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Abstract—The modified discrete cosine transform (MDCT) and 

inverse MDCT (IMDCT) are two of the most computational 
intensive operations in MPEG audio coding standards. A new 
mixed-radix algorithm for efficient computing the 
MDCT/IMDCT is presented. The proposed mixed-radix MDCT 
algorithm is composed of two recursive algorithms. The first 
algorithm, called the radix-2 decimation in frequency (DIF) 
algorithm, is obtained by decomposing an N-point MDCT into 
two MDCTs with the length N/2. The second algorithm, called the 
radix-3 decimation in time (DIT) algorithm, is obtained by 
decomposing an N-point MDCT into three MDCTs with the 
length N/3. Since the proposed MDCT algorithm is also expressed 
in the form of a simple sparse matrix factorization, the 
corresponding IMDCT algorithm can be easily derived by simply 
transposing the matrix factorization. Comparison of the proposed 
algorithm with some existing ones shows that our proposed 
algorithm is more suitable for parallel implementation and 
especially suitable for the layer III of MPEG-1 and MPEG-2 
audio encoding and decoding. Moreover, the proposed algorithm 
can be easily extended to the multidimensional case by using the 
vector-radix method. 
 

Index Terms—MDCT, fast algorithm, mixed radix, MPEG 
audio coding 
 

I. INTRODUCTION 
H
in

E modified discrete cosine transform (MDCT) and 
verse MDCT (IMDCT) are extensively used to realize 

the analysis/synthesis filter banks of time domain aliasing 
cancellation scheme for subband coding [1], [2]. This filter 
bank is equivalent to the modulated lapped transform (MLT) 
introduced by Malvar [3]. The MDCT/IMDCT has been 
adopted in several international standards and commercial 
audio coding products such as MPEG-1 [4], MPEG-2 [5], and 
AC-3 [6] to achieve high quality audio compression. However, 

the direct computation of the MDCT in MPEG audio encoding 
and IMDCT in MPEG audio decoding involves an extensive 
number of arithmetic operations. Therefore, efficient 
algorithms for their computation are of great importance. 
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In the past, many fast algorithms have been reported in the 
literature for computing the MDCT and IMDCT. These 
algorithms can generally be categorized into two kinds: direct 
method and indirect method. The term of indirect method 
means that the MDCT or IMDCT is first converted into other 
unitary transforms such as discrete Fourier transform (DFT) or 
discrete cosine transform (DCT), and the latter transforms are 
then calculated by fast algorithm. These algorithms generally 
lead to the parallel in and parallel out architecture [7]. This is 
the most widely used technique for efficient implementation of 
both MDCT and IMDCT. For example, by decomposing the 
MDCT kernel and using the symmetry property of cosine 
function, Iwadare et al. [8] presented an efficient MDCT 
algorithm that is composed of pre-processing (data shifts, 
differential calculation and complex pre-multiplication), an 
N/2-point FFT followed by complex post-multiplications. Fan 
et al. [9] developed two IMDCT algorithms based respectively 
on DCT and on the fast Hartley transform for performing the 
IMDCT quickly. Britanak and Rao [10], [11] proposed an 
efficient approach for implementing the MDCT and IMDCT 
based on the N/4-point DCT/DST and corresponding N/4-point 
IDCT/IDST. Lee [12] then suggested an improvement of this 
algorithm in the computational speed. Jing and Tai [13] derived 
a new fast MLT algorithm which first converts an N-point MLT 
into the N/2-point DCT-IV by using Malvar’s algorithm [3], 
and the latter transform is then calculated via N/4-point 
complex-valued FFT with data shuffling. By using a matrix 
representation, Cheng and Hsu [14] presented a systematic 
method for realizing the MDCT and IMDCT. A fast algorithm 
based on the DCT for computing the MDCT and IMDCT was 
presented by Truong et al. [15]. Shao and Johnson [16] recently 
derived a new fast algorithm for computing the MDCT and 
IMDCT based on a modified split-radix FFT algorithm 
reported in [17]. A comprehensive list of references on this 
subject can be found in [11], [18]. A notable merit of indirect 
method is that many mature algorithms and implemented 
architectures can be used to the fast computation and effective 
implementation of DFT (for example, [17], [19-22]) and DCT 
(e.g., [23-28]). However, a common drawback of the 
FFT-based method is the need for complex arithmetic and 
storage of complex values. The disadvantage of the DCT-based 
method is generally the introduction of recursive structure, 
which is not suitable for parallel implementation [29]. The 
direct method for efficient calculating the MDCT and IMDCT 

T 



 2

is mainly based on the use of a regressive formula. Among this kind of methods, Chiang
 and Liu [30] proposed a regressive algorithm, which can be 
implemented by parallel VLSI filters. This algorithm was 
further improved by Chen et al. [31] and Nikolajevic and 
Fettweis [32]. These regressive algorithms in general 
emphasize on the merits of serial in and serial out structures [7]. 
More recently, Shu et al. [33] presented a radix-3 decimation in 
frequency (DIF) algorithm for the fast computing the MDCT 
and IMDCT. In their algorithm, an N-point MDCT and IMDCT 
was realized via the computation of three N/3-point MDCTs 
and IMDCTs, respectively. Their algorithm also belongs to the 
direct method, but seems to be more similar to the DCT-based 
algorithm ([10], [12], [15]). 

In this paper, we propose a new mixed-radix algorithm to 
compute the MDCT/IMDCT, which is composed of two 
recursive algorithms. The first algorithm, called the radix-2 
DIF algorithm, decomposes an N-point MDCT into two 
N/2-point MDCTs. This algorithm is inspired by a research 
work presented in [23] where an N-point DCT is decomposed 
into two DCTs of length N/2. The second algorithm, called the 
radix-3 decimation in time (DIT) algorithm, is different from 
Shu’s DIF algorithm [33], and decomposes an N-point MDCT 
into three N/3-point MDCTs. We then combine the radix-3 
MDCT algorithm and radix-2 MDCT algorithm to produce the 
mixed-radix MDCT algorithm, which is similar to Chan’s 
mixed-radix DCT algorithm [24]. The mixed-radix algorithm 
for computing the IMDCT can be easily derived from that of 
MDCT.  

The paper is organized as follows. In section II, we 
introduce the definitions and some properties of the MDCT and 
IMDCT. Section III describes the radix-2 algorithm for the 
efficient computation of MDCT/IMDCT. Section IV presents 
the radix-3 algorithm for calculating the MDCT/IMDCT. The 
analysis of the computational complexity and comparison of 
the proposed algorithm with some existing ones are given in 
section V. Section VI concludes the work. 

I. DEFINITIONS AND SOME PROPERTIES OF THE MDCT AND 
IMDCT 

Let {x(n)} be an input data sequence, the MDCT and IMDCT 
are respectively defined as [2] 
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where N is the window length. In general, the recovered data 
sequence  does not correspond to the original data 
sequence {x(n)}. 
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where T denotes the transposition. Then Eqs. (1) and (2) can be 
written as 
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where  is an  MDCT matrix. NNM ×)2/( NN ×)2/(
From (7) and (8), we know that if a realization of the 

MDCT is developed, then a realization for the IMDCT can be 
obtained by transposing the signal flow graph of the MDCT. 

II. RADIX-2 ALGORITHM FOR THE MDCT/IMDCT 
COMPUTATION 

In this section, we derive a new radix-2 DIF MDCT algorithm, 
which is obtained by decomposing the N-point MDCT into two 
MDCTs with the length N/2, and we get its sparse matrix 
factorization. Then, the corresponding IMDCT algorithm can 
be easily derived by transposing the MDCT matrix 
factorization. In the remaining part of this section, the window 
length N is assumed to be divisible by 4, i.e., N = 4p. 

Let us consider the following two sub-sequences 
)12()2()( ++= kXkXkA , k = 0, 1, …, N/4 – 1,             (9) 
)12()2()( +−= kXkXkB , k = 0, 1, …, N/4 – 1.            (10) 
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where  denotes the lower integer part of x. Eq. (11) 
becomes 

⎣ ⎦x

⎣ ⎦ [ ])()1()()1(2)( 21
2/)1( kAkAkA kk −−−= + .                    (17) 

For the computation of A1(k), we further decompose Eq. (12) 
into the form 

∑

∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

=

⎟
⎠
⎞

⎜
⎝
⎛ ++−

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +=

12/

0
,1

,

12/

0

,

12/

0

,

1

2/

,

12/

0
1

,cos)(
2

1          

cos
4

3cos)2/(              

cos
4

cos)(          

cos
4

cos)(      

cos
4

cos)()(

N

n
kn

kn

N

n
n

kn

N

n
n

kn

N

Nn
n

kn

N

n
n

na

nNx

nx

nx

nxkA

φ

φθπ

φθπ

φθπ

φθπ

    

 (18) 
where 

[ ]
[ ] ,sin)2/()(                              

cos)2/()()(1

n

n

nNxnx
nNxnxna

θ
θ

+−−
++=

 

for n = 0, 1, …, N/2 – 1.          (19) 
Similarly, Eq. (13) can be rewritten as 
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From (19) and (21), it can be easily verified that 
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Substituting (18) and (20) into (17) and using (22), we get 
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Eq. (23) shows that A(k) is the MDCT of sequence a(n) 
whose length is N/2. Moreover, the sequence a(n) possesses 
the even symmetry property, that is 
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Proceeding with the computation of B(k) in a similar way as 
for A(k), we have 
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Here )(na′  is given by Eq. (25). 
Eq. (30) shows that B(k) is the MDCT of the sequence b(n) 

with the length N/2, and (31) shows that b(n) possesses the 
even antisymmetry property 
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Eqs. (33) and (38) show that the computation of N-point MDCT 
can be realized via the calculation of two N/2-point MDCTs. 
Note that we can perform the decomposition in (33) and (38) 
recursively until the required small-length MDCTs, i.e., 4- or 
6-point MDCT, is reached. Fig. 1 shows the flowgraph for 
computing the length-8 MDCT. 

To make the proposed radix-2 MDCT algorithm more 
clear for the readers, we get the MDCT sparse matrix 
factorization in the following. Based on the proposed radix-2 
MDCT algorithm, the matrix  in (7) can be 
decomposed into the following sparse matrix product 
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where IN is the identity matrix and JN is the reverse identity 
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QN/2 is the permutation matrix. For clarity, QN/2 for N = 16 is 
shown 
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DN/2 is the diagonal sign-changing matrix 
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Substituting (39) into (8), we can easily get the corresponding 
IMDCT algorithm, which is in fact the radix-2 DIT IMDCT 
algorithm. The realization of IMDCT can be easily obtained by 
reversing the flowgraphs for the MDCT computation. 

III. RADIX-3 ALGORITHM FOR THE MDCT/IMDCT 
COMPUTATION 

In this section, we describe a radix-3 DIT MDCT algorithm 
which is obtained by decomposing the N-point MDCT into 
three MDCTs with the length N/3, and get its sparse matrix 
factorization. Then, the corresponding IMDCT algorithm is 
easily obtained by transposing the MDCT matrix factorization. 
The window length N is further assumed to be divisible by 12, 
i.e., N = 12p. 

Eq. (1) can be decomposed as follows 
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(43) 
where 
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Eq. (43) can be computed as follows 
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where the range of index k in (50)-(53) is from 0 to N/6-1. 
Eqs. (44), (45) and (49) show that the computation of 

N-point MDCT can be realized via the calculation of three 

N/3-point MDCTs. It should be noted that the above radix-3 
DIT MDCT algorithm is also recursive; furthermore, it is more 
efficient than the radix-3 DIF algorithm proposed in [33]. Fig. 2 
shows the flowgraph for computing the length-12 MDCT by 
using the proposed radix-3 DIT algorithm. 

Based on the proposed radix-3 MDCT algorithm, the 
matrix  in (7) can be decomposed into the following 
sparse matrix product 

NNM ×)2/(

N

NNN

NN

NN

NNNN P

MJ

M

M

FEM
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

×

×

×

×

)3/()6/(6/

)3/()6/(

)3/()6/(

2/2/)2/(

                  

          ,                   

(54) 
where  denotes (N/6)×(N/3) MDCT matrix 
with reversed order of its rows. P

)3/()6/(6/ NNN MJ ×

N corresponds to the input data 
permutation of (45) and (49). EN/2FN/2 corresponds to the 
permutation of (51), (52) and (53) by obtaining X(k), k = 0, 
1, …, N/2–1, from C(k), D(k) and E(k), k = 0, 1, …, N/6–1. Let 
N = 12 for example, 
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Substituting (54) into (8), we can easily obtain the 
corresponding IMDCT algorithm, which is in fact the radix-3 
DIF IMDCT algorithm. The realization of IMDCT can be 
easily obtained by reversing the flowgraphs for the MDCT 
computation. 

IV. COMPLEXITY ANALYSIS AND COMPARISON RESULTS 
In this section, we consider the computational complexity of 
the proposed MDCT and IMDCT algorithms and compare 
them with some known algorithms. 

A. Computational complexity for the radix-2 MDCT/IMDCT 
algorithm  

1) The computation of x(1)(n) and x(2)(n) defined by Eq. (36), for 
n = 0, 1, …, N/4–1, requires N/2 additions; 

2) The symmetry property given by (37) shows that in order to 
obtain the values of xk(n) defined by (35), we only need to 
calculate  and  for n = 0, 1, …, N/4–1. 
Therefore, Eq. (35) can be expressed as follows: 
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which generally needs 4 multiplications and 2 additions for 
each n. However, (58) can be rearranged as follows [34]: 
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for n = 0, 1, …, N/4–1,             (59) 
which needs 3 multiplications and 3 additions for each n. 
Therefore, the computation of (35) needs 3N/4 multiplications 
and 3N/4 additions. 

The computational complexity of the radix-2 MDCT 
algorithm is therefore given by 

.4/52

,4/32
MDCT

2/
MDCT

MDCT
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NN
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+=

+=
                                       (60) 

One may use (60) recursively until the 4-point or 6-point 
MDCT is reached. For the special case of N = 2n, n ≥ 3, radix-2 
MDCT algorithm requires 3(n–1)N/4 multiplications and 
5(n–1)N/4 additions with and . For N 
=3×2

3MDCT
4 =M 5MDCT

4 =A
n, n ≥ 3, the algorithm requires 3(n–7/9)N/4 

multiplications and 5(n–1/5)N/4 additions with 
and  (See appendix A). 1MDCT

6 =M 6MDCT
6 =A

Similarly, the computational complexity of the radix-2 
IMDCT algorithm is given by 
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For the special case of N = 2n, n ≥ 3, radix-2 IMDCT 
algorithm requires 3(n–1)N/4 multiplications and (5n–7)N/4 
additions with and . For N = 3×23IMDCT

4 =M 3IMDCT
4 =A n, n 

≥ 3, the algorithm requires 3(n–7/9)N/4 multiplications and 
5(n–7/15)N/4 additions with and  
(See appendix B). 

1IMDCT
6 =M 4IMDCT

6 =A

B. Computational complexity for the radix-3 MDCT/IMDCT 
algorithm  

1) The computation of the input data of D(k) and E(N/6–1–k) in 
Eqs. (45) and (49) requires 2N/3 additions; 

2)The computation of X(k), X(N/3–1–k) and X(N/3+k) in 
(51)-(53) requires 2N/3 multiplications and N additions; 
However, when k = (N/4–1)/2, we have θk = π/4, 

2/2sincos == kk θθ . In such case, 2 multiplications 
can be saved. 

The computational complexity of the radix-3 MDCT 
algorithm is given in both recursive and non-recursive forms as 
follows 
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 N = 4×3m, m ≥ 1,     (62) 
with and . 3MDCT

4 =M 5MDCT
4 =A

For the computation of IMDCT, by using the symmetries 
presented in (3), we can further save N/3 additions in the 
post-processing of IMDCT algorithm, corresponding to the 
pre-processing of MDCT algorithm (see Fig. 2). The 
computational complexity of the radix-3 IMDCT algorithm is 
therefore given by 
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N = 4×3m, m ≥ 1.   (63) 
with and . 3IMDCT

4 =M 3IMDCT
4 =A

 

C. Mixed-radix MDCT/IMDCT algorithm and comparison 
with some existing fast algorithms 

    Since the radix-3 MDCT/IMDCT algorithm is relatively 
more efficient than the radix-2 MDCT/IMDCT algorithm, 
therefore, for N = 3m×2n, m ≥ 2, n ≥ 2, we first use the radix-3 
algorithm until N1 = 3×2n, n ≥ 2, which is then computed by the 
radix-2 algorithm. To make the proposed mixed-radix 
algorithm more clear, we give the 12-point and 36-point MDCT 
flowgraphs in Fig. 3 and Fig. 4, respectively. 

 We first consider the case where the length of the 
sequences is N = 2n, n ≥ 2. Table I lists the computational 
complexity of the radix-2 MDCT/IMDCT algorithm and that of 
the algorithms presented in [9], [11-13] and [15]. It can be 
observed from this Table that the proposed algorithm for 
computing the MDCT and IMDCT require more number of 
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arithmetic operations than the algorithms presented in [11-13] 
and [15]. However, our proposed algorithm uses real arithmetic 
only compared to Jing’s algorithm [13]. The radix-2 IMDCT 
algorithm is more efficient than the second algorithm but less 
efficient than the first one presented in [9]. In [9], the authors 
showed the flowgraphs of two algorithms for N = 16. But for 
higher value of N, the generalized flowgraph is difficult to 
obtain. Furthermore,  compared to the algorithms presented in 
[12] and [15], our algorithm as well as those reported in [9], [11] 
and [13] do not introduce the recursive structure as mentioned 
in [29], which will be discussed in detail in the following. 

To test the performance of the proposed mixed-radix 
MDCT/IMDCT algorithm for N = 3m×2n, m ≥ 1, n ≥ 2, we 
compare it with Jing’s algorithm [13]/Fan’s algorithm [9] for 
which the zero-padding is included, and Lee’s algorithm [12] 
for which Bi’s algorithm presented in [25] is used to compute 
the scaled DCT (SDCT). Table II lists the number of arithmetic 
operations needed by these algorithms for computing the 
MDCT and IMDCT of length N = 3m×2n, m ≥ 1, n ≥ 2 (N is less 
than 500). It can be seen from the Table that, in most cases, the 
mixed-radix MDCT/IMDCT algorithm is more efficient than 
Jing’s algorithm [13] for MDCT and Fan’s algorithm [9] for 
IMDCT in terms of overall computational complexity, but less 
efficient than Lee’s algorithm [12]. 

It should be pointed out that there are other important 
issues for designing a good algorithm besides the 
computational complexity. As indicated by Yun [35], 
considerations such as data access scheme, modularity, and 
regularity are also of great importance for a good algorithm. 
The above design criteria will affect the effectiveness of the 
algorithm when implementation is concerned [23]. In the 
following, we will compare these criteria comprehensively of 
our algorithm with the algorithms reported in [10], [12] and 
[15], which are more similar to our algorithm. 
 
1. Data access scheme 

Both Lee’s algorithm [12] and Truong’s algorithm [15] 
introduce the recursive structure in the course of 
post-processing. As noted in [29], the potential drawback of the 
recursive structure is that it does not support parallel processing. 
Britanak’s algorithm [10] does not introduce this recursive 
structure directly. However, the main process of the algorithms 
presented in [10], [12] and [15] is converting the 
MDCT/IMDCT computation into DCT computation. To the 
authors’ knowledge, all the radix-type DCT algorithms [23-25] 
seem to introduce the recursive structure. Figs. 3 and 4 show 
that our algorithm does not introduce recursive structure and 
mainly use butterfly-style structure, which seems to be more 
suitable for parallel-in and parallel-out implementation and 
in-place computation. Just like [29], we take I/O form into 
consideration for comparison purpose, the result is shown in 
Table III. 
 
2. Modularity and Regularity 

The proposed algorithm is completely recursive in nature, 
as noted in [23], which makes it very regular and modular 
structure suitable for VLSI implementation. However, the 
algorithms presented in [10], [12] and [15] need to transform 

the MDCT/IMDCT to DCT (or IDCT) first, and then can be 
computed by recursive DCT algorithm ([23-25]), which we call 
it “incompletely recursive” in Table III. Furthermore, our 
algorithm can easily be extended to higher dimensional 
MDCT/IMDCT by using the vector-radix method, e.g., 2-D 
MDCT/IMDCT [36], which could find its applications in 
image coding [37] and digital image watermarking [38]. 
 
3. Suitability for the layer III of MPEG-1 and MPEG-2 audio 
encoding and decoding 

The layer III of MPEG-1 and MPEG-2 specifies two 
different MDCT/IMDCT block sizes: N = 12 (short block) and 
N = 36 (long block). Since the algorithms presented in [10], [12] 
and [15] are mainly proposed for MPEG audio encoding and 
decoding, so we study the performance of our algorithm with 
those algorithms for these special cases. 

1) Arithmetic complexity 
In Table III, we give the number of arithmetic operations 

required by the proposed algorithm and that of the algorithms 
presented in [10], [12] and [15] for computing the 12- and 
36-point MDCTs/IMDCTs. It can be seen from this Table that 
for 12-point MDCT/IMDCT, the proposed algorithm has the 
best performance in terms of the arithmetic complexity. 
However, for the computation of 36-point MDCT/IMDCT, the 
proposed algorithm requires more number of arithmetic 
operations than the algorithms reported in [12] and [15], but 
less than [10]. 

2) Basic module 
In Table III, we give the basic module of our algorithm and 

the algorithms presented in [10], [12], and [15]. Fig. 5 shows 
that the structure for implementing 6-point IMDCT module is 
almost identical to that of 3-point DCT module; however, the 
implementation of 6-point MDCT module is easier than that of 
9-point DCT module. Of course, 9-point DCT module could 
also be implemented by 3-point DCT module by using the 
radix-3 DCT algorithm [24], however, this course introduces 
recursive structure again. Therefore, the implementation of 
basic module for the proposed algorithm seems to be simpler 
than that of the algorithms reported in [10], [12] and [15].  

3) Module sharing 
As indicated by [12], sharing module leads to reduced 

hardware in implementation. Lee’s algorithm [12] employs the 
same module to realize the MDCT and IMDCT, that is, 
12-point (36-point) MDCT and 12-point (36-point) IMDCT 
can be computed by the same 3-point (9-point) SDCT module. 
However, in his algorithm, 12-point MDCT/IMDCT and 
36-point MDCT/IMDCT can not be shared module. As noted 
in [39], in the short block mode, three short blocks (N = 12) 
replace a long block (N = 36) so that the number of 
MDCT/IMDCT samples for a frame of audio samples remains 
unchanged regardless of the block size selection. The process 
of the work mode is similar to that of our algorithm which uses 
three 12-point MDCTs/IMDCTs to compute a 36-point 
MDCT/IMDCT. That is, 12-point MDCT/IMDCT and 
36-point MDCT/IMDCT share the same 12-point 
MDCT/IMDCT module. Furthermore, one of the most 
important applications for the layer III of MPEG-1 and 
MPEG-2 is MP3 player. Generally speaking, the process of 
encoding, where MDCT is used, is more complicated than the 
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process of decoding, where IMDCT is used. So, the music is 
often encoded previously and uploaded to the internet. And 
then, we download it from the internet to our MP3 player, 
which performs the process of decoding, using the 12- and 
36-point IMDCTs only. For this important application, the 
utilization of MDCT and IMDCT is divided. It seems to 
suggest that the sharing module of 12-point MDCT/IMDCT 
and 36-point MDCT/IMDCT is more important than that of 
12-point (36-point) MDCT and 12-point (36-point) IMDCT.  

V. CONCLUSION 
A mixed-radix algorithm is presented for computing the 

MDCT and IMDCT of a sequence with length N = 3m×2n, m ≥ 0, 
n ≥ 2. Compared to other existing algorithms, the main 
improvement achieved is to derive an efficient decomposition 
method which is recursive in nature and is very regular and 
modular. Because the recursive structure in the course of 
post-processing is not included in our algorithm, the in-place 
computation can also be implemented, which is more suitable 
for parallel implementation and especially suitable for the layer 
III of MPEG-1 and MPEG-2 audio encoding and decoding. 
Note also that for N = 12, the proposed radix-2 approach for 
computing the MDCT and IMDCT requires fewer or the same 
number of arithmetic operations than those of the known 
algorithms. Moreover, because the proposed algorithm is 
expressed in a simple sparse matrix form, it allows for an 
extension to the multidimensional case. 

 
APPENDIX A 

Computation of Length-6 MDCT: 1 multiplication and 6 
additions 
The input data sequence is{x0, x1, x2, x3, x4, x5} and the output 
data sequence is{y0, y1, y2}.First consider the length-6 
MDCT matrix with the input data sequence{x0, x1, x2, x3, x4, 
x5}, the length-6 MDCT is given by 
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where and2/10 =d 2/31 =d . 
The output data sequence {y0, y1, y2} of MDCT is given by 
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Since the multiplication by (1/2) is simply a right-shift 
operation, hence, the computation of the length-6 MDCT 
only requires 1 multiplication and 6 additions. 

APPENDIX B  
Computation of Length-6 IMDCT: 1 multiplication and 4 
additions 
The input data sequence is{x0, x1, x2} and the output data 
sequence is {y0, y1, y2, y3, y4, y5}. The length-6 IMDCT is 
given by 
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The output data sequence {y0, y1, y2, y3, y4, y5} of IMDCT is 
given by 
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;;;0;

;
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Notably, the length-6 IMDCT requires 1 multiplication and 4 
additions. 
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Fig.1. Flowgraph of a length-8 MDCT (radix-2 DIF) 

 
 

 
Fig.2. Flowgraph of a length-12 MDCT (radix-3 DIT) 

 
 

 
 

Fig.3. Flowgraph of a length-12 MDCT (mixed-radix) 
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Fig.4. Flowgraph of a length-36 MDCT (mixed-radix) 

 

 
Fig.5. Flowgraph of a length-6 MDCT (a) and a length-6 IMDCT (b).  

“ °” signifies that input is set to zero or output equals to zero. 
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Table I Comparison of our radix-2 MDCT/IMDCT algorithm with some existing algorithms in terms of arithmetic complexity for N = 2n, n ≥ 2. M and IM 
correspond to MDCT and IMDCT, respectively. * denotes that the algorithm introduces recursive structure in the course of post-processing. 

 
Algorithm The number of 

multiplications 
The number of  

additions 
Recursive structure?

radix-2 algorithm 3(n – 1)N/4 5(n – 1)N/4   –M 
(5n – 7)N/4   –IM 

no 

[15] (n + 1)N/4 (3n – 1)N/4   –M 
3(n – 1)N/4   –IM 

yes* 

[12] (n + 1)N/4 (3n – 1)N/4   –M 
3(n – 1)N/4   –IM 

yes* 

[11] (n + 1)N/4 3(n + 1)N/4   –M 
(3n + 1)N/4   –IM 

no 

[13] 
 

(n + 1)N/4 (3n – 1)N/4   –M no 

[9]-I 
[9]-II 

(n + 1)N/4 
(3n – 4)N 

3(n – 1)N/4   –IM 
(3n – 2)N    -IM 

no 
no 

 
 

Table II Comparison of our mixed-radix MDCT/IMDCT algorithm with Jing’s algorithm/Fan’s algorithm and Lee’s algorithm in terms of arithmetic complexity for 
N = 3m×2n, m ≥ 1, n ≥ 2 (N is less than 500). M and IM correspond to MDCT and IMDCT, respectively. * denotes that the zero-padding is included.  

 
 proposed algorithm Jing’s  algorithm[13] * /Fan’s  

algorithm[9]-I*  
Lee’s algorithm [12] 

N Mul Add (M/IM) Mul Add (M/IM) Mul Add (M/IM) 
6=31×21 1 6/4 8 16/12 8* 16/12* 
12=31×22 11 27/23 20 44/36 11 29/23 
24=31×23 40 84/76 48 112/96 26 72/60 
48=31×24 116 228/212 112 272/240 64 180/156 
96=31×25 304 576/544 256 640/576 152 432/384 

192=31×26 752 1392/1328 576 1472/1344 352 1008/912 
384=31×27 1792 3264/3136 1280 3328/3072 800 2304/2112 
36=32×22 55 141/117 112 272/240 43 133/115 
72=32×23 166 372/324 256 640/576 104 312/276 

144=32×24 442 924/828 576 1472/1344 244 732/660 
288=32×25 1102 2208/2016 1280 3328/3072 560 1680/1536 
108=33×22 235 603/495 256 640/576 195 527/473 
216=33×23 640 1476/1260 576 1472/1344 444 1216/1108 
432=33×24 1612 3492/3060 1280 3328/3072 996 2756/2540 
324=34×22 919 2349/1917 1280 3328/3072 771 2045/1883 

 
 

Table III Comparison of our algorithm comprehensively with the algorithms presented in [10], [12] and [15]. M, IM, D, and ID correspond to MDCT, IMDCT, DCT, 
and IDCT, respectively. 

 

Algorithm Proposed 
algorithm [15] [12] [10] 

Data access I/O form Parallel-in 
Parallel-out 

Serial-in 
Serial-out 

Serial-in 
Serial-out 

Serial-in 
Serial-out 

Modularity 
Regularity Recursive completely incompletely incompletely incompletely 

N=12 11/27-M 
11/23-IM 

11/27-M 
11/23-IM 

11/29-M 
11/23-IM 

13/39-M 
13/33-IM Arithmetic 

complexity N=36 55/141-M 
55/117-M 

43/129-M 
43/115-IM 

43/133-M 
43/115-IM 

47/165-M 
47/151-IM 

Basic module 6-point M and 
IM 

3- and 
9-point D 

3- and 
9-point D 

3-point D and ID
9-point D and ID

Suitability for 
the layer III of 
MPEG-1 and 

MPEG-2 audio 
encoding and 

decoding 
Module sharing M and M 

IM and IM no M and IM no 

 
 
 
 
 
 
 
 
 
 

 


