

Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation.

Laurence Faivre, Gwenaëlle Collod-Beroud, Bert L. Callewaert, Anne H. Child, Christine Binquet, Elodie Gautier, Bart L. Loeys, Eloisa Arbustini, Karin Mayer, Mine Arslan-Kirchner, et al.

▶ To cite this version:

Laurence Faivre, Gwenaëlle Collod-Beroud, Bert L. Callewaert, Anne H. Child, Christine Binquet, et al.. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24-32 mutation. European Journal of Human Genetics, 2009, 17 (4), pp.491-501. 10.1038/ejhg.2008.207. inserm-00343925v1

HAL Id: inserm-00343925 https://inserm.hal.science/inserm-00343925v1

Submitted on 5 Jun 2009 (v1), last revised 20 Dec 2017 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2

3

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

75015 France.

Clinical and mutation type analysis from an international series of

198 probands with a pathogenic FBN1 exons 24-32 mutation

4 Faivre L. 1,2, Collod-Beroud G. 3,4, Callewaert B. 5, Child A. 6, Binquet C. 2,7, Gautier E. 2,7, Loeys

5 BL.^{5,8}, Arbustini E.⁹, Mayer K.¹⁰, Arslan-Kirchner M.¹¹, Stheneur C.¹², Kiotsekoglou A.⁶,

6 Comeglio P.⁶, Marziliano N.⁹, Wolf JE.¹³, Bouchot O.¹⁴, Khau-Van-Kien P¹⁵., Beroud C.^{3,4,15},

7 Claustres M. ^{3,4,15}, Bonithon-Kopp C. ^{2,7}, Robinson PN. ¹⁶, Adès L. ^{17,18,19}, De Backer J. ⁵,

8 Coucke P.⁵, Francke U.²⁰, De Paepe A.⁵, Jondeau G.²¹, Boileau C.^{22, 23, 24}

1 Centre de Génétique, CHU, Dijon, F-21000 France. 2 Centre d'investigation clinique – épidémiologie clinique/essais cliniques, CHU, Dijon, F-21000 France. 3 INSERM, U827, Montpellier, F-34000, France. 4 Univ Montpellier1, Montpellier, F-34000 France. 5 Center for Medical Genetics, Ghent University Hospital, Belgium. 6 Department of Cardiological Sciences, St. George's Hospital, London, UK. 7 Inserm, CIE1, Dijon, F-21000 France. 8 Institute of Genetic Medicine and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA. 9 Centre for Inherited Cardiovascular Diseases, Foundation IRCCS Policlinico San Matteo, Pavia, Italy. 10 Center for Human Genetics and Laboratory Medicine, Martinsried, Germany. 11 Institut für Humangenetik, Hannover, Germany. 12 Service de Pédiatrie, Hôpital Ambroise Paré, Boulogne, F-92000 France. 13 Cardiologie, CHU, Dijon, F-21000 France. 14 Chirurgie cardio-vasculaire, CHU, Dijon, F-21000 France. 15 CHU Montpellier, Hôpital Arnault de Villeneuve, Laboratoire de Génétique Moléculaire, Montpellier, F-34000 France. 16 Institut für Medizinische Genetik, Universitätsmedizin Charité, Berlin, Germany. 17 Marfan Research Group, The Children's Hospital at Westmead, Sydney, Australia. 18 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia. 19 Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia. 20 Departments of Genetics and Pediatrics, Stanford University Medical Center, USA. 21 AP-HP, Hôpital Bichat, Centre de reference national pour le syndrome de Marfan et apparentés, Paris F-75018 France. 22 AP-HP, Hôpital Ambroise Paré ,Laboratoire de Génétique moléculaire, Boulogne, F-92000 France. 23 Université Versailles Saint Quentin-en-Yvelines, UFR P.I.F.O., Garches, F-92380 France . 24 INSERM, U781, PARIS, F-

29	Address for correspondence:	Laurence Faivre, MD-PhD	
30		Centre de Génétique, Hôpital d'Enfants	
31		10, bd Maréchal DeLattre de Tassigny	
32		21034 Dijon, France.	
33		Tel: +33,3,80,29,33,00	Fax: +33.3.80.29.32.66
34		Email: laurence.faivre@chu-dijon.fr	

ABSTRACT

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24-32. We previously showed that a mutation in exons 24-32 is predictive of a severe cardiovascular phenotype even in nonneonatal cases, and that mutations leading to premature truncation codons are underrepresented in this region. To describe patients carrying a mutation in this so-called "neonatal" region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24-32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon within exons 24-32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a premature termination codon within exons 24-32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exon 24-32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.

INTRODUCTION

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Marfan syndrome (MFS; MIM 154700) is a connective tissue disorder, with autosomal dominant inheritance and a prevalence of 1/5000-10000 individuals¹. The cardinal features of MFS involve the ocular, cardiovascular and skeletal systems². Neonatal MFS is considered as the severe end of the MFS phenotype, and most cases are sporadic. Rare homozygote forms and a few compound heterozygote patients born to parents each displaying or not a MFS phenotype, have been reported³⁻⁴.

While the known mutations of FBN1 are spread over the entire gene, the mutations causing neonatal MFS seem to cluster in a specific region from exons 24 to 32⁵⁻⁷. Besides neonatal MFS, atypically severe phenotypes also cluster in exons 24-328. This region includes the central longest stretch of 12 cbEGF repeats that is thought to form a rigid rod-like structure which may be important for microfibril assembly. Previously, we showed that mutations in exons 24-32 were associated with a more severe phenotype than mutations located in other exons of the gene, including younger age at diagnosis of type I fibrillinopathy, higher probability of ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis and shorter survival⁹. The majority of these results were replicated even when neonatal cases were excluded, leading to the conclusion that exon 24-32 mutations define a high-risk group for cardiac manifestations, associated with severe prognosis at all ages⁹. We also showed an under-representation of nonsense mutations and an over-representation of missense mutations in this region, when compared to other exons of the gene. Here, we focus on the clinical and molecular characterization of patients with a mutation in the so-called exon 24-32 "neonatal region", out of a series of 1013 probands with MFS or type I fibrillinopathy carrying a pathogenic *FBN1* mutation.

78

79

PATIENTS, MATERIALS AND METHODS

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Out of a series of 1013 probands carrying a pathogenic FBN1 mutation recruited for a genotype-phenotype correlation study^{9,10}, we extracted a subgroup of 198 probands with a mutation in exons 24-32 in order to better describe their clinical and molecular characteristics. Patients were recruited to this study during the period 1995-2005 via the framework of the Universal Mutation Database-FBN1^{11,12} (UMD-FBN1; http://www.umd.be), or were referred by specialised Marfan syndrome clinics in their respective countries. Patients originated from 38 countries in five continents. The required clinical information included a range of qualitative and quantitative clinical parameters, including age of diagnosis, presence or absence of clinical features including cardiac, ophthalmological, skeletal, cutaneous, pulmonary and dural manifestations of the Ghent nosology¹³. The ages at diagnosis and at surgery for aortic dilatation, mitral valve prolapse and regurgitation, ectopia lentis and scoliosis were also collected. Patients were classified as "neonatal MFS" when characteristic features of MFS including severe valvular anomalies by 4 weeks of age; "severe MFS" when presenting with positive Ghent criteria including the presence of ascending aortic dilatation before 10 years of age; "classical MFS" when Ghent criteria were positive in the remaining patients; "incomplete MFS" when Ghent criteria were negative in adulthood; and "probable MFS" when Ghent criteria were negative and follow-up was limited to childhood.

The pathogenic nature of a putative mutation was assessed using recognized criteria. In brief, all nonsense mutations, all deletions or insertions (in or out of frame) were considered pathogenic; for all splice mutations the wild-type and mutant strength values of the splice sites were compared using genetic algorithms^{12,14,15} and only mutations displaying significant deviation from the normal were included. Missense mutations were considered pathogenic when at least one of the following features was found: *i)* de novo missense mutation, *ii)* missense mutation substituting or creating a cysteine, *iii)* missense mutation involving a consensus calcium-binding residue¹⁶, *iv)* substitution of glycines implicated in

correct domain-domain packing¹⁷, *v*) intrafamilial segregation of a missense mutation involving a conserved amino acid. For other missense mutations not displaying one of the above features, additional data provided by SIFT^{18,19}, BLOSUM-62²⁰ and biochemical value (http://www.biochem218.stanford.edu/Projects%202001/Yu.pdf) were gathered and analysed using a new UMD tool²¹ (Collod-Beroud, personal communication).

The phenotypes and the genotypes of the overall cohort of patients are described elsewhere^{9,10}. Here, we focus on the clinical and molecular characteristics of patients with a mutation in exons 24-32. We took advantage of this large series to study the MFS presentation types associated with these mutations, the distribution of mutations in this region, and the genotype-phenotype correlations.

Since the prevalence of many features of MFS increases with age, and since our study included patients with different lengths of follow-up, we performed a time-to-event analysis technique in order to estimate a reliable cumulative probability of observation of the different manifestations of MFS. This technique could be applied for the following events: diagnosis of MFS or type I fibrillinopathy, scoliosis, ectopia lentis, aortic dilatation or dissection, mitral abnormalities, as well as surgery for these different manifestations for which the age at diagnosis was systematically collected. In all time-to-event analyses, the baseline date (time zero) was the date of birth. The time-to-event diagnosis was defined as the interval between the baseline date and the date of event observation. Subjects who did not manifest the studied event during the follow-up course were censored at their last follow-up. Subjects for whom the age at diagnosis of a specific manifestation was not available were excluded from these analyses. The Kaplan-Meier method²² was used to estimate the cumulative probabilities of clinical manifestations of the disease at 10, 25 and 40 years of age in order to describe the evolution of clinical features over time. Differences among the different types of mutation groups (different locations or type of mutations) were tested using the non-parametric log-

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

rank test. For the other features (skeletal features other than scoliosis, skin, lung and dural involvement), for which the ages at diagnosis were not collected, age at last follow-up was the only information available concerning the time of clinical features observation. In order to indirectly take into account the length of patient follow-up even in this situation, we adjusted all comparisons of MFS manifestation proportions for the ages at last follow-up, categorized into 10-year age groups. These adjusted comparisons were performed using the Mantel-Haenszel test²³. We compared the phenotypic data for each exon of the region with the others. To study the effect of mutation types, we compared patients with a premature termination codon to patients with an in-frame mutation and patients with missense mutations involving a cysteine vs other missense mutations. We also searched if the position of the substituted cystein influenced the phenotype by comparing clinical data of patient with a mutation affecting the first disulfide bond with patients with a mutation in the second or third disulfide bond and conversely. To study the effect of the position of the affected EGF-like domain relative to the TGFBP-like domain, we compared the phenotype of patients with a missense mutation in exons 25 and 26 encoding EGF-like domains 11 and 12 (located near the TGFBPlike domain) to the phenotype of patients with a missense mutation in exons 27 to 32 encoding EGF-like domains 13 to 18.

SASTM software version 9.2 (SAS Institute Inc., Cary, NC) and Stata software version 9 (Stata Corp, College Station, TX) were used for all statistical analyses. In order to take into account multiple testing, only p-values of less than 0.001 were considered significant.

150

151

152

153

154

RESULTS

The genotype/phenotype correlation study in exons 24-32 versus other exons has been reported elsewhere⁹. The MFS presentation type of patients with a mutation in exons 24-32 is summarized in Figure 1. An over-representation of neonatal and severe MFS and an under-

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

representation of classical MFS were noted when compared to the overall series⁹. Accordingly, a high percentage of sporadic cases were found (69%).

Twenty percent of the FBNI mutations in the overall series were found in the exon 24-32 region (n=198), indicating a clustering of mutations in this region as only 14.5% was expected based on the length of genomic sequence of the gene. Figure 2 shows the number of mutations by exon, from exon 24 to exon 32, and, although results were non significant, the clustering of mutations can be mainly explained by an excess of mutations in exons 25 and 27. An unequal distribution regarding the type of MFS presentation was found between exons of the studied region, with severe phenotypes most likely to be associated with mutations in exons 25, 26, 29, 31 and 32. Conversely, neonatal MFS was under-represented in patients with a mutation in exons 24, 27, 28 and 30 (Table 1). When comparing the probability of the different clinical features for one individual exon compared to the other exons of the region, significant results were found only for patients carrying a mutation in exon 25. Indeed, a younger age at diagnosis of MFS or type I fibrillinopathy, a higher probability of ascending aortic dilatation, mitral regurgitation, valvular surgery and scoliosis, as well as a lower chance of survival, were all found when compared to patients with a mutation within other exons of the exon 24-32 region (Figure 3). These results can be explained at least in part by a higher frequency of patients with neonatal MFS in exon 25 (57%, Table 1, p<0.001).

The majority of mutations was in-frame and predicted to result in an altered protein (79%), while 21% were predicted to result in a premature termination codon (PTC). Within the 139 missense mutations, 75 involved a cysteine (54%). Twenty-five mutations affected the first disulfide bond, 11 mutations the second disulfide bond and 23 mutations the third disulfide bond. Fifty-two patients had a mutation in the EGF-like domains 11 or 12, and 96 in the EGF-like domains 13 to 17. Figure 4 presents the distribution of types of mutations, depending on the severity of the clinical presentation. In particular, PTCs were under-

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

represented in patients with severe phenotypes and an absence of nonsense mutations, while missense mutations were over-represented. We questioned whether the type of mutation within the exon 24-32 region could lead to a differing clinical phenotype. Some significant results were found when patients with an exon 24-32 PTC mutation were compared with patients with an exons 24-32 missense mutation (Figure 5). Indeed, the cumulative probability of mitral insufficiency diagnosed before or at 25 years was 54% (99.9%-CI=39%-69%) in patients with a missense mutation in exons 24-32, compared to 20% (99.9%-CI=5%-53%) in patients with a PTC mutation in the same region (log-rank test p=0.001). Similarly, the cumulative probability of ectopia lentis diagnosed before or at 25 years was 61% (99.9%-CI=45%-77%) in patients with a missense mutation in exons 24-32, compared to 31% (99.9%-CI=11%-63%) in patients with a PTC mutation in the same region (log-rank test p=0.0009). Conversely, a higher frequency of pectus deformity was found in patients with a PTC mutation in exons 24-32 when compared to patients with a missense mutation in the same region (83% versus 54%, MH test p=0.001). No significant results were found for the other clinical features of the MFS spectrum. A tendency towards a higher probability of ascending aortic dilatation and a younger age at diagnosis was noted with missense mutations, although these associations were only marginally significant (p=0.0218 and p=0.0278, respectively) (Figure 5). When comparing patients with missense mutations involving a cysteine to other missense mutations, significant results were found for ectopia lentis, Indeed, the cumulative probability of ectopia lentis diagnosed before or at 25 years was 76% (99.9%-CI=60%-89%) in patients with a missense mutation involving a cysteine in exons 24-32, compared to 41% (99.9%-CI=25%-63%) in patients with another missense mutation in the same region (log-rank test p=0.0001). A tendency towards a higher probability of ascending aortic dilatation was noted in patients with missense mutations involving a cysteine, although this association was only marginally significant (p=0.0022) (Figure 5). No significant

differences were found when comparing clinical data of patients with a mutation affecting the first, second or third disulfide bound but the numbers were small. Significant differences were found when comparing the clinical phenotype of patients carrying a missense mutation in exons 25 and 26 encoding EGF-like domains 11 and 12 located near the TGFBP-like domain with patients carrying a missense mutation in exons 27 to 32 encoding EGF-like domains 13 to 18. Indeed, patients with a missense mutation affecting EGF-like domains 11 or 12 (n=52) have a shorter survival, a younger age at diagnosis, a higher risk of presenting a neonatal presentation, a higher risk of developing ascending aortic dilatation and a higher risk of developing mitral insufficiency than patients with a missense mutation affecting EGF-like domains 13 to 17(p<0.001).

Twenty-four mutations were recurrent. Table 2 shows the MFS presentation types in these recurrent mutations. Interestingly, some recurrent mutations lead to a similar phenotype, while others lead to different presentations.

DISCUSSION

Here, we further delineate the clinical and molecular characteristics of the so-called "neonatal exon 24-32 region" from the data of a large series in which the phenotype of 1013 probands with MFS and other type I fibrillinopathies were collected. We confirm that the region encompassing exons 24 to 32 is associated with more severe phenotypes than the other exons of the gene. Indeed, a third of the patients with a mutation within this region had neonatal or severe MFS, as compared to 6% in the other regions⁹.

We previously showed that the presence of a mutation in exons 24-32 was predictive of a severe cardiovascular phenotype even in non-neonatal phenotypes⁹, but it is unknown if the location of the mutation is the only cause of the phenotypic severity. Genotype-phenotype correlation analyses can be complicated by the fact that both the location and the type of a

mutation are critical in producing a severe phenotype and these data are often studied independently. For this reason, we looked for clinical differences between patients with different mutation types within this region. A higher probability of mitral regurgitation and ectopia lentis, as well as a lower frequency of pectus deformity were found in patients with a missense mutation within this region when compared to patients with a PTC mutation. Also, a higher probability of ectopia lentis was found in patients with a missense mutation involving a cysteine within this region when compared to patients with other missense mutations. These results were highly superposable to those obtained for all the regions of the *FBN1* gene⁹, showing that, beside the predominant role of the location of the mutations within the exon 24-32 region, the type of mutation is also important.

We previously showed that the distribution of the mutation types in exons 24-32 is different from the distribution found in other exons of the gene. Indeed, mutations leading to PTC are under-represented, contrasting with an over-representation of in-frame mutations⁹. Here, we show that PTC mutations are under-represented in the severe MFS phenotype. In particular, nonsense mutations have never been described in association with neonatal and severe MFS presentations. In contrast, in the overall cohort, we showed that patients with an FBN1 PTC mutation had a more severe skeletal and skin phenotype than patients with an inframe mutation⁹. Therefore, it is not known whether the absence of nonsense mutations in the neonatal and severe phenotypes, as well as the under-representation of PTC mutations in these phenotypes, could be explained by early lethality or by a milder effect on phenotype of PTC mutations within this region. In searching for differences in various clinical system involvements between PTC and in-frame mutations within this region, there were no emerging clues for this region regarding the dominant negative versus haploinsufficiency pathogenesis models and no evidence to support a differential mechanism for the phenotypic and genotypic differences within the exon 24-32 region and other regions of the gene. Recent

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

data has highlighted the complexity of the pathogenicity of *FBN1* mutations, with some mutations acting as dominant negative, and others as haploinsufficiency secondary to different effects on trafficking²⁴⁻²⁷. However mutation data accumulated by diagnostic laboratories worldwide is generally not associated with mRNA and protein studies. Therefore no data are available to assess the true effect of PTC mutations and whether they are submitted to nonsense-mediated RNA decay or they give rise to truncated peptides of various sizes. Until more information is available, the true impact of PTC mutations on microfibril formation can only be speculated.

The clustering of mutations with an excess of mutations in exons 24-32 has been postulated before^{8,28}. This hypothesis is confirmed in this study and might explain the high proportion of sporadic cases. The same clustering of mutations in exons 24-34 of the FBN2 gene in patients with congenital contractural arachnodactyly (OMIM 121050)^{7,29-30} is in favor of a critical role of this region in both fibrillin-1 and fibrillin-2. The domains encoded by exons 25-36 in fibrillin-1 are found midway through the protein and constitute the longest stretch of EGF-like domains in the protein. Exon 24 encodes an eight-cysteine domain found immediately amino-terminal to this stretch of EGF-like domains. Schrijver et al. 31 reported that the position of an affected EGF-like domain relative to an eight-cysteine domain could be related to the severity of the phenotype. In keeping with this report, we queried for possible differences in clinical presentation in patients carrying a missense mutation in exons 25 and 26, versus exons 27 to 32. We found a significantly more severe presentation in the patients with mutations in exons 25 and 26 that encode EGF-like domains 11 and 12. Furthermore, exon 25 was associated with a higher frequency of neonatal presentations and a higher probability of ascending aortic dilatation, than mutations in other exons within this region. This exon encodes EGF-like domain 11 which is immediately downstream from the eightcysteine domain. Interestingly, this relative location is conserved between fibrillin-1 and

transforming growth factor β1 binding protein (LTBP)³². LTBP plays a role in the assembly and secretion of TGFβ1 and is thought to target TGFβ1 to particular extracellular matrix sites, thus controlling the production and structure of the extracellular matrix, along with affecting cell growth, morphology and differentiation³³⁻³⁴. The homology of fibrillin-1 and LTBP raises the possibility that disruption of the extracellular targeting of the action of TGFβ1 during development underpins the more severe phenotype. Alternatively, mutations in this region of fibrillin-1 may be more disruptive to microfibril formation. Although mutations throughout the *FBN1* gene have been shown to disrupt fibrillin-1 incorporation into microfibrils, exons 24-32 may encode a region of fibrillin-1 with a unique function in the multimerization of the protein into stable microfibrils. In contrast to microfibrils formed by classic MFS fibroblasts, the fibrils formed by neonatal MFS show not only an apparent decrease in fibrillin accumulation, but are also short, fragmented and frayed³⁵. Therefore, alterations in this region of the protein may have a significant and specific effect on microfibril formation, implying a unique role of this region in microfibril formation.

Finally, the study of recurrent mutations was of interest. The majority of these recurrent mutations were only found in two instances. Three mutations were represented in 5 instances or more. While the c.3302A>G mutation was generally associated with the classical MFS, the c.3037G>A mutation led to different phenotypes, ranging from neonatal to classical MFS. Five mutations responsible for a neonatal MFS phenotype in some patients were also found in other patients with another MFS type of presentation (c.3037G>A, c.3143T>C, c.3202T>C, c.3217G>A and c.3976T>C). These data give further emphasis to the clinical variability in *FBN1* mutations and strongly argue for the role of modifier genes or the existence of a digenic mechanism to explain neonatal MFS.

In conclusion, even if the exon 24-32 location of mutations appears as a major cause of the severity of the phenotype in patients harboring a mutation in this region, other factors

such as the type of mutation or modifier genes might also be involved. These data could be helpful in understanding the role of the central region of the *FBN1* gene in disease pathogenicity.

308

309

305

306

307

ACKNOWLEDGEMENTS

310 The authors thank H. Plauchu (Lyon, France), D. Halliday (Oxford, UK), HC. Dietz 311 (Baltimore, USA), I. Kaitila (Helsinki, Finland), S. Davies (Cardiff, Wales) and T. Uyeda 312 (Irosaki, Japan) for their participation in the study. 313 This work was supported by a grant from the French ministry of health (PHRC 2004), GIS 314 maladies rares 2004, Bourse de la Société Française de Cardiologie, Fédération Française de 315 Cardiologie 2005, and ANR-05-PCOD-014. BC and BL are respectively a research fellow 316 and a senior clinical investigator of the Fund for Scientific Research – Flanders. AC and PC 317 thank the Marfan Trust, and the Bluff Field Charitable Fund for support.

318 LEGENDS TO FIGURES 319 320 Figure 1: Type of presentation of MFS in patients with a FBNI mutation in exons 24-32 (N = 321 198) 322 323 Figure 2: Number of mutations in the "exon 24-32 region" for each exon (black), as compared 324 to the number of mutations expected from the genomic sequence of the gene (grey), N = 198325 Figure 3: Kaplan Meier analyses for various clinical features in patients with a mutation in 326 327 exon 25 as compared to patients with a mutation in other exons of the "24-32 region". 328 A: Age at diagnosis of type I fibrillinopathy in exon 25 mutations versus mutations in other 329 exons of the "24-32 region". 330 79% of patients with a mutation in exon 25 (solid line) were diagnosed by 10 years (99.9%-331 CI=51%-98%) of age versus 46% (99.9%-CI=35%-60%) of patients with a mutation in other 332 exons of the "24-32 region" (broken line) (log-rank test p<0.0001) 333 B: Survival of patients with exon 25 mutations versus mutations in other exons of the 24-32 334 region. 335 46% of patients with mutations within exons 25 (solid line) were alive at 10 years (99.9%-336 CI=13%-75%) compared to 90% (99.9%-CI=80%-96%) of patients with a mutation in other 337 exons of the 24-32 region (broken line) (log-rank test p<0.0001) 338 C: Probability of ascending aortic dilatation in exon 25 mutations versus mutations in other 339 exons of the "exon 24-32 region". 340 The cumulative probability of ascending aortic dilatation before or at 10 years was 67% 341 (99.9%-CI=44%-88%) in patients with mutations within exon 25 (solid line) compared to

- 39% (99.9%-CI=30%-49%) in patients with a mutation in other exons of the "24-32 region"
- 343 (broken line) (p=0.0001).
- 344 D: Probability of mitral regurgitation in exon 25 mutations versus mutations in other exons of
- 345 the "exon 24-32 region".
- The cumulative probability of mitral regurgitation before or at 10 years was 59% (99.9%-
- 347 CI=35%-84%) in patients with mutations within exon 25 (solid line) compared to 30%
- 348 (99.9%-CI=22%-40%) in patients with a mutation in other exons of the "24-32 region"
- 349 (broken line) (p<0.0001).

- Figure 4: Distribution of types of mutations within the exon 24-32 region depending on the
- 352 clinical presentation (N=191) (7 splicing mutations could not be classified as in-frame or out
- of frame)

354

- Figure 5: Kaplan Meier analyses for various clinical features in patients with a missense
- mutation in exons 24-32 compared to patients with a PTC mutation in the same region.
- 357 A: Probability of mitral insufficiency in missense mutations in exons 24-32 versus PTC
- 358 mutations in the same region.
- The cumulative probability of mitral insufficiency diagnosed before or at 25 years was 54%
- 360 (99.9%-CI=39%-69%) in patients with a missense mutation in exons 24-32 (solid line)
- 361 compared to 20% (99.9%-CI=5%-53%) in patients with a PTC mutation in the same region
- 362 (broken line) (p=0.001).
- 363 B: Probability of ascending aortic dilatation in missense mutations in exons 24-32 versus
- 364 PTC mutations in the same region.
- The cumulative probability of ascending aortic dilatation before or at 25 years was 74%
- 366 (99.9%-CI=60%-86%) in patients with a missense mutation in exons 24-32 (solid line)

- 367 compared to 40% (99.9%-CI=18%-70%) in patients with a PTC mutation in the same region
- 368 (broken line), but these results were not significant because the curves join together with
- 369 follow-up (p=0.0218).
- 370 C: Probability of ectopia lentis in missense mutations in exons 24-32 versus PTC mutations in
- 371 the same region.
- The cumulative probability of ectopia lentis diagnosed before or at 25 years was 61% (99.9%-
- 373 CI=45%-77%) in patients with a missense mutation in exons 24-32 (solid line) compared to
- 374 31% (99.9%-CI=11%-63%) in patients with a PTC mutation in the same region (broken line)
- 375 (p=0.0009).
- 376 D: Age at diagnosis of type I fibrillinopathy in missense mutations in exons 24-32 versus PTC
- 377 mutations in the same region.
- 378 50% of patients with a missense mutation in exons 24-32 (solid line) were diagnosed at 6
- years (IQR [0.7;18]) of age versus 21 years (IQR [11;32]) of age in patients with a PTC
- mutation in the same region (broken line), but results of the log-rank test were not significant
- because the curves join together with follow-up (p=0.0278)
- 382 E. Probability of ascending aortic dilatation in missense mutations involving a cysteine in
- exons 24-32 versus other missense mutations in the same region.
- The cumulative probability of ascending aortic dilatation before or at 25 years was 83%
- 385 (99.9%-CI=70%-92%) in patients with a missense mutation involving a cysteine in exons 24-
- 386 32 (solid line) compared to 62% (99.9%-CI=45%-78%) in patients with another missense
- mutation in the same region (broken line), but these results were only marginally significant
- 388 (p=0.0022).
- 389 F: Probability of ectopia lentis in missense mutations involving a cysteine in exons 24-32
- 390 versus other missense mutations in the same region.

The cumulative probability of ectopia lentis diagnosed before or at 25 years was 76% (99.9%-CI=60%-89%) in patients with a missense mutation involving a cysteine in exons 24-32 (solid line) compared to 41% (99.9%-CI=25%-63%) in patients with another missense mutation in the same region (broken line) (p=0.0001).

395 REFERENCES

- 1 Pyeritz RE. Marfan syndrome: current and future clinical and genetic management of cardiovascular manifestations. *Semin Thorac Cardiovasc Surg* 1993; **5**:11-16.
- 398 2 Judge DP, Dietz HC. Marfan's syndrome. *Lancet* 2005; **366**:1965-1976.
- 389 3 Karttunen L, Raghunath M, Lonnqvist L, Peltonen L. Compound-heterozygous Marfan patient: two defective fibrillin alleles result in a lethal phenotype. *Am J Hum Genet* 1994; **55**:1083-1091.
- 401 4 De Vries BBA, Pals G, Odink R, Hamel BCJ. Homozygosity for a *FBN1* missense mutation: clinical and molecular evidence for recessive Marfan syndrome. *Eur J Hum Genet* 2007; **15**:930-935.
- 5 Milewicz DM, Duvic M. Severe neonatal Marfan syndrome resulting from a de novo 3-bp insertion into the fibrillin gene on chromosome 15. *Am J Hum Genet* 1994; **54**:447-453.
- 6 Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. *Nat Genet* 1994; **6**:64-69.
- 7 Putnam EA, Cho M, Zinn AB, Towbin JA, Byers PH, Milewicz DM. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene. *Am J Med Genet* 1996; **62**:233-242.
- 410 8 Tiecke F, Katzke S, Booms P, Robinson PN, Neumann L, Godfrey M, Mathews KR, Scheuner M,
 411 Hinkel GK, Brenner RE, Hovels-Gurich HH, Hagemeier C, Fuchs J, Skovby F, Rosenberg T.
 412 Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype-
- phenotype correlations in FBN1 exons 24-40. Eur J Hum Genet 2001;9:13-21.
- 9 Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E,
- Mayer K, Arslan-Kirchner M, Kiotsekoglou A, Comeglio P, Marziliano N, Dietz HC, Halliday D,
- Beroud C, Bonithon-Kopp C, Claustres M, Muti C, Plauchu H, Robinson PN, Adès LC, Biggin
- A, Benetts B, Brett M, Holman KJ, De Baecker J, Coucke P, Francke U, De Paepe A, Jondeau G,
- Boileau C. Effect of mutation type and location on clinical outcome in 1013 probands with
- Marfan syndrome or related phenotypes with FBN1 mutations : an international study. Am J Hum
- 420 Genet 2007; **81**:454-466
- 421 10 Faivre L, Collod-Beroud G, Child A, Callewaert B, Loeys BL, Binquet C, Gautier E, Arbustini E,
- Mayer K, Arslan-Kirchner M, Stheneur C, Kiotsekoglou A, Comeglio P, Marziliano N, Halliday
- D, Beroud C, Bonithon-Kopp C, Claustres M, Plauchu H, Robinson PN, Adès L, De Backer J,
- Coucke P, Francke U, De Paepe A, Boileau C, Jondeau G. Contribution of molecular analyses in
- diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009
- 426 probands. *J Med Genet* 2008;**45**:384-90.
- 427 11 Collod-Beroud G, Le Bourdelles S, Adès L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio
- P, De Paepe A, Hyland JC, Holman K, Kaitila I, Loeys B, Matyas G, Nuytinck L, Peltonen L,
- Rantamaki T, Robinson P, Steinmann B, Junien C, Beroud C, Boileau C. Update of the UMD-

- FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat 2003;
- **22**:199-208.
- 432 12 Beroud C, Hamroun D, Collod-Beroud G, Boileau C, Soussi T, Claustres M. UMD (Universal
- 433 Mutation Database): 2005 update. *Hum Mutat* 2005;**26**: 184-91.
- 13 De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for
- 435 the Marfan syndrome. *Am J Med Genet* 1996; **62**:417-426.
- 436 14 Dietz HC, Pyeritz RE. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome
- and related disorders. *Hum Mol Genet* 1995;4:1799-1809.
- 438 15 Shapiro MB, Senapathy P. "RNA splice junctions of different classes of eukaryotes: sequence
- statistics and functional implications in gene expression". *Nucleic Acids Res* 1987;**15**:7155-7174.
- 440 16 Senapathy P, Shapiro MB, Harris NL. Splice junctions, branch point sites, and exons: sequence
- statistics, identification, and applications to genome project. *Methods Enzymol* 1990;**183**:252-78
- 442 17 Downing A, Knott V, Werner J, Cardy C, Campbell ID, Handford PA. Solution structure of a pair
- of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome
- and other genetic disorders. *Cell* 1996;**85**:597-605.
- 18 Ng PC, Henikoff S. "Predicting deleterious amino acid substitutions". Genome Res 2001;11:863-
- 446 874.
- 19 Ng PC, Henikoff S. "SIFT: Predicting amino acid changes that affect protein function". Nucleic
- 448 *Acids Res* 2003;**31**:3812-3814.
- 449 20 Henikoff S, Henikoff JG. "Amino acid substitution matrices from protein blocks". Proc Natl Acad
- 450 *Sci USA* 1992;**89**:10915-10919.
- 21 Frédéric M, Hamroun D, Claustres M, Boileau C, Béroud C, Collod-Béroud G. A New prediction
- 452 tool for missense mutation pathogenicity; the example of the UMD-FBN1 mutation database. In
- 453 preparation.
- 454 22 Kaplan E, Meier P. Non parametric estimation from incomplete observations. J Am Stat Assoc
- 455 1958; **53**:457-481.
- 456 23 Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of
- disease. J Natl Cancer Inst 1959; 22: 719-748.
- 458 24 Whiteman P, Handford PA. Effective secretion of recombinant fragments of fibrillin-1:
- implications of protein misfolding for the pathogenesis of Marfan syndrome and related
- disorders. *Hum Mol Genet* 2003; **12**:727-737.
- 25 Eldadah ZA, Brenn T, Furthmayr H, Dietz HC. Expression of a mutant human fibrillin allele upon
- a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin
- 463 *Invest* 1995; **95**:874-880.
- 26 Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC. Evidence for
- a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J
- 466 *Clin Invest* 2004; **114**:172-181.

- 467 27 Mátyás G, Alonso S, Patrignani A, Marti M, Arnold E, Magyar I, Henggeler C, Carrel T,
- Steinmann B, Berger W. Large genomic fibrillin-1 (FBN1) gene deletions provide evidence for
- true haploinsufficiency in Marfan syndrome. *Hum Genet* 2007;**122**:23-32
- 28 Robinson PN, Booms P, Katzke S, Ladewig M, Neumann L, Palz M, Pregla R, Tiecke F,
- Rosenberg T. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and
- related fibrillinopathies. *Hum Mutat* 2002; **20**:153-161.
- 29 Park ES, Putnam EA, Chitayat D, Child A, Milewicz DM. Clustering of FBN2 mutations in
- patients with congenital contractural arachnodactyly indicates an important role of the domains
- encoded by exons 24 through 34 during human development. *Am J Med Genet* 1998;**78**:350-355.
- 476 30 Frederic M, Monino C, Marschall C, Hamroun D, Faivre L, Jondeau G, Klein HG, Neumann L,
- Gautier E, Binquet C, Maslen C, Godfrey M, Gupta P, Milewicz D, Boileau C, Claustres M,
- Béroud C, Collod-Béroud G. FBN2 gene: New mutations, Locus Specific DataBase (UMD-
- FBN2) and genotype-phenotype correlations. *Hum Mut*, in press.
- 480 31 Schrijver I, Liu W, Brenn T, Furthmayr H, Francke U. Cysteine substitutions in epidermal growth
- factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Am J
- 482 *Hum Genet* 1999;**65**:1007-20.
- 483 32 Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Claesson-Welsh L,
- Heldin CH. GF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1
- with multiple repeat sequences. *Cell* 1990; **61**:1051-1061.
- 486 33 Taipale J, Miyazono K, Heldin CH, Keski-Oja J. Latent transforming growth factor-beta 1
- associates to fibroblast extracellular matrix via latent TGF-beta binding protein.
- 488 *J Cell Biol* 1994; **124**:171-181.
- 489 34 Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of
- function in different organisms. Genes Dev 1994; 8:133-146.
- 491 35 Comeglio P, Johnson P, Arno G, Brice G, Evans A, Aragon-Martin J, da Silva FP, Kiotsekoglou A,
- Child A. The importance of mutation detection in Marfan syndrome and Marfan-related
- disorders: report of 193 FBN1 mutations. Hum Mutat 2007;28: 928.
- 494 36 Loevs B, Nuytinck L, Delvaux I, De Bie S, De Paepe A. Genotype and phenotype analysis of 171
- patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan
- 496 syndrome. *Arch Intern Med* 2001;**161**:2447-54.
- 497 37 Rommel K, Karck M, Haverich A, von Kodolitsch Y, Rybczynski M, Muller G, Singh KK,
- Schmidtke J, Arslan-Kirchner M. Identification of 29 novel and nine recurrent fibrillin-1 (FBN1)
- mutations and genotype-phenotype correlations in 76 patients with Marfan syndrome. *Hum Mutat*
- 500 2005;**26**:529-39.
- 38 Karttunen L, Ukkonen T, Kainulainen K, Syvänen A-C, Peltonen L. Two novel Fibrillin-1
- mutations resulting in premature termination codons but in different mutant transcript levels and
- clinical phenotype. *Hum Mutat* 1998; **Suppl** 1:S34-37.

- 39 Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, Pereira L, Ramirez F, Pyeritz RE, Dietz
- HC. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis
- of genomic amplicons. Am J Hum Genet 1995;57:8-21.
- 40 Liu WO, Oefner PJ, Qian C, Odom RS, Francke U. Denaturing HPLC-identified novel FBN1
- mutations, polymorphisms, and sequence variants in Marfan syndrome and related connective
- 509 tissue disorders. *Genet Test* 1997-98;1:237-42.
- 510 41 Lo IF, Wong RM, Lam FW, Tong TM, Lam ST. Missense mutations of the fibrillin-1 gene in two
- 511 Chinese patients with severe Marfan syndrome. *Chin Med J* 2001;114:473-476.
- 42 Biggin A, Holman K, Brett M, Bennetts B, Ades L. Detection of thirty novel FBN1 mutations in
- patients with Marfan syndrome or a related fibrillinopathy. *Hum Mutat* 2004; **23**: 99.
- 514 43 Ng DK, Chau KW, Black C, Thomas TM, Boxer M. Neonatal Marfan syndrome: a case report. J
- 515 *Paediatr Child Health* 1999;**35**:321-323.
- 44 Lonnqvist L, Child A, Kainulainen K, Davidson R, Puhakka L, Peltonen L. A novel mutation of the
- fibrillin gene causing ectopia lentis. *Genomics* 1994;**19**:573-576.
- 45 Jacobs AM, Toudjarska I, Racine A, Tsipouras P, Kilpatrick MW, Shanske A. A recurring FBN1
- gene mutation in neonatal Marfan syndrome. *Arch Pediatr Adolesc Med* 2002;**156**: 1081-5.
- 520 46 Loeys B, De Backer J, Van Acker P, Wettinck K, Pals G, Nuytinck L, Coucke P, De Paepe A.
- 521 Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical
- 522 Marfan syndrome. *Hum Mutat* 2004;**24**:140-146.
- 523 47 Rommel K, Karck M, Haverich A, Schmidtke J, Arslan-Kirchner M. Mutation screening of the
- fibrillin-1 (FBN1) gene in 76 unrelated patients with Marfan syndrome or Marfanoid features
- leads to the identification of 11 novel and three previously reported mutations. Hum Mutat
- 526 2002;**20**:406-407.
- 48 Arbustini E, Grasso M, Ansaldi S, Malattia C, Pilotto A, Porcu E, Disabella E, Marziliano N,
- Pisani A, Lanzarini L, Mannarino S, Larizza D, Mosconi M, Antoniazzi E, Zoia MC, Meloni G,
- Magrassi L, Brega A, Bedeschi MF, Torrente I, Mari F, Tavazzi L. Identification of sixty-two
- novel and twelve known FBN1 mutations in eighty-one unrelated probands with Marfan
- syndrome and other fibrillinopathies. *Hum Mutat* 2005; **26**: 494.
- 49 Tynan K, Comeau K, Pearson M, Wilgenbus P, Levitt D, Gasner C, Berg MA, Miller DC, Francke
- U. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations,
- including two in 8-cysteine domains. *Hum Molec Genet* 1993;**2**:1813-1821.
- 50 Dietz H, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh
- A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA. Marfan syndrome
- caused by a recurrent de novo missense mutation in the fibrillin gene. *Nature* 1991;**352**: 337-339.
- 538 51 Milewicz DM, Michael K, Fisher N, Coselli JS, Markello T, Biddinger A. Fibrillin-1 (FBN1)
- mutations in patients with thoracic aortic aneurysms. *Circulation* 1996;**94**:2708-11.

- 540 52 Hewett DR, Lynch JR, Child A, Sykes BC. A new missense mutation of fibrillin in a patient with Marfan syndrome. *J Med Genet* 1994;**31**:338-9.
- 53 Sood S, Eldadah ZA, Krause WL, McIntosh I, Dietz HC. Mutation in fibrillin-1 and the Marfanoidcraniosynostosis (Shprintzen-Goldberg) syndrome. *Nat Genet* 1996;12:209-11.