SNIETINN [ 2+ 1) cos (%T + Bn) cos @, ,

1 j2-1
= ﬁﬂzg @,(n) cos ,, ;,
where

a,(n) = [x(n) + x(N / 2+ n)] cos 8, — [x(n) —x(N /2+n)]sin 6,,, forn=0,1, ..., N/2 -]

Similarly, Eq. (13) can be rewritten as
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= SIS xmy cos (G +6,)sin @+ Zn_nexm cos (B 4+ 6,)sin @,

n)cns( ﬂ)}x: 51n[—2k+1) +ZN’r2 l(N—l—n)ms(STn—Bn)x sin
K
%()

where
j2—-1-n)—x(N—-1-n)JcosB,,—[x(N/2—-1-n)+x(N —-1-mn)]sin 8,, forn=0, 1,
From (19) and (21), it can be easily verified that

an=-aN/2-1-n), forn=0,1, ..., N/2 -1

Substituting (18 ) and (20) into (17 ) and using (22 ), we get

lf:!L(:'{]l=(—]Jﬂﬁ];"@J IZ la(n Jcos @, ,, k=01 ...,N/4-1,
where
an)=am+aqN/2-1-n)
=a“(n) COS Bn+aa(Nf2—1—n)sin 8,,
with

¢

am=x(n-—-x(N/2-1-m+x(N/2+1n)+x(N—-1-n).

Eq. (23) shows that A (k ) isthe MDCT of sequence a (n ) whose length is N /2. Moreover, the sequence a (n ) possesses the even
symmetry property, that is

an)=alN[2-1-n), n=01, ..., N/4—1.

Computation of B(k)

From (10 ), we have

B(k) = Shzox(n)f cos [-(2n+1+ 3@k + 1| - cos [F(2n+ 1+ 5k +3)}
— 2sin (Z + X208, + 2 cos (T + &1, k)
— k/20
=J/2A-10  [By(k)+(— 1) Bz(k)],
where
_ Cm
= Hgﬂ 1) sin (E +Bn) cos @, ,
N-1
= g. 1) sin (%4‘ Bn] sin (2
Proceeding with the computation of B (k ) in asimilar way asfor A (k ), we have
JUEJNIE 1
B(k) = (- Z b(n)cos ¢, k=0,1, ..., N/d4-1,
where
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b(n)= — af(Nf2 —1-—n)cos 6,,+ af(n)sin 8,.

Herea’(n) isgiven by Eq. (25) .

Eq. (30) shows that B (k ) is the MDCT of the sequence b (n ) with the length N /2, and (31 ) shows that b (n ) possesses the even

antisymmetry property

bny= -bN/2-1-n), n=0,1, ....N/4-1.

Computation of X(k),k=0,1,...,N/2-1

From (23) and (30), and using the relationship (1)L (K *D/2 1= (-1) k* Lk/2] we have

X 2k) = {A(K) + Bk)]

Ok +1/20 ony2 -1
=(-1) Y=o Xu(n)cos P,

where
k

x(n) = F[an) + (— 1) b(n))

Using (24), (25) and (31), we have

' (1}(

X (n)=x r:2:|(

1) cos 6,+ X" (n)sin 6,, if kiseven, forn=0,1,

x (n)= —xm(n) sin Bn+x{2}(n)cos 8,,if kisodd,

P =xm)—x(N/2-1-n) = —xP(N/2-1-n),
XPm) =xX(N/2+m)+x(N-1-n)=x"(N/2-1-n).

It can be easily deduced from (36 ) that

X mM=x(N/2-1-n), forn=0,1, ...,N/2 1.

The computation of X (2k +1) can be realized in asimilar way, and we have

ik pred et
=0

X2k+1D=(-1) xk(Nfz—l—n)cosqoM.

. N/2-1

Egs. (33) and (38) show that the computation of N -point MDCT can be realized via the calculation of two N /2-point MDCTs. Note
that we can perform the decomposition in (33 ) and (38 ) recursively until the required small-length MDCTS, i.e., 4- or 6-point MDCT, is

reached. Fig. 1 shows the flowgraph for computing the length-8 MDCT.

To make the proposed radix-2 MDCT algorithm more clear for the readers, we get the MDCT sparse matrix factorization in the
following. Based on the proposed radix-2 MDCT algorithm, the matrix M (N/2X N in (7 ) can be decomposed into the following sparse

matrix product

M gy aviz ~Jnia Inga

Gy

lovim e =D y2Qpy o -
Wiy < v o

I INM _JTNM

IN,."-&‘ JTNJ-'4

IN,."-’-I IN,.’-"-II

where I is the identity matrix and Jy is the reverse identity matrix. M\ 4x( n 12) Jy 2 denotes (N /4)x(N /2) MDCT matrix with

reversed order of its columns. G isthe rotation matrix given by

. Author manuscript
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1T
cos N

. 31T
—Slﬂm

. T
SN

Dy, ;zisthe diagonal sign-changing matrix

‘DNIE =

'1

Qu /2 is the permutation matrix. For clarity, Q ,,for N = 16 is shown

. TT
sin N
31T
sin N
31T
oS
yid
CcoS N

Substituting (39 ) into (8 ), we can easily get the corresponding IMDCT agorithm, which isin fact the radix-2 DIT IMDCT algorithm.

The realization of IMDCT can be easily obtained by reversing the flowgraphs for the MDCT computation.

Radix-3 algorithm for the MDCT/IMDCT computation

In this section, we describe aradix-3 DIT MDCT algorithm which is obtained by decomposing the N -point MDCT into three MDCTs

with the length N /3, and get its sparse matrix factorization. Then, the corresponding IMDCT algorithm is easily obtained by transposing
the MDCT matrix factorization. The window length N is further assumed to be divisible by 12, i.e., N = 12p.

Eq. (1) can be decomposed as follows

. Author manuscript
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61+ 3+ )(2k+1}] sVI3-1y(3p) cos[ Gn+1+d )(2k+1)] SN -1y3n+2)c

'L(

2N ZN

¢, .t Zi‘r’f% 1x(3n)( cosa, cos ¢, + sina,sing, )+ ZNIB x(3n+ 2)( cos o cos ¢
= C(k)+ cos ﬂ."kD(k]-l- sin e, E(k), k=0,1, -, N /2 -1,

where
Njf3-1
C(k) = ngﬂ x(3n+1) cos P,
Nj3-1
D(k)= 2. [X(3m)+x@n+2]cos P, ,,
Nj3-1
E(k)= 2 [x3nm-x@n+2]sing,,
&), = (2K + 1)
31T
¢n ' _ﬁ(2"+1+ )(zk +1).
Notethat for N = 12 p, Eq. (46) can be rewritten as follows
N Nj3-1 n+£
E(g-1-k= 2 (-1 P[x@n-xBn+2]cosp,

Furthermore

CIN/3-1-k)=C(N /3+ k)= —Cl(k),
DIN/3-1-k)=D(N /3+ k)= —D(k),
E(N/3—-1-k)= —E(N [3+k)=E(k).

Eqg. (43) can be computed as follows
X (k) = C(k)+ cos o, D(k)+ sin o E(k),
N _1-k=—clh+l i L
37— 1-k= - 5[ cos o, D(k)+ sin e E(k)] — > [sin o, D(k) — cos o, E(k)],

X(%TJF k)= — C(k)+§1[cns o, D(k)+ sin O{kE(k)]-l‘%[Sin o, D(k) — cos o E(k)],

where the range of index k in (50 )—(53) isfrom 0 to N /6-1.

X(

Eqgs. (44) , (45) and (49) show that the computation of N -point MDCT can be realized via the calculation of three N /3-point MDCTSs.
It should be noted that the above radix-3 DIT MDCT algorithm is also recursive; furthermore, it is more efficient than the radix-3 DIF
algorithm proposed in [33]. Fig. 2 shows the flowgraph for computing the length-12 MDCT by using the proposed radix-3 DIT algorithm.

Based on the proposed radix-3 MDCT algorithm, the matrix M (N/2)X N in (7) can be decomposed into the following sparse matrix

product

Movie)<avr3
Mz xn =Enp2Fny Mo xav s P,
T ieMavie) xav 3
where J 6 M\ gx( n 13 denotes (N /6)x(N /3) MDCT matrix with reversed order of its rows. Py corresponds to the input data

permutation of (45) and (49). E,, , F, , corresponds to the permutation of (51 ), (52) and (53 ) by obtaining X (k ), k=0, 1, ..., N /2-1,
fromnC(k),D(k)andE (k),k=0,1,...,N/6-1. Let N = 12 for example,
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| 1
1
1
1
1 1
P, = 1 1
1z 1 1
1
-1 1
1 -1
-1 1
1 1
1
1
yis
COS 7
Fg = ms% Sm%
V3. 3m 43 31T
5-SINTE  — 5 €08 57
V3. o1
. 2 Sy
I1 1 L
1 1
E, - -1 1/2 -1 |
-1 1/2 -1
-1 1/2 1
| -1 1/2 1 ,

E

sin

=

2 cos N,

Substituting (54 ) into (8 ), we can easily obtain the corresponding IMDCT algorithm, which is in fact the radix-3 DIF IMDCT
algorithm. The realization of IMDCT can be easily obtained by reversing the flowgraphs for the MDCT computation.

Complexity analysis and comparison results

In this section, we consider the computational complexity of the proposed MDCT and IMDCT agorithms and compare them with

some known algorithms.

Computational complexity for theradix-2 MDCT/IMDCT algorithm

® The computation of x W (n) and x @ (n) defined by Eq. (36) , forn=0, 1, ..., N /4-1, requires N /2 additions;

® The symmetry property given by (37 ) showsthat in order to obtain the values of x, (n) defined by (35 ), we only need to calculate x '
n)andx"(n)forn=0,1, ..., N/4-1. Therefore, Eq. (35) can be expressed as follows:

L}

X (n) cos 8,

"

X (n)

— sin@,, cos@

J

sin 8,]|x"(n)
X?(n)

, =01, ..., N/4-1

which generally needs 4 multiplications and 2 additions for each n. However, (58 ) can be rearranged as follows [34 ]:

. Author manuscript
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x'(m))_ tan(ﬂn,fZ)][ 1 n]
x ()| 10 1 - sinf, 1
o [1 tan 8,/ 20| forn=01 .. N/a-1
0 1 X':E:'(n)

which needs 3 multiplications and 3 additions for each n . Therefore, the computation of (35 ) needs 3N /4 multiplications and 3N /4
additions.

The computational complexity of the radix-2 MDCT agorithm is therefore given by
MDCT MDCT
MN ZEMNIIFQ + 3N /4
MDCT MDCT

One may use (60 ) recursively until the 4-point or 6-point MDCT is reached. For the special caseof N =2 ", n > 3, radix-2 MDCT

MDCT _

algorithm requires 3(n -1)N /4 multiplications and 5(n —~1)N /4 additions with Mi™" =3 and 4" =5, For N =3x2", n = 3, the algorithm
requires 3(n -7/9)N /4 multiplications and 5(n —1/5)N /4 additions with Me"" =1 and 45" =6 (See appendix A ).

Similarly, the computational complexity of the radix-2 IMDCT algorithm is given by
IMDCT IMDCT
My " =2My;»y +3N /4,
IMDCT IMDCT

For the special caseof N =2", n 2 3, radix-2 IMDCT algorithm requires 3(n -1)N /4 multiplications and (5n -7)N /4 additions with

M =3 and AF"™T =3, For N = 3x2 ", n = 3, the algorithm requires 3(n -7/9)N /4 multiplications and 5(n ~7/15)N /4 additions with

Mg =1and 45" =4 (See appendix B ).
Computational complexity for theradix-3 MDCT/IMDCT algorithm
* The computation of the input dataof D (k) and E (N/ 6-1 - k) in Egs. (45) and (49) requires 2N /3 additions;

® The computation of X (k), X (N/3-1-k) and X (N /3+k ) in (51 )—(53) requires 2N /3 multiplications and N additions, However,
when k = (N /4-1)/2, we have 8, = /4, €0s 6, = sin 8, =+/2/2, |n such case, 2 multiplications can be saved.

The computational complexity of the radix-3 MDCT agorithm is given in both recursive and non-recursive forms as follows

MY = 3My)5" +2N (3 —-2=2mN [3+N [2+1,

AYPET — 3ANDCT 4 SN /3=5mN [3+5N /4, N=4x3 ,m=1,

with My =3 gng 41" =5,

For the computation of IMDCT, by using the symmetries presented in (3 ), we can further save N /3 additions in the post-processing of
IMDCT algorithm, corresponding to the pre-processing of MDCT algorithm (see Fig. 2 ). The computational complexity of the radix-3
IMDCT algorithm istherefore given by

MyPT = 3My s +2N [3-2=2mN [3+N [2+1,
AMPET _ 3ANPET 14N /3=4mN /3+3N /4 N=4x3 ", m=1.

with M3™ =3 and 437 =3,

Mixed-radix MDCT/IMDCT algorithm and comparison with some existing fast algorithms

Since the radix-3 MDCT/IMDCT agorithm is relatively more efficient than the radix-2 MDCT/IMDCT agorithm, therefore, for N = 3
Mx2", mz 2, nz2, wefirst use the radix-3 algorithm until N ; = 3x2", n > 2, which is then computed by the radix-2 algorithm. To make
the proposed mixed-radix algorithm more clear, we give the 12-point and 36-point MDCT flowgraphsin Fig. 3 and Fig. 4, respectively.
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Wefirst consider the case where the length of the sequencesisN =2", n> 2. Table| lists the computational complexity of the radix-2
MDCT/IMDCT algorithm and that of the algorithms presented in [9 ], [11 -13 ] and [15 ]. It can be observed from this Table that the
proposed algorithm for computing the MDCT and IMDCT require more number of arithmetic operations than the algorithms presented in [
11 -13 ] and [15 ]. However, our proposed algorithm uses real arithmetic only compared to Jing's algorithm [13 ]. The radix-2 IMDCT
algorithm is more efficient than the second algorithm but less efficient than the first one presented in [9]. In [9 ], the authors showed the
flowgraphs of two algorithms for N = 16. But for higher value of N , the generalized flowgraph is difficult to obtain. Furthermore,
compared to the algorithms presented in [12 ] and [15 ], our algorithm as well as those reported in [9 ], [11 ] and [13 ] do not introduce the
recursive structure as mentioned in [29 ], which will be discussed in detail in the following.

To test the performance of the proposed mixed-radix MDCT/IMDCT agorithmfor N=3Mx2" m=2 1, n= 2, we compareit with Jing
's algorithm [13 J/Fan’'s a gorithm [9 ] for which the zero-padding is included, and Lee's agorithm [12 ] for which Bi’s algorithm presented
in [25] is used to compute the scaled DCT (SDCT). Table Il lists the number of arithmetic operations needed by these agorithms for
computing the MDCT and IMDCT of length N =3Mx2" m=1,n=2 (N islessthan 500). It can be seen from the Table that, in most
cases, the mixed-radix MDCT/IMDCT algorithm is more efficient than Jing's algorithm [13 ] for MDCT and Fan's algorithm [9 ] for
IMDCT interms of overall computational complexity, but less efficient than Lee’'s algorithm [12].

It should be pointed out that there are other important issues for designing a good algorithm besides the computational complexity. As
indicated by Yun [35 ], considerations such as data access scheme, modularity, and regularity are also of great importance for a good
algorithm. The above design criteria will affect the effectiveness of the algorithm when implementation is concerned [23 ]. In the
following, we will compare these criteria comprehensively of our algorithm with the algorithms reported in [10 ], [12] and [15 ], which are
more similar to our algorithm.

Data access scheme

Both Lee's algorithm [12 ] and Truong's algorithm [15 ] introduce the recursive structure in the course of post-processing. As noted in [
29 ], the potential drawback of the recursive structure is that it does not support parallel processing. Britanak’s algorithm [10 ] does not
introduce this recursive structure directly. However, the main process of the algorithms presented in [10 ], [12 ] and [15 ] is converting the
MDCT/IMDCT computation into DCT computation. To the authors' knowledge, all the radix-type DCT algorithms [23 -25 ] seem to
introduce the recursive structure. Figs. 3 and 4 show that our algorithm does not introduce recursive structure and mainly use
butterfly-style structure, which seems to be more suitable for parallel-in and parallel-out implementation and in-place computation. Just
like[29], we take I/O form into consideration for comparison purpose, the result isshownin Table 1l .

Modularity and Regularity

The proposed algorithm is completely recursive in nature, as noted in [23 ], which makes it very regular and modular structure suitable
for VLS| implementation. However, the algorithms presented in [10 ], [12 ] and [15 ] need to transform the MDCT/IMDCT to DCT (or
IDCT) first, and then can be computed by recursive DCT algorithm ([23 -25 ]), which we call it “incompletely recursive’ in Table Il .
Furthermore, our algorithm can easily be extended to higher dimensional MDCT/IMDCT by using the vector-radix method, e.g., 2-D
MDCT/IMDCT [36 1, which could find its applications in image coding [37 ] and digital image watermarking [38 ].

Suitability for the layer |11 of MPEG-1 and MPEG-2 audio encoding and decoding

The layer 111 of MPEG-1 and MPEG-2 specifies two different MDCT/IMDCT block sizes: N = 12 (short block) and N = 36 (long
block). Since the algorithms presented in [10 ], [12 ] and [15 ] are mainly proposed for MPEG audio encoding and decoding, so we study
the performance of our algorithm with those algorithms for these special cases.

Arithmetic complexity

In Table 111 , we give the number of arithmetic operations required by the proposed algorithm and that of the algorithms presented in [
101, [12] and [15] for computing the 12- and 36-point MDCTS/IMDCTSs. It can be seen from this Table that for 12-point MDCT/IMDCT,
the proposed algorithm has the best performance in terms of the arithmetic complexity. However, for the computation of 36-point
MDCT/IMDCT, the proposed algorithm requires more number of arithmetic operations than the algorithms reported in [12 ] and [15 ], but
lessthan [101].

Basic module

In Table Il , we give the basic module of our algorithm and the algorithms presented in [10 ], [12 ], and [15 ]. Fig. 5 shows that the
structure for implementing 6-point IMDCT module is almost identical to that of 3-point DCT module; however, the implementation of
6-point MDCT module is easier than that of 9-point DCT module. Of course, 9-point DCT module could also be implemented by 3-point
DCT module by using the radix-3 DCT algorithm [24 ], however, this course introduces recursive structure again. Therefore, the

implementation of basic module for the proposed algorithm seems to be simpler than that of the algorithms reported in [10], [12] and [15].
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Module sharing

As indicated by [12 ], sharing module leads to reduced hardware in implementation. Lee's algorithm [12 ] employs the same module to
realize the MDCT and IMDCT, that is, 12-point (36-point) MDCT and 12-point (36-point) IMDCT can be computed by the same 3-point
(9-point) SDCT module. However, in his algorithm, 12-point MDCT/IMDCT and 36-point MDCT/IMDCT can not be shared module. As
noted in [39 ], in the short block mode, three short blocks (N = 12) replace along block (N = 36) so that the number of MDCT/IMDCT
samples for aframe of audio samples remains unchanged regardless of the block size selection. The process of the work mode is similar to
that of our algorithm which uses three 12-point MDCT</IMDCTSs to compute a 36-point MDCT/IMDCT. That is, 12-point MDCT/IMDCT
and 36-point MDCT/IMDCT share the same 12-point MDCT/IMDCT module. Furthermore, one of the most important applications for the
layer 111 of MPEG-1 and MPEG-2 is MP3 player. Generally speaking, the process of encoding, where MDCT is used, is more complicated
than the process of decoding, where IMDCT is used. So, the music is often encoded previously and uploaded to the internet. And then, we
download it from the internet to our MP3 player, which performs the process of decoding, using the 12- and 36-point IMDCTSs only. For
this important application, the utilization of MDCT and IMDCT s divided. It seems to suggest that the sharing module of 12-point
MDCT/IMDCT and 36-point MDCT/IMDCT is more important than that of 12-point (36-point) MDCT and 12-point (36-point) IMDCT.

Conclusion

A mixed-radix agorithm is presented for computing the MDCT and IMDCT of a sequence with length N=3Mx2" m=0,n = 2.
Compared to other existing agorithms, the main improvement achieved is to derive an efficient decomposition method which is recursive
in nature and is very regular and modular. Because the recursive structure in the course of post-processing is not included in our algorithm,
the in-place computation can also be implemented, which is more suitable for parallel implementation and especially suitable for the layer
Il of MPEG-1 and MPEG-2 audio encoding and decoding. Note also that for N = 12, the proposed radix-2 approach for computing the
MDCT and IMDCT requires fewer or the same number of arithmetic operations than those of the known agorithms. Moreover, because
the proposed algorithm is expressed in a simple sparse matrix form, it allows for an extension to the multidimensional case.
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Appendix A
Computation of Length-6 MDCT: 1 multiplication and 6 additions

The input data sequenceis{x ,, X ;, X ,, X 3, X 4, X g} and the output data sequenceisfy ;.Y ;. Y ,}. First consider the length-6 MDCT matrix
with the input data sequence(X ,, X ;, X ,, X 3, X 4, X 5}, thelength-6 MDCT is given by

dy 0 —dy —dy -1 —dy
-10 1 0 -1 0
d 0 -d d -1 4

whered ;= /2 and i = /3/2,
The output data sequence{y 4,y ;, Y ,} of MDCT isgiven by
=Xy — X, By = dy- Oy — X5 03 = X3+ Xs
Yo=0 - Ny = -4 — X5y, = @+ N,

Since the multiplication by (1/2) is simply aright-shift operation, hence, the computation of the length-6 MDCT only requires 1 multiplication
and 6 additions.

Appendix B
Computation of Length-6 IMDCT: 1 multiplication and 4 additions

The input data sequenceis{x 4, X ; , X ,} and the output data sequenceis{y ,,Y 1,Y .Y 3. Y 4. Y 5}. Thelength-6 IMDCT is given by
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d 0 —d -dy -1 —dy
—-10 1 0 -1 0
d 0 -d d -1 d

The output data sequence{y 4, Y ;.Y 5, Y 3:Y 4. Y 5} Of IMDCT isgiven by
Ay =Xy + X Ay = Xp — Xy
Ny = dy- ay; Ny = dy - a
Yo=My =Xy, =0y,= -y, ¥, =,
y4= _al_xl;y5=y3'

Notably, the length-6 IMDCT requires 1 multiplication and 4 additions.
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Fig. 1
Flowgraph of alength-8 MDCT (radix-2 DIF)
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Fig. 4
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Flowgraph of alength-6 MDCT (&) and alength-6 IMDCT (b).
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“ gignifies that input is set to zero or output equalsto zero.
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Tablel
Comparison of our radix-2 MDCT/IMDCT algorithm with some existing algorithmsin terms of arithmetic complexity for N=2",n>2. M and IM correspond to MDCT and IMDCT, respectively.

Algorithm Thenumber of multiplications Thenumber of additions Recursive structure?

radix-2 algorithm 3(n-1)N/4 5(n-1)N /4-M no
(5n - 7)N /4-IM

(15, (n+ )N /4 (3n - )N/4-M yes
3(n- 1N /4-IM

124 (n+ )N /4 (Bn- 1N /4-M yes'
3(n-1)N/4-IM

[11] (n+1)N /4 3(n+1)N/4-M no
(3n+ )N /4-IM

[13] (n+1)N /4 (Bn-1)N/4-M no

O (n+ 1N /4 3(N-1)N/4-IM no

O (3n- 4N (B3n-2N-IM no

" denotes that the al gorithm introduces recursive structure in the course of post-processing.

Tablell
Comparison of our mixed-radix MDCT/IMDCT algorithm with Jing's algorithm/Fan’s algorithm and Lee's algorithm in terms of arithmetic complexity for N =3Mx2" 'm=1,n=z 2 (N isless than 500).

M and IM correspond to MDCT and IMDCT, respectively.

proposed algorithm Jing’salgorithm[13] */Fan‘salgorithm[g ]-I* Legsalgorithm [12]
N Mul Add (M/IM) Mul Add (M/IM) Mul Add (M/IM)
6=31x21 1 6/4 8 16/12 g 16/12°
12=31x22 11 27/23 20 44/36 11 29/23
24=31x23 40 84/76 48 112/96 26 72/60
48=31x24 116 228/212 112 272/240 64 180/156
96=31 x25 304 576/544 256 640/576 152 432/384
192=31x26 752 1392/1328 576 1472/1344 352 1008/912
384=31x27 1792 3264/3136 1280 3328/3072 800 2304/2112
36=32x22 55 141117 112 272/240 43 133/115
72=3%2x23 166 372/324 256 640/576 104 312/276
144=32x24 442 924/828 576 1472/1344 244 732/660
288=32x25 1102 2208/2016 1280 3328/3072 560 1680/1536
108=33 x22 235 603/495 256 640/576 195 527/473
216=33x23 640 1476/1260 576 1472/1344 444 1216/1108
432=33x24 1612 3492/3060 1280 3328/3072 996 2756/2540
324=34x22 919 2349/1917 1280 3328/3072 771 2045/1883

" denotes that the zero- padding is included.
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Tablelll

Comparison of our algorithm comprehensively with the algorithms presented in [10 1, [12 ]and [15 ]- M, IM, D, and ID correspond to MDCT, IMDCT, DCT, and IDCT, respectively.

Algorithm Proposed algorithm 15 2 10,
Parallel-in Serial-in Serial-in Serial-in
Data access 1/0 form Par allel-out Serial-out Serial-out Serial-out
Modularity Regularity Recursive completely incompletely incompletely incompletely
N =12 11/27-M 11/27-M 11/29-M 13/39-M
Arithmetic complexit 11/23-IM 11/23-IM 11/23-IM 13/33-IM
P N =36 55/141-M 43/120-M 43/133-M 47/165-M
I i i ) 55/117-M 43/115-IM 43/115-IM 47/151-IM
Suitability for the layer 111 of MPEG-1 and MPEG-2 audio encoding and decoding Basic module 6-point M and IM 3 ad9pointD 3 andS-pointD  3-point D and ID
9-point D and ID
Module sharing M and M no M and IM no
IM and IM
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