
HAL Id: inserm-00344948
https://inserm.hal.science/inserm-00344948

Submitted on 7 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-radix Algorithm for the Computation of Forward
and Inverse MDCT.

Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin Luo

To cite this version:
Jiasong Wu, Huazhong Shu, Lotfi Senhadji, Limin Luo. Mixed-radix Algorithm for the Computation
of Forward and Inverse MDCT.. IEEE Transactions on Circuits and Systems Part 1 Fundamental
Theory and Applications, 2009, 56 (4), pp.784-794. �10.1109/TCSI.2008.2002918�. �inserm-00344948�

https://inserm.hal.science/inserm-00344948
https://hal.archives-ouvertes.fr

 1

Mixed-radix Algorithm for the Computation
of Forward and Inverse MDCT

Jiasong Wu, Huazhong Shu, Senior Member, IEEE, Lotfi Senhadji, Senior Member, IEEE
 and Limin Luo, Senior Member, IEEE

Abstract—The modified discrete cosine transform (MDCT) and

inverse MDCT (IMDCT) are two of the most computational
intensive operations in MPEG audio coding standards. A new
mixed-radix algorithm for efficient computing the
MDCT/IMDCT is presented. The proposed mixed-radix MDCT
algorithm is composed of two recursive algorithms. The first
algorithm, called the radix-2 decimation in frequency (DIF)
algorithm, is obtained by decomposing an N-point MDCT into
two MDCTs with the length N/2. The second algorithm, called the
radix-3 decimation in time (DIT) algorithm, is obtained by
decomposing an N-point MDCT into three MDCTs with the
length N/3. Since the proposed MDCT algorithm is also expressed
in the form of a simple sparse matrix factorization, the
corresponding IMDCT algorithm can be easily derived by simply
transposing the matrix factorization. Comparison of the proposed
algorithm with some existing ones shows that our proposed
algorithm is more suitable for parallel implementation and
especially suitable for the layer III of MPEG-1 and MPEG-2
audio encoding and decoding. Moreover, the proposed algorithm
can be easily extended to the multidimensional case by using the
vector-radix method.

Index Terms—MDCT, fast algorithm, mixed radix, MPEG
audio coding

I. INTRODUCTION
H
in

E modified discrete cosine transform (MDCT) and
verse MDCT (IMDCT) are extensively used to realize

the analysis/synthesis filter banks of time domain aliasing
cancellation scheme for subband coding [1], [2]. This filter
bank is equivalent to the modulated lapped transform (MLT)
introduced by Malvar [3]. The MDCT/IMDCT has been
adopted in several international standards and commercial
audio coding products such as MPEG-1 [4], MPEG-2 [5], and
AC-3 [6] to achieve high quality audio compression. However,

the direct computation of the MDCT in MPEG audio encoding
and IMDCT in MPEG audio decoding involves an extensive
number of arithmetic operations. Therefore, efficient
algorithms for their computation are of great importance.

Manuscript received July 21, 2007. This work was supported by National

Basic Research Program of China under grant N0 2003CB716102, Program for
New Century Excellent Talents in University under grant N0 NCET-04-0477,
and Program for Changjiang Scholars and Innovative Research Team in
University.

Jiasong Wu, Huazhong Shu, and Limin Luo are with the Laboratory of
Image Science and Technology, School of Computer Science and Engineering,
Southeast University, 210096, Nanjing, China (e-mail: jswu@seu.edu.cn;
shu.list@seu.edu.cn; luo.list@seu.edu.cn).

Lotfi Senhadji is with the INSERM, U642, Rennes, F-35000, France, and
with the Université de Rennes 1, LTSI, Rennes, F-35000, France (e-mail:
lotfi.senhadji@univ-rennes1.fr).

All the authors are with “Centre de Recherche en Information Biomédicale
Sino-Français (CRIBs)”.

In the past, many fast algorithms have been reported in the
literature for computing the MDCT and IMDCT. These
algorithms can generally be categorized into two kinds: direct
method and indirect method. The term of indirect method
means that the MDCT or IMDCT is first converted into other
unitary transforms such as discrete Fourier transform (DFT) or
discrete cosine transform (DCT), and the latter transforms are
then calculated by fast algorithm. These algorithms generally
lead to the parallel in and parallel out architecture [7]. This is
the most widely used technique for efficient implementation of
both MDCT and IMDCT. For example, by decomposing the
MDCT kernel and using the symmetry property of cosine
function, Iwadare et al. [8] presented an efficient MDCT
algorithm that is composed of pre-processing (data shifts,
differential calculation and complex pre-multiplication), an
N/2-point FFT followed by complex post-multiplications. Fan
et al. [9] developed two IMDCT algorithms based respectively
on DCT and on the fast Hartley transform for performing the
IMDCT quickly. Britanak and Rao [10], [11] proposed an
efficient approach for implementing the MDCT and IMDCT
based on the N/4-point DCT/DST and corresponding N/4-point
IDCT/IDST. Lee [12] then suggested an improvement of this
algorithm in the computational speed. Jing and Tai [13] derived
a new fast MLT algorithm which first converts an N-point MLT
into the N/2-point DCT-IV by using Malvar’s algorithm [3],
and the latter transform is then calculated via N/4-point
complex-valued FFT with data shuffling. By using a matrix
representation, Cheng and Hsu [14] presented a systematic
method for realizing the MDCT and IMDCT. A fast algorithm
based on the DCT for computing the MDCT and IMDCT was
presented by Truong et al. [15]. Shao and Johnson [16] recently
derived a new fast algorithm for computing the MDCT and
IMDCT based on a modified split-radix FFT algorithm
reported in [17]. A comprehensive list of references on this
subject can be found in [11], [18]. A notable merit of indirect
method is that many mature algorithms and implemented
architectures can be used to the fast computation and effective
implementation of DFT (for example, [17], [19-22]) and DCT
(e.g., [23-28]). However, a common drawback of the
FFT-based method is the need for complex arithmetic and
storage of complex values. The disadvantage of the DCT-based
method is generally the introduction of recursive structure,
which is not suitable for parallel implementation [29]. The
direct method for efficient calculating the MDCT and IMDCT

T

 2

is mainly based on the use of a regressive formula. Among this kind of methods, Chiang
 and Liu [30] proposed a regressive algorithm, which can be
implemented by parallel VLSI filters. This algorithm was
further improved by Chen et al. [31] and Nikolajevic and
Fettweis [32]. These regressive algorithms in general
emphasize on the merits of serial in and serial out structures [7].
More recently, Shu et al. [33] presented a radix-3 decimation in
frequency (DIF) algorithm for the fast computing the MDCT
and IMDCT. In their algorithm, an N-point MDCT and IMDCT
was realized via the computation of three N/3-point MDCTs
and IMDCTs, respectively. Their algorithm also belongs to the
direct method, but seems to be more similar to the DCT-based
algorithm ([10], [12], [15]).

In this paper, we propose a new mixed-radix algorithm to
compute the MDCT/IMDCT, which is composed of two
recursive algorithms. The first algorithm, called the radix-2
DIF algorithm, decomposes an N-point MDCT into two
N/2-point MDCTs. This algorithm is inspired by a research
work presented in [23] where an N-point DCT is decomposed
into two DCTs of length N/2. The second algorithm, called the
radix-3 decimation in time (DIT) algorithm, is different from
Shu’s DIF algorithm [33], and decomposes an N-point MDCT
into three N/3-point MDCTs. We then combine the radix-3
MDCT algorithm and radix-2 MDCT algorithm to produce the
mixed-radix MDCT algorithm, which is similar to Chan’s
mixed-radix DCT algorithm [24]. The mixed-radix algorithm
for computing the IMDCT can be easily derived from that of
MDCT.

The paper is organized as follows. In section II, we
introduce the definitions and some properties of the MDCT and
IMDCT. Section III describes the radix-2 algorithm for the
efficient computation of MDCT/IMDCT. Section IV presents
the radix-3 algorithm for calculating the MDCT/IMDCT. The
analysis of the computational complexity and comparison of
the proposed algorithm with some existing ones are given in
section V. Section VI concludes the work.

I. DEFINITIONS AND SOME PROPERTIES OF THE MDCT AND
IMDCT

Let {x(n)} be an input data sequence, the MDCT and IMDCT
are respectively defined as [2]

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ +++=

1

0

)12)(
2

12(
2

cos)()(
N

n

kNn
N

nxkX π
,

k = 0, 1, …, N/2 – 1, (1)

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ +++=

12/

0

)12)(
2

12(
2

cos)()(ˆ
N

k

kNn
N

kXnx π
,

n = 0, 1, …, N – 1. (2)
where N is the window length. In general, the recovered data
sequence does not correspond to the original data
sequence {x(n)}.

{)(ˆ nx }
{ })(ˆ nx has the following symmetries [14]

),(ˆ)12/(ˆ
),14/3(ˆ)4/3(ˆ

nxnNx
nNxnNx

−=−−
−−=+

n = 0, 1, …, N/4 – 1. (3)

Therefore, only , for n = 0, 1, …, N/4–1 and n = N/2,
N/2+1, …, 3N/4–1, need to be calculated.

)(ˆ nx

 Let

[]TNXXXX)12/(,),1(),0(−= L , (4)

[]TNxxxx)1(,),1(),0(−= L , (5)

[]TNxxxx)1(ˆ,),1(ˆ),0(ˆˆ −= L , (6)
where T denotes the transposition. Then Eqs. (1) and (2) can be
written as

xMX NN ×=)2/(, (7)

XMx T
NN ×=)2/(ˆ , (8)

where is an MDCT matrix. NNM ×)2/(NN ×)2/(
From (7) and (8), we know that if a realization of the

MDCT is developed, then a realization for the IMDCT can be
obtained by transposing the signal flow graph of the MDCT.

II. RADIX-2 ALGORITHM FOR THE MDCT/IMDCT
COMPUTATION

In this section, we derive a new radix-2 DIF MDCT algorithm,
which is obtained by decomposing the N-point MDCT into two
MDCTs with the length N/2, and we get its sparse matrix
factorization. Then, the corresponding IMDCT algorithm can
be easily derived by transposing the MDCT matrix
factorization. In the remaining part of this section, the window
length N is assumed to be divisible by 4, i.e., N = 4p.

Let us consider the following two sub-sequences
)12()2()(++= kXkXkA , k = 0, 1, …, N/4 – 1, (9)
)12()2()(+−= kXkXkB , k = 0, 1, …, N/4 – 1. (10)

A. Computation of A(k)

),(
24

sin2)(
24

cos2

)12(
4

)12)(
4

12(cos

4
cos)(2

)34)(
2

12(
2

cos

)14)(
2

12(
2

cos)()(

21

1

0

1

0

kAkkAk

kkNn
N

nx

kNn
N

kNn
N

nxkA

N

n
n

N

n

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +=

⎥⎦
⎤

⎢⎣
⎡ +++++×

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ ++++

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +++=

∑

∑

−

=

−

=

ππππ

ππ

θπ

π

π

(11)
 where

kn

N

n
nnxkA ,

1

0
1 cos

4
cos)()(φθπ∑

−

=

⎟
⎠
⎞

⎜
⎝
⎛ += , (12)

kn

N

n
nnxkA ,

1

0
2 sin

4
cos)()(φθπ∑

−

=

⎟
⎠
⎞

⎜
⎝
⎛ += , (13)

)12(
2

+= n
Nn

πθ , (14)

)12)(
4

12(, +++= kNn
Nkn
πφ . (15)

Using the trigonometric identity

 3

⎣ ⎦ ,
2
2)1(

24
sin)1(

24
cos

2/)1(+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛ +

k

k kk ππππ

 (16)

where denotes the lower integer part of x. Eq. (11)
becomes

⎣ ⎦x

⎣ ⎦ [])()1()()1(2)(21
2/)1(kAkAkA kk −−−= + . (17)

For the computation of A1(k), we further decompose Eq. (12)
into the form

∑

∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

=

⎟
⎠
⎞

⎜
⎝
⎛ ++−

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +=

12/

0
,1

,

12/

0

,

12/

0

,

1

2/

,

12/

0
1

,cos)(
2

1

cos
4

3cos)2/(

cos
4

cos)(

cos
4

cos)(

cos
4

cos)()(

N

n
kn

kn

N

n
n

kn

N

n
n

kn

N

Nn
n

kn

N

n
n

na

nNx

nx

nx

nxkA

φ

φθπ

φθπ

φθπ

φθπ

 (18)
where

[]
[] ,sin)2/()(

cos)2/()()(1

n

n

nNxnx
nNxnxna

θ
θ

+−−
++=

for n = 0, 1, …, N/2 – 1. (19)
Similarly, Eq. (13) can be rewritten as

∑

∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−
=

⎥⎦
⎤

⎢⎣
⎡ −+×

⎟
⎠
⎞

⎜
⎝
⎛ −−−+

⎥⎦
⎤

⎢⎣
⎡ −+×

⎟
⎠
⎞

⎜
⎝
⎛ −−−=

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +=

12/

0
,2

,

12/

0

,

12/

0

,

1

2/

,

12/

0
2

,cos)(
2
)1(

)12(
2

5sin

4
5cos)1(

)12(
2

3sin

4
3cos)12/(

sin
4

cos)(

sin
4

cos)()(

N

n
kn

k

kn

N

n
n

kn

N

n
n

kn

N

Nn
n

kn

N

n
n

na

k

nNx

k

nNx

nx

nxkA

φ

φπ

θπ

φπ

θπ

φθπ

φθπ

 (20)
 where

[]
[] ,sin)1()12/(

cos)1()12/()(2

n

n

nNxnNx
nNxnNxna

θ
θ

−−+−−−
−−−−−=

for n = 0, 1, …, N/2 – 1. (21)

From (19) and (21), it can be easily verified that
)12/()(12 nNana −−−= , for n = 0, 1, …, N/2 – 1. (22)

Substituting (18) and (20) into (17) and using (22), we get

⎣ ⎦
kn

N

n

k nakA ,

12/

0

2/)1(cos)()1()(φ∑
−

=

+−= ,k = 0,1, …,N/4–1, (23)

where

,sin)12/(cos)(
)12/()()(11

nn nNana
nNanana

θθ −−′+′=
−−+= (24)

with
)1()2/()12/()()(nNxnNxnNxnxna −−+++−−−=′ . (25)

Eq. (23) shows that A(k) is the MDCT of sequence a(n)
whose length is N/2. Moreover, the sequence a(n) possesses
the even symmetry property, that is

),12/()(nNana −−= n = 0, 1, …, N/4 – 1. (26)

B. Computation of B(k)
 From (10), we have

⎣ ⎦ [],)()1()()1(2

)(
24

cos2)(
24

sin2

)34)(
2

12(
2

cos

)14)(
2

12(
2

cos)()(

21
2/

21

1

0

kBkB

kBkkBk

kNn
N

kNn
N

nxkB

kk

N

n

−+−=

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +=

⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ +++−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +++= ∑

−

=

ππππ

π

π

(27)
where

kn

N

n
nnxkB ,

1

0
1 cos

4
sin)()(φθπ∑

−

=

⎟
⎠
⎞

⎜
⎝
⎛ += (28)

kn

N

n
nnxkB ,

1

0
2 sin

4
sin)()(φθπ∑

−

=

⎟
⎠
⎞

⎜
⎝
⎛ += (29)

Proceeding with the computation of B(k) in a similar way as
for A(k), we have

⎣ ⎦
kn

N

n

k nbkB ,

12/

0

2/ cos)()1()(φ∑
−

=

−= , k = 0, 1, …, N/4–1, (30)

where
nn nanNanb θθ sin)(cos)12/()(′+−−′−= . (31)

Here)(na′ is given by Eq. (25).
Eq. (30) shows that B(k) is the MDCT of the sequence b(n)

with the length N/2, and (31) shows that b(n) possesses the
even antisymmetry property

),12/()(nNbnb −−−= n = 0, 1, …, N/4 – 1. (32)

C. Computation of X(k), k = 0, 1, …, N/2– 1
 From (23) and (30), and using the
relationship ⎣ ⎦ ⎣ 2/2/)1()1()1(kkk ++ −=− ⎦ , we have

[]

⎣ ⎦ ,cos)()1(

)()(
2
1)2(

,

12/

0

2/)1(
kn

N

n
k

k nx

kBkAkX

φ∑
−

=

+−=

+=

 (33)

 4

where

 []. (34))()1()(
2
1)(nbnanx k

k −+=

Using (24), (25) and (31), we have

⎪⎩

⎪
⎨
⎧

+−=′′

+=′
=

odd, is if,cos)(sin)()(

even, is if,sin)(cos)()(
)(

)2()1(

)2()1(

knxnxnx

knxnxnx
nx

nn

nn
k

θθ

θθ

 for n = 0, 1, …, N/2–1, (35)
where

).12/()1()2/()(

),12/()12/()()(
)2()2(

)1()1(

nNxnNxnNxnx

nNxnNxnxnx

−−=−−++=

−−−=−−−=

 (36)
It can be easily deduced from (36) that

)12/()(nNxnx −−′=′′ , for n = 0, 1, …, N/2 – 1. (37)
The computation of X(2k+1) can be realized in a similar way,
and we have

⎣ ⎦
kn

N

n
k

k nNxkX ,

12/

0

2/)1(cos)12/()1()12(φ∑
−

=

+ −−−=+ . (38)

Eqs. (33) and (38) show that the computation of N-point MDCT
can be realized via the calculation of two N/2-point MDCTs.
Note that we can perform the decomposition in (33) and (38)
recursively until the required small-length MDCTs, i.e., 4- or
6-point MDCT, is reached. Fig. 1 shows the flowgraph for
computing the length-8 MDCT.

To make the proposed radix-2 MDCT algorithm more
clear for the readers, we get the MDCT sparse matrix
factorization in the following. Based on the proposed radix-2
MDCT algorithm, the matrix in (7) can be
decomposed into the following sparse matrix product

NNM ×)2/(

,

44

44

44

44

2/)2/()4/(

)2/()4/(
2/2/)2/(

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×
×

N/N/

N/N/

N/N/

N/N/

N

NNN

NN
NNNN

IJ
JI

I-J
-JI

G

JM

M
QDM

 (39)

where IN is the identity matrix and JN is the reverse identity
matrix. denotes (N/4)×(N/2) MDCT matrix
with reversed order of its columns. G

2/)2/()4/(NNN JM ×

N is the rotation matrix
given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

−−

=

2

cos
2

sin

2
3cos

2
3sin

2

)1(cos
2

)1(in-

2

)1(sin
2

)1(cos

2
3in

2
3cos

2
in

2
cos

NN

NN

N
N

N
Ns

N
N

N
N

N
s

N

N
s

N

GN

ππ

ππ

ππ

ππ

ππ

ππ

ON

NO

,(40)

QN/2 is the permutation matrix. For clarity, QN/2 for N = 16 is
shown

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
 1

 1
 1

 1
 1

 1
 1

8Q , (41)

DN/2 is the diagonal sign-changing matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

O
1

 1
 1

1
1

1
1

 1

2/ND . (42)

Substituting (39) into (8), we can easily get the corresponding
IMDCT algorithm, which is in fact the radix-2 DIT IMDCT
algorithm. The realization of IMDCT can be easily obtained by
reversing the flowgraphs for the MDCT computation.

III. RADIX-3 ALGORITHM FOR THE MDCT/IMDCT
COMPUTATION

In this section, we describe a radix-3 DIT MDCT algorithm
which is obtained by decomposing the N-point MDCT into
three MDCTs with the length N/3, and get its sparse matrix
factorization. Then, the corresponding IMDCT algorithm is
easily obtained by transposing the MDCT matrix factorization.
The window length N is further assumed to be divisible by 12,
i.e., N = 12p.

Eq. (1) can be decomposed as follows

 5

∑

∑

∑

−

=

−

=

−

=

⎥⎦
⎤

⎢⎣
⎡ +++++

⎥⎦
⎤

⎢⎣
⎡ ++++

⎥⎦
⎤

⎢⎣
⎡ ++++=

13/

0

13/

0

13/

0

)12)(
2

56(
2

cos)23(

)12)(
2

16(
2

cos)3(

)12)(
2

36(
2

cos)13()(

N

n

N

n

N

n

kNn
N

nx

kNn
N

nx

kNn
N

nxkX

π

π

π

(

) (
)

,12/,,1,0),(sin)(cos)(
sinsin

coscos)23(sinsin

coscos)3(cos)13(

,

13/

0
,,

13/

0
,

13/

0
,

−=++=

−

+++

++=

∑

∑∑
−

=

−

=

−

=

NkkEkDkC

nx

nxnx

kk

knk

N

n
knkknk

N

n
knk

N

n
kn

Lαα

ϕα

ϕαϕα

ϕαϕ

(43)
where

∑
−

=

+=
13/

0
,cos)13()(

N

n
knnxkC ϕ , (44)

[]∑
−

=

++=
13/

0
,cos)23()3()(

N

n
knnxnxkD ϕ , (45)

[]∑
−

=

+−=
13/

0
,sin)23()3()(

N

n
knnxnxkE ϕ , (46)

)12(+= k
Nk
πα , (47)

)12)(
6

12(
2
3

, +++= kNn
Nkn
πϕ . (48)

Note that for , Eq. (46) can be rewritten as follows pN 12=

[]∑
−

=

+
+−−=−−

13/

0
,

12 cos)23()3()1()1
6

(
N

n
kn

Nn
nxnxkNE ϕ .

(49)

Furthermore

).()3/()13/(
),()3/()13/(
),()3/()13/(

kEkNEkNE
kDkNDkND
kCkNCkNC

=+−=−−
−=+=−−
−=+=−−

 (50)

Eq. (43) can be computed as follows
),(sin)(cos)()(kEkDkCkX kk αα ++= (51)

[]

[],)(cos)(sin
2
3

)(sin)(cos
2
1)()1

3
(

kEkD

kEkDkCkNX

kk

kk

αα

αα

−−

++−=−−
 (52)

[]

[],)(cos)(sin
2
3

)(sin)(cos
2
1)()

3
(

kEkD

kEkDkCkNX

kk

kk

αα

αα

−+

++−=+
 (53)

where the range of index k in (50)-(53) is from 0 to N/6-1.
Eqs. (44), (45) and (49) show that the computation of

N-point MDCT can be realized via the calculation of three

N/3-point MDCTs. It should be noted that the above radix-3
DIT MDCT algorithm is also recursive; furthermore, it is more
efficient than the radix-3 DIF algorithm proposed in [33]. Fig. 2
shows the flowgraph for computing the length-12 MDCT by
using the proposed radix-3 DIT algorithm.

Based on the proposed radix-3 MDCT algorithm, the
matrix in (7) can be decomposed into the following
sparse matrix product

NNM ×)2/(

N

NNN

NN

NN

NNNN P

MJ

M

M

FEM
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

×

×

×

×

)3/()6/(6/

)3/()6/(

)3/()6/(

2/2/)2/(

 ,

(54)
where denotes (N/6)×(N/3) MDCT matrix
with reversed order of its rows. P

)3/()6/(6/ NNN MJ ×

N corresponds to the input data
permutation of (45) and (49). EN/2FN/2 corresponds to the
permutation of (51), (52) and (53) by obtaining X(k), k = 0,
1, …, N/2–1, from C(k), D(k) and E(k), k = 0, 1, …, N/6–1. Let
N = 12 for example,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1- 1
 1 1-

 1- 1
 1 1-

1 1
 1 1

 1 1
 1 1

 1
 1

 1
1

12P

⎢
⎢

, (55)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

 cos
2
3 in

2
3

3cos
2
3 3in

2
3

 3sin 3cos

 in cos

1
 1

6

NN
s

NN
s

NN

N
s

N

F

ππ

ππ

ππ

ππ

 ,(56)

 6

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−

=

1 1/2 1
1 1/2 1
1 1/2 1

 1 1/2 1
 1 1

 1 1

6E . (57)

Substituting (54) into (8), we can easily obtain the
corresponding IMDCT algorithm, which is in fact the radix-3
DIF IMDCT algorithm. The realization of IMDCT can be
easily obtained by reversing the flowgraphs for the MDCT
computation.

IV. COMPLEXITY ANALYSIS AND COMPARISON RESULTS
In this section, we consider the computational complexity of
the proposed MDCT and IMDCT algorithms and compare
them with some known algorithms.

A. Computational complexity for the radix-2 MDCT/IMDCT
algorithm

1) The computation of x(1)(n) and x(2)(n) defined by Eq. (36), for
n = 0, 1, …, N/4–1, requires N/2 additions;

2) The symmetry property given by (37) shows that in order to
obtain the values of xk(n) defined by (35), we only need to
calculate and for n = 0, 1, …, N/4–1.
Therefore, Eq. (35) can be expressed as follows:

)(nx′)(nx ′′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
′′
′

)(

)(
cos sin
sin cos

)(
)(

)2(

)1(

nx

nx
nx
nx

nn

nn

θθ
θθ , n = 0, 1, …, N/4–1(58)

which generally needs 4 multiplications and 2 additions for
each n. However, (58) can be rearranged as follows [34]:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
×

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′′
′

)(

)(
1 0

)2/tan(1

1 sin
0 1

1 0
)2/tan(1

)(
)(

)2(

)1(

nx

nx

nx
nx

n

n

n

θ

θ
θ

for n = 0, 1, …, N/4–1, (59)
which needs 3 multiplications and 3 additions for each n.
Therefore, the computation of (35) needs 3N/4 multiplications
and 3N/4 additions.

The computational complexity of the radix-2 MDCT
algorithm is therefore given by

.4/52

,4/32
MDCT

2/
MDCT

MDCT
2/

MDCT

NAA

NMM

NN

NN

+=

+=
 (60)

One may use (60) recursively until the 4-point or 6-point
MDCT is reached. For the special case of N = 2n, n ≥ 3, radix-2
MDCT algorithm requires 3(n–1)N/4 multiplications and
5(n–1)N/4 additions with and . For N
=3×2

3MDCT
4 =M 5MDCT

4 =A
n, n ≥ 3, the algorithm requires 3(n–7/9)N/4

multiplications and 5(n–1/5)N/4 additions with
and (See appendix A). 1MDCT

6 =M 6MDCT
6 =A

Similarly, the computational complexity of the radix-2
IMDCT algorithm is given by

.4/52

,4/32
IMDCT

2/
IMDCT

IMDCT
2/

IMDCT

NAA

NMM

NN

NN

+=

+=
 (61)

For the special case of N = 2n, n ≥ 3, radix-2 IMDCT
algorithm requires 3(n–1)N/4 multiplications and (5n–7)N/4
additions with and . For N = 3×23IMDCT

4 =M 3IMDCT
4 =A n, n

≥ 3, the algorithm requires 3(n–7/9)N/4 multiplications and
5(n–7/15)N/4 additions with and
(See appendix B).

1IMDCT
6 =M 4IMDCT

6 =A

B. Computational complexity for the radix-3 MDCT/IMDCT
algorithm

1) The computation of the input data of D(k) and E(N/6–1–k) in
Eqs. (45) and (49) requires 2N/3 additions;

2)The computation of X(k), X(N/3–1–k) and X(N/3+k) in
(51)-(53) requires 2N/3 multiplications and N additions;
However, when k = (N/4–1)/2, we have θk = π/4,

2/2sincos == kk θθ . In such case, 2 multiplications
can be saved.

The computational complexity of the radix-3 MDCT
algorithm is given in both recursive and non-recursive forms as
follows

,4/53/53/53

,12/3/223/23
MDCT

3/
MDCT

MDCT
3/

MDCT

NmNNAA

NmNNMM

NN

NN

+=+=

++=−+=

 N = 4×3m, m ≥ 1, (62)
with and . 3MDCT

4 =M 5MDCT
4 =A

For the computation of IMDCT, by using the symmetries
presented in (3), we can further save N/3 additions in the
post-processing of IMDCT algorithm, corresponding to the
pre-processing of MDCT algorithm (see Fig. 2). The
computational complexity of the radix-3 IMDCT algorithm is
therefore given by

,4/33/43/43

,12/3/223/23
IMDCT

3/
IMDCT

IMDCT
3/

IMDCT

NmNNAA

NmNNMM

NN

NN

+=+=

++=−+=

N = 4×3m, m ≥ 1. (63)
with and . 3IMDCT

4 =M 3IMDCT
4 =A

C. Mixed-radix MDCT/IMDCT algorithm and comparison
with some existing fast algorithms

 Since the radix-3 MDCT/IMDCT algorithm is relatively
more efficient than the radix-2 MDCT/IMDCT algorithm,
therefore, for N = 3m×2n, m ≥ 2, n ≥ 2, we first use the radix-3
algorithm until N1 = 3×2n, n ≥ 2, which is then computed by the
radix-2 algorithm. To make the proposed mixed-radix
algorithm more clear, we give the 12-point and 36-point MDCT
flowgraphs in Fig. 3 and Fig. 4, respectively.

 We first consider the case where the length of the
sequences is N = 2n, n ≥ 2. Table I lists the computational
complexity of the radix-2 MDCT/IMDCT algorithm and that of
the algorithms presented in [9], [11-13] and [15]. It can be
observed from this Table that the proposed algorithm for
computing the MDCT and IMDCT require more number of

 7

arithmetic operations than the algorithms presented in [11-13]
and [15]. However, our proposed algorithm uses real arithmetic
only compared to Jing’s algorithm [13]. The radix-2 IMDCT
algorithm is more efficient than the second algorithm but less
efficient than the first one presented in [9]. In [9], the authors
showed the flowgraphs of two algorithms for N = 16. But for
higher value of N, the generalized flowgraph is difficult to
obtain. Furthermore, compared to the algorithms presented in
[12] and [15], our algorithm as well as those reported in [9], [11]
and [13] do not introduce the recursive structure as mentioned
in [29], which will be discussed in detail in the following.

To test the performance of the proposed mixed-radix
MDCT/IMDCT algorithm for N = 3m×2n, m ≥ 1, n ≥ 2, we
compare it with Jing’s algorithm [13]/Fan’s algorithm [9] for
which the zero-padding is included, and Lee’s algorithm [12]
for which Bi’s algorithm presented in [25] is used to compute
the scaled DCT (SDCT). Table II lists the number of arithmetic
operations needed by these algorithms for computing the
MDCT and IMDCT of length N = 3m×2n, m ≥ 1, n ≥ 2 (N is less
than 500). It can be seen from the Table that, in most cases, the
mixed-radix MDCT/IMDCT algorithm is more efficient than
Jing’s algorithm [13] for MDCT and Fan’s algorithm [9] for
IMDCT in terms of overall computational complexity, but less
efficient than Lee’s algorithm [12].

It should be pointed out that there are other important
issues for designing a good algorithm besides the
computational complexity. As indicated by Yun [35],
considerations such as data access scheme, modularity, and
regularity are also of great importance for a good algorithm.
The above design criteria will affect the effectiveness of the
algorithm when implementation is concerned [23]. In the
following, we will compare these criteria comprehensively of
our algorithm with the algorithms reported in [10], [12] and
[15], which are more similar to our algorithm.

1. Data access scheme

Both Lee’s algorithm [12] and Truong’s algorithm [15]
introduce the recursive structure in the course of
post-processing. As noted in [29], the potential drawback of the
recursive structure is that it does not support parallel processing.
Britanak’s algorithm [10] does not introduce this recursive
structure directly. However, the main process of the algorithms
presented in [10], [12] and [15] is converting the
MDCT/IMDCT computation into DCT computation. To the
authors’ knowledge, all the radix-type DCT algorithms [23-25]
seem to introduce the recursive structure. Figs. 3 and 4 show
that our algorithm does not introduce recursive structure and
mainly use butterfly-style structure, which seems to be more
suitable for parallel-in and parallel-out implementation and
in-place computation. Just like [29], we take I/O form into
consideration for comparison purpose, the result is shown in
Table III.

2. Modularity and Regularity

The proposed algorithm is completely recursive in nature,
as noted in [23], which makes it very regular and modular
structure suitable for VLSI implementation. However, the
algorithms presented in [10], [12] and [15] need to transform

the MDCT/IMDCT to DCT (or IDCT) first, and then can be
computed by recursive DCT algorithm ([23-25]), which we call
it “incompletely recursive” in Table III. Furthermore, our
algorithm can easily be extended to higher dimensional
MDCT/IMDCT by using the vector-radix method, e.g., 2-D
MDCT/IMDCT [36], which could find its applications in
image coding [37] and digital image watermarking [38].

3. Suitability for the layer III of MPEG-1 and MPEG-2 audio
encoding and decoding

The layer III of MPEG-1 and MPEG-2 specifies two
different MDCT/IMDCT block sizes: N = 12 (short block) and
N = 36 (long block). Since the algorithms presented in [10], [12]
and [15] are mainly proposed for MPEG audio encoding and
decoding, so we study the performance of our algorithm with
those algorithms for these special cases.

1) Arithmetic complexity
In Table III, we give the number of arithmetic operations

required by the proposed algorithm and that of the algorithms
presented in [10], [12] and [15] for computing the 12- and
36-point MDCTs/IMDCTs. It can be seen from this Table that
for 12-point MDCT/IMDCT, the proposed algorithm has the
best performance in terms of the arithmetic complexity.
However, for the computation of 36-point MDCT/IMDCT, the
proposed algorithm requires more number of arithmetic
operations than the algorithms reported in [12] and [15], but
less than [10].

2) Basic module
In Table III, we give the basic module of our algorithm and

the algorithms presented in [10], [12], and [15]. Fig. 5 shows
that the structure for implementing 6-point IMDCT module is
almost identical to that of 3-point DCT module; however, the
implementation of 6-point MDCT module is easier than that of
9-point DCT module. Of course, 9-point DCT module could
also be implemented by 3-point DCT module by using the
radix-3 DCT algorithm [24], however, this course introduces
recursive structure again. Therefore, the implementation of
basic module for the proposed algorithm seems to be simpler
than that of the algorithms reported in [10], [12] and [15].

3) Module sharing
As indicated by [12], sharing module leads to reduced

hardware in implementation. Lee’s algorithm [12] employs the
same module to realize the MDCT and IMDCT, that is,
12-point (36-point) MDCT and 12-point (36-point) IMDCT
can be computed by the same 3-point (9-point) SDCT module.
However, in his algorithm, 12-point MDCT/IMDCT and
36-point MDCT/IMDCT can not be shared module. As noted
in [39], in the short block mode, three short blocks (N = 12)
replace a long block (N = 36) so that the number of
MDCT/IMDCT samples for a frame of audio samples remains
unchanged regardless of the block size selection. The process
of the work mode is similar to that of our algorithm which uses
three 12-point MDCTs/IMDCTs to compute a 36-point
MDCT/IMDCT. That is, 12-point MDCT/IMDCT and
36-point MDCT/IMDCT share the same 12-point
MDCT/IMDCT module. Furthermore, one of the most
important applications for the layer III of MPEG-1 and
MPEG-2 is MP3 player. Generally speaking, the process of
encoding, where MDCT is used, is more complicated than the

 8

process of decoding, where IMDCT is used. So, the music is
often encoded previously and uploaded to the internet. And
then, we download it from the internet to our MP3 player,
which performs the process of decoding, using the 12- and
36-point IMDCTs only. For this important application, the
utilization of MDCT and IMDCT is divided. It seems to
suggest that the sharing module of 12-point MDCT/IMDCT
and 36-point MDCT/IMDCT is more important than that of
12-point (36-point) MDCT and 12-point (36-point) IMDCT.

V. CONCLUSION
A mixed-radix algorithm is presented for computing the

MDCT and IMDCT of a sequence with length N = 3m×2n, m ≥ 0,
n ≥ 2. Compared to other existing algorithms, the main
improvement achieved is to derive an efficient decomposition
method which is recursive in nature and is very regular and
modular. Because the recursive structure in the course of
post-processing is not included in our algorithm, the in-place
computation can also be implemented, which is more suitable
for parallel implementation and especially suitable for the layer
III of MPEG-1 and MPEG-2 audio encoding and decoding.
Note also that for N = 12, the proposed radix-2 approach for
computing the MDCT and IMDCT requires fewer or the same
number of arithmetic operations than those of the known
algorithms. Moreover, because the proposed algorithm is
expressed in a simple sparse matrix form, it allows for an
extension to the multidimensional case.

APPENDIX A

Computation of Length-6 MDCT: 1 multiplication and 6
additions
The input data sequence is{x0, x1, x2, x3, x4, x5} and the output
data sequence is{y0, y1, y2}.First consider the length-6
MDCT matrix with the input data sequence{x0, x1, x2, x3, x4,
x5}, the length-6 MDCT is given by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100

1100

 1- - 0
0 1- 0 1 0 1-
- 1- - - 0

dddd

dddd

where and2/10 =d 2/31 =d .
The output data sequence {y0, y1, y2} of MDCT is given by

.;;
;

;;

122411120

311

5334102201

mayxaymay
adm

xxaxadaxxa

+=−−=−=
⋅=

+=−⋅=−=

Since the multiplication by (1/2) is simply a right-shift
operation, hence, the computation of the length-6 MDCT
only requires 1 multiplication and 6 additions.

APPENDIX B
Computation of Length-6 IMDCT: 1 multiplication and 4
additions
The input data sequence is{x0, x1, x2} and the output data
sequence is {y0, y1, y2, y3, y4, y5}. The length-6 IMDCT is
given by

Τ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100

1100

 1- - 0
0 1- 0 1 0 1-
- 1- - - 0

dddd

dddd

The output data sequence {y0, y1, y2, y3, y4, y5} of IMDCT is
given by

.;
;;;0;

;
;

35114

23021110

212101

022201

yyxay
myyyyxmy

admadm
xxaxxa

=−−=
=−==−=

⋅=⋅=
−=+=

Notably, the length-6 IMDCT requires 1 multiplication and 4
additions.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers for

their constructive comments and suggestions to greatly
improve the quality of this work and the clarity of the
presentation.

REFERENCES
[1] J.P. Princen and A.B. Bradley, “Analysis/synthesis filter bank design

based on time domain aliasing cancellation,” IEEE Trans. Acoust., Speech,
Signal Process., vol.ASSP-34, no.5, Oct. 1986, pp. 1153-1161.

[2] J.P. Princen, A.W. Johnson, and A.B. Bradley, “Subband/transform
coding using filter bank designs based on time domain aliasing
cancellation,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Dallas, TX, Apr. 1987, pp. 2161-2164.

[3] H.S. Malvar, Signal Processing with lapped transforms, Artech House,
Norwood, MA, 1992.

[4] “Information technology—Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbit/s—Part 3: Audio,”
ISO/IEC, IS 11172-3, (MPEG-1), 1992.

[5] “Information technology—Generic coding of moving pictures and
associated audio—Part 3: Audio,” ISO/IEC, IS 13818-3, (MPEG-2),
1994.

[6] Digital audio compression (AC-3) standard, Audio Specialist Group
T3/S7, Dec. 1995.

[7] Y. T. Hwang and S. C. Lai, “A novel MDCT/IMDCT computing kernel
design,” IEEE SIPS, Nov. 2005, pp. 526-531.

[8] M. Iwadare, A. Sugiyama, F. Hazu, A. Hirano, and T. Nishitani, “A 128
kb/s Hi-Fi audio CODEC based on adaptive transform coding with
adaptive block size MDCT,” IEEE J. Select. Areas Comm, vol. 10, no. 1,
pp. 138-144, Jan. 1992.

[9] Y. H. Fan, V.K. Madisetti, and R.M. Mersereau, “On fast algorithms for
computing the inverse modified discrete cosine transform,” IEEE Signal
Process. Lett., vol. 6, no.3, pp. 61-64, Mar. 1999.

[10] V. Britanak and K.R. Rao, “An efficient implementation of the forward
and inverse MDCT in MPEG audio coding,” IEEE Signal Processing
Lett., vol. 8, pp. 48-51, Feb. 2001.

[11] V. Britanak and K.R. Rao, “A new fast algorithm for the unified forward
and inverse MDCT/MDST computation, ” Signal Process., vol. 82, no. 3,
pp. 433-459, Mar. 2002.

[12] S.W. Lee, “Improved algorithm for efficient computation of the forward
and backward MDCT in MPEG audio coder,” IEEE Trans. Circuits
Syst.-II: Analog Digital Signal Processing., vol. 48, no. 10, pp. 990-994,
Oct. 2001.

[13] C.Y. Jing and H.M. Tai, “Fast algorithm for computing modulated lapped
transform,” Electron. Lett., vol. 37, no. 12, pp. 796 – 797, Jun. 2001.

[14] M.H. Cheng and Y.H. Hsu, “Fast IMDCT and MDCT algorithms⎯a
matrix approach,” IEEE Trans. Signal Process., vol. 51, no.1, pp. 221-229,
Jan. 2003.

[15] T.K. Truong, P.D. Chen, and T.C. Cheng, “Fast algorithm for computing
the forward and inverse MDCT in MPEG audio coding ,” Signal Process.,
vol. 86, no. 5, pp. 1055-1060, May 2006.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220

 9

[16] X. Shao and S.G. Johnson, “Type-IV DCT, DST, and MDCT algorithms
with reduced numbers of arithmetic operations,” Signal Process., vol. 88,
no. 6, pp. 1313–1326, Jun. 2008.

[17] S.G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
arithmetic operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
111-119, Jan. 2007.

[18] V. Britanak, “An efficient computing of oddly stacked MDCT/MDST via
evenly stacked MDCT/MDST and vice versa, ” Signal Process., vol. 85,
no. 7, pp. 1353-1374, Jul. 2005.

[19] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new radix-2/8 FFT
algorithm for length- q×2m DFTs,” IEEE Trans. Circuits Syst. -I: Regular
Papers, vol. 51, no. 9, pp. 1723-1732, Sept. 2004.

[20] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review
and a state of the art,” Signal Process., vol. 19, no. 4, pp. 259–299, Apr.
1990.

[21] P.K. Meher, “Efficient systolic implementation of DFT using a
low-complexity convolution-like formulation,” IEEE Trans. Circuits Syst.
-II: Express Briefs, vol. 53, no. 8, pp. 702-706, Aug. 2006.

[22] C. Cheng and K. K. Parhi, “Low-cost fast VLSI algorithm for discrete
Fourier transform,” IEEE Trans. Circuits Syst. -I: Regular Papers, vol. 54,
no. 4, pp. 791-806, Apr. 2007.

[23] C.W. Kok, “Fast algorithm for computing discrete cosine transform, ”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 757-760, Mar. 1997.

[24] Y. H. Chan and W. C. Siu, “Mixed-radix discrete cosine transform,” IEEE
Trans. Signal Process., vol. 41, no. 11, pp. 3157-3161, Nov. 1993.

[25] G. Bi and L.W. Yu, “DCT algorithms for composite sequence lengths,”
IEEE Trans. Signal Process., vol. 46, no. 3, pp. 554-562, Mar. 1998.

[26] V. Britanak, P. Yip and K.R. Rao, Discrete cosine and sine transforms:
general properties, fast algorithms and integer approximations,
Academic Press Inc. Elsevier Science, Amsterdam, 2007.

[27] P.K. Meher, “Unified systolic-like architecture for DCT and DST using
distributed arithmetic,” IEEE Trans. Circuits Syst. -I: Regular Papers, vol.
53, no. 12, pp. 2656-2663, Dec. 2006.

[28] K.A. Wahid, V.S. Dimitrov, and G.A. Jullien, “On the error-free
realization of a scaled DCT algorithm and its VLSI implementation,”

IEEE Trans. Circuits Syst. -II: Express Briefs, vol. 54, no. 8, pp. 700-704,
Aug. 2007.

[29] T. C. Tan, G. Bi, Y. Zeng and H. N. Tan, “DCT hardware structure for
sequentially presented data,” Signal Process., vol. 81, no. 11, pp.
2333-2342, Nov. 2001.

[30] H.C. Chiang and J.C. Liu, “Regressive implementations for the forward
and inverse MDCT in MPEG audio coding,” IEEE Signal Process. Lett.,
vol. 3, pp. 116-118, Apr. 1996.

[31] C.H. Chen, B.D. Liu, and J.F. Yang, “Recursive architectures for realizing
modified discrete cosine transform and its inverse,” IEEE Trans. Circuits
Syst.-II: Analog and Digital Signal Process., vol. 50, no. 1, pp. 38-44, Jan.
2003.

[32] V. Nikolajevic and G. Fettweis, “Computation of forward and inverse
MDCT using Clenshaw’s recurrence formula,” IEEE Trans. Signal
Process., vol. 51, pp. 1439-1444, May 2003.

[33] H. Shu, X. Bao, C. Toumoulin, and L. Luo, “Radix-3 algorithm for the
fast computation of forward and inverse MDCT,” IEEE Signal Process.
Lett., vol. 14, no.2, pp. 93-96, Feb. 2007.

[34] T. Krishnan and S. Oraintara, “Fast and lossless implementation of the
forward and inverse MDCT computation in MPEG audio coding,” IEEE
ISCAS, vol. 2, May 2002, pp. II-181-II-184.

[35] H.D. Yun and S.U. Lee, “On the fixed-point-error analysis of several fast
DCT algorithms,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp.
27-41, Feb. 1993.

[36] J.S.Wu, H.Z. Shu, L. Senhadji and L.M. Luo, “A fast algorithm for the
computation of 2-D forward and inverse MDCT,” Signal Process., vol. 88,
no.6, pp. 1436-1446, Jun. 2008.

[37] O. Lashko, “Modulated lapped transform: application in image coding
and effective algorithm of its realization,” Proc. TCSET, Slavsko, Ukraine,
Feb. 2002, pp. 243-244.

[38] N.C. Tungala and A. Noore, “Elimination of visual artifacts in digital
image watermarking,” Proc. 35th SSST, Mar. 2003, pp. 64-68.

[39] D. Pan, “A tutorial on MPEG/audio compression,” IEEE Multimedia, vol.
2, no. 2, pp. 60-74, Summer 1995.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4RBYFTY-1&_user=2324995&_coverDate=06%2F30%2F2008&_alid=733772500&_rdoc=1&_fmt=high&_orig=search&_cdi=5668&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056919&_version=1&_urlVersion=0&_userid=2324995&md5=1d286d82bb2240e2df3a51cc000a4e69
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4RBYFTY-1&_user=2324995&_coverDate=06%2F30%2F2008&_alid=733772500&_rdoc=1&_fmt=high&_orig=search&_cdi=5668&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056919&_version=1&_urlVersion=0&_userid=2324995&md5=1d286d82bb2240e2df3a51cc000a4e69

 10

Fig.1. Flowgraph of a length-8 MDCT (radix-2 DIF)

Fig.2. Flowgraph of a length-12 MDCT (radix-3 DIT)

Fig.3. Flowgraph of a length-12 MDCT (mixed-radix)

 11

Fig.4. Flowgraph of a length-36 MDCT (mixed-radix)

Fig.5. Flowgraph of a length-6 MDCT (a) and a length-6 IMDCT (b).

“ °” signifies that input is set to zero or output equals to zero.

 12

Table I Comparison of our radix-2 MDCT/IMDCT algorithm with some existing algorithms in terms of arithmetic complexity for N = 2n, n ≥ 2. M and IM
correspond to MDCT and IMDCT, respectively. * denotes that the algorithm introduces recursive structure in the course of post-processing.

Algorithm The number of

multiplications
The number of

additions
Recursive structure?

radix-2 algorithm 3(n – 1)N/4 5(n – 1)N/4 –M
(5n – 7)N/4 –IM

no

[15] (n + 1)N/4 (3n – 1)N/4 –M
3(n – 1)N/4 –IM

yes*

[12] (n + 1)N/4 (3n – 1)N/4 –M
3(n – 1)N/4 –IM

yes*

[11] (n + 1)N/4 3(n + 1)N/4 –M
(3n + 1)N/4 –IM

no

[13]

(n + 1)N/4 (3n – 1)N/4 –M no

[9]-I
[9]-II

(n + 1)N/4
(3n – 4)N

3(n – 1)N/4 –IM
(3n – 2)N -IM

no
no

Table II Comparison of our mixed-radix MDCT/IMDCT algorithm with Jing’s algorithm/Fan’s algorithm and Lee’s algorithm in terms of arithmetic complexity for
N = 3m×2n, m ≥ 1, n ≥ 2 (N is less than 500). M and IM correspond to MDCT and IMDCT, respectively. * denotes that the zero-padding is included.

 proposed algorithm Jing’s algorithm[13] * /Fan’s

algorithm[9]-I*
Lee’s algorithm [12]

N Mul Add (M/IM) Mul Add (M/IM) Mul Add (M/IM)
6=31×21 1 6/4 8 16/12 8* 16/12*
12=31×22 11 27/23 20 44/36 11 29/23
24=31×23 40 84/76 48 112/96 26 72/60
48=31×24 116 228/212 112 272/240 64 180/156
96=31×25 304 576/544 256 640/576 152 432/384

192=31×26 752 1392/1328 576 1472/1344 352 1008/912
384=31×27 1792 3264/3136 1280 3328/3072 800 2304/2112
36=32×22 55 141/117 112 272/240 43 133/115
72=32×23 166 372/324 256 640/576 104 312/276

144=32×24 442 924/828 576 1472/1344 244 732/660
288=32×25 1102 2208/2016 1280 3328/3072 560 1680/1536
108=33×22 235 603/495 256 640/576 195 527/473
216=33×23 640 1476/1260 576 1472/1344 444 1216/1108
432=33×24 1612 3492/3060 1280 3328/3072 996 2756/2540
324=34×22 919 2349/1917 1280 3328/3072 771 2045/1883

Table III Comparison of our algorithm comprehensively with the algorithms presented in [10], [12] and [15]. M, IM, D, and ID correspond to MDCT, IMDCT, DCT,
and IDCT, respectively.

Algorithm Proposed
algorithm [15] [12] [10]

Data access I/O form Parallel-in
Parallel-out

Serial-in
Serial-out

Serial-in
Serial-out

Serial-in
Serial-out

Modularity
Regularity Recursive completely incompletely incompletely incompletely

N=12 11/27-M
11/23-IM

11/27-M
11/23-IM

11/29-M
11/23-IM

13/39-M
13/33-IM Arithmetic

complexity N=36 55/141-M
55/117-M

43/129-M
43/115-IM

43/133-M
43/115-IM

47/165-M
47/151-IM

Basic module 6-point M and
IM

3- and
9-point D

3- and
9-point D

3-point D and ID
9-point D and ID

Suitability for
the layer III of
MPEG-1 and

MPEG-2 audio
encoding and

decoding
Module sharing M and M

IM and IM no M and IM no

