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Human Mutation DATABASES The FBN2 Gene: New Mutations, Locus-Specific Database (Universal Mutation Database FBN2), and Genotype-Phenotype Correlations
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ABSTRACT: Congenital contractural arachnodactyly (CCA) is an extremely rare disease, due to mutations in the FBN2 gene encoding fibrillin-2. Another member of the fibrillin family, the FBN1 gene, is involved in a broad phenotypic continuum of connective-tissue disorders including Marfan syndrome. Identifying not only what is in common but also what differentiates these two proteins should enable us to better comprehend their respective functions and better understand the multitude of diseases in which these two genes are involved. In 1995 we created a locus-specific database (LSDB) for FBN1 mutations with theUniversal Mutation Database (UMD) tool. To facilitate comparison of identified mutations in these two genes and search for specific functional areas, we created an LSDB for the FBN2 gene: the UMD-FBN2 database. This database lists 26 published and six newly identified mutations that mainly comprise missense and splice-site mutations. Although the number of described FBN2 mutations was low, the frequency of joint dislocation was significantly higher with missense mutations when compared to splice site mutations. The database is freely available at http://umd.be. Hum Mutat 30, 181-190, 2009. & 2008 Wiley-Liss, Inc.

Introduction

Congenital contractural arachnodactyly (CCA; MIM] 121050), or Beals-Hecht syndrome, is an autosomal dominant disease related to Marfan syndrome (MFS; MIM] 154700). These two similar syndromes are heritable connective tissue disorders caused by mutations in two genes belonging to the same family, the fibrillin family: FBN1 and FBN2, encoding fibrillin-1 and fibrillin-2, respectively. CCA was first described by [START_REF] Epstein | Hereditary dysplasia of bone with kyphoscoliosis, contractures, and abnormally shaped ears[END_REF] and subsequently by [START_REF] Grenier | Marfan's disease and arthrogryposis. Apropos of a case in a newborn infant[END_REF], several years before it was differentiated from MFS by [START_REF] Beals | Congenital contractural arachnodactyly. A heritable disorder of connective tissue[END_REF]. However, it has been suggested that the first CCA patient was reported, in fact, by Antoine-Bernard Marfan in 1896 [START_REF] Marfan | Un cas de de ´formation conge ´nitale des quatres membres, plus prononce ´aux extre ´mite ´s, caracte ´rise ´e par l'allongement des os avec un certain degre ´d'amincissement[END_REF] with the description of the little girl Gabrielle who probably presented with CCA rather than MFS. Clinical diagnosis is difficult because there are numerous common characteristics shared between MFS and CCA, such as a so-called marfanoid appearance constituted by tall, slender, asthenic appearance and skeletal features such as arachnodactyly, dolichostenomelia, pectus deformities, and kyphoscoliosis. In contrast with MFS, most individuals with CCA have ''crumpled'' ears, flexion contractures, and muscular hypoplasia. CCA is a disease with a relatively good prognosis because, despite the fact that aortic dilatation has been documented in a few patients (3/47; see Supplementary Table S1; available online at http://www.interscience.wiley.com/jpages/1059-7794/suppmat), the progression of dilatation to aortic dissection has not been documented. Lethal forms of CCA are rare and are related to additional abnormalities on top of skeletal and ear features; either in the gastrointestinal system (duodenal or esophageal atresia, intestinal malrotation) or in the cardiovascular system (atrial or ventricular septal defects, interrupted aortic arch, single umbilical artery), consequences of alteration in development.

CCA is an autosomal dominant disorder. Its incidence is unknown, as well as the percentage of cases caused by de novo mutations. As with MFS, CCA does not have gender or ethnic predilection. It appears to be fully penetrant. Finally, germline mosaicism has been observed [START_REF] Putnam | Parental somatic and germline mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts[END_REF][START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF].

To date, little is known about FBN2 mutations and their clinical spectrum. More data are available on FBN1 mutations that are implicated in MFS and numerous related pathologies such as severe neonatal Marfan syndrome [START_REF] Kainulainen | Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome[END_REF], autosomal dominantly inherited ectopia lentis (MIM] 129600) [START_REF] Ades | Ectopia lentis phenotypes and the FBN1 gene[END_REF][START_REF] Kainulainen | Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome[END_REF][START_REF] Lonnqvist | A novel mutation of the fibrillin gene causing Ectopia Lentis[END_REF], isolated skeletal features (or Marfanoid skeletal syndrome) [START_REF] Milewicz | A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome[END_REF], atypical MFS without cardiac involvement, involvement of the the mitral valve, aorta, skeleton, and skin (the ''MASS phenotype''), familial or isolated forms of aortic aneurysms [START_REF] Milewicz | Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms[END_REF], and autosomal dominant Weill-Marchesani syndrome (MIM] 227600) [START_REF] Faivre | In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome[END_REF]. TheUniversal Mutation Database (UMD)-FBN1locus-specific database (LSDB) today contains more than 1,700 mutations [START_REF] Collod-Beroud | Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database[END_REF][START_REF] Faivre | Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study[END_REF].

The aim of our work was to create a new UMD database, to better analyze FBN2 mutations and to compare them with FBN1 mutations. Although the two genes display strong homology and similar modular organization, it is still unknown exactly what differentiates them functionally. The different roles of FBN1 and FBN2 could be explained by different promoters allowing spatiotemporally different expression and/or by different protein-protein interactions. Identifying mutations in specific regions of the two genes could allow identification of the functional regions of these two proteins. In order to accumulate and easily compare molecular and clinical data, we created a new LSDB, the UMD-FBN2 database.

The FBN2 Gene is Homologous to FBN1

The FBN2 gene was discovered while cloning the gene implicated in Marfan syndrome, the FBN1 gene located in 15q15-21.3. FBN2 maps in 5q23-31 [START_REF] Lee | Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes[END_REF]. The demonstration that mutations in the FBN2 gene were involved in CCA was made by genetic linkage analysis [START_REF] Lee | Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes[END_REF][START_REF] Tsipouras | Genetic linkage of the Marfan syndrome, ectopia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5[END_REF] and the first implication of a FBN2 mutation in CCA was reported by [START_REF] Putnam | Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly[END_REF].

FBN2 is a 279.57-kb gene (contig NT_034772) that encodes a 10,166-bp transcript and a 2,912-amino acid protein. The FBN1 and FBN2 genes are highly homologous at the nucleotide level; on comparison of 58% of the sequence, we obtained 84% homology between FBN1 and FBN2. The fibrillin family contains another member, FBN3, identified from a human fetal brain library [Nagase et al., 2001]. FBN3 is located in 19p13.3-19p13.2 and is composed of 65 exons. Its structure substantially resembles that of FBN1 and FBN2: amino acid identity is high, including conservation of all cysteine residues; and domain organization is consistent throughout each of the proteins [START_REF] Corson | Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5 0 end[END_REF].

The multidomain structure of the genes belonging to the fibrillin family contains five different modules (see representation of FBN2 secondary structure in Fig. 1B). The most common is the epidermal growth factor (EGF)-like module (by homology to epidermal growth factor) with 47 repeats. This particularly conserved sequence contains six cysteines involved in three disulfide bonds [START_REF] Rao | The structure of a Ca(21)-binding epidermal growth factor-like domain: its role in proteinprotein interactions[END_REF], which are formed between cysteines 1-3, 2-4, and 5-6 [START_REF] Downing | Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders[END_REF]. A total of 43 of these contain a conserved consensus calcium-binding sequence: D/N-X-D/N-E/Q-X n -D/NÃ-X m -Y/F (n and m are variable, Ã indicates possible b hydroxylation) [START_REF] Handford | Key residues involved in calcium-binding motifs in EGF-like domains[END_REF][START_REF] Rees | The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX[END_REF] and have been demonstrated to bind calcium [START_REF] Corson | Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5 0 end[END_REF][START_REF] Dietz | Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders[END_REF][START_REF] Glanville | Calcium binding, hydroxylation, and glycosylation of the precursor epidermal growth factor-like domains of fibrillin-1, the Marfan gene protein[END_REF]. Another motif containing eight cysteines is repeated seven times [START_REF] Yuan | Solution structure of the transforming growth factor beta-binding protein-like module, a domain associated with matrix fibrils[END_REF] and is namedtransforming growth factor binding protein (TGFBP)-like module because of its homology with TGFb binding protein (also named 8-cys modules) [START_REF] Yuan | Solution structure of the transforming growth factor beta-binding protein-like module, a domain associated with matrix fibrils[END_REF]. According to SwissProt, we annotated ''signal peptide'' from amino acid 1 to 28. By analogy with the welldescribed FBN1 structure, we listed other domains not listed in SwissProt: ''N-terminal domain'' from amino acid 29 through 82 and ''C-terminal domain'' from amino acid 2,732 through the end of the protein. We annotate also a 4-cysteine motif (4-cys motif), also reported inlatent TGF-b binding proteins (LTBPs), from amino acid 83 to 110 [START_REF] Bashir | Analysis of the human gene encoding latent transforming growth factor-beta-binding protein-2[END_REF][START_REF] Isogai | Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein[END_REF][START_REF] Olofsson | Efficient association of an amino-terminally extended form of human latent transforming growth factor-beta binding protein with the extracellular matrix[END_REF] and a domain presenting with homology to fibulins C-terminal domain III (FibuCTDIII-like motif) from amino acid 2,758 to 2,912 [START_REF] Giltay | Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4[END_REF]. The protein sequence encoded by FBN2 also contains twoarginine-glycineaspartate (RGD) sequences, only one of which is present in FBN1. These sequences allow interaction with integrin receptors, which are present at the surface of cells, permitting cells to anchor to the extracellular matrix. One of these sequences is situated in exon 24 corresponding to codons 1,061 to 1,063, the other one, specific to FBN2 sequence, is in exon 37 corresponding to codons 1,586 to 1,588 [START_REF] Ritty | Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment[END_REF]. Finally, we annotated 12 FBN2 Nglycosylation sites conserved in FBN1 that contains a total of 15 amino acid residues: 492; 1,112; 1,414; 1,529; 1,625; 1,714; 1,745; 1,756; 1,945; 2,120; 2,225; and2,808 [Ramirez andPereira, 1999] B: Schematic representation of the deduced primary structure of fibrillin-2. Part of the fibrillin-2 protein corresponding to exons 24 to 33, where mutations implicated in CCA are clustered, is boxed.

HUMAN MUTATION, Vol. 30, No. 2, 181-190, 2009 and very conserved amino acids of unknown function incalcium binding (cb)EGF-like, TGFBP-like, EGF-like modules, as well as in 4-cys motif (Cterm) and in FibuCTDIII-like motif (Nterm). However, contrary to FBN1 and according to the FBN2 sequence, we have not identified furine/pace (consensus site R-X-K/R-R) or matrix metalloproteinase sites. To our knowledge, these sites have not been reported in the FBN2 gene.

Expression of FBN2 and FBN1 Genes and Protein Function

The two $320-kD proteins encoded by FBN1 and FBN2, fibrillin-1 and fibrillin-2, respectively, are also highly homologous in terms of amino acid sequences. These large cysteine-rich glycoproteins are major components of microfibrils from extracellular matrix, which can be associated with elastin fibers. In organ culture experiments, both fibrillins are similarly expressed in most tissues, except for kidney, liver, rib anlage, and notochord [START_REF] Quondamatteo | Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development[END_REF]. However, temporal expression of the two proteins is quite different during embryogenesis. Fibrillin-2 is expressed earlier in development [START_REF] Mariencheck | Fibrillin-1 and fibrillin-2 show temporal and tissuespecific regulation of expression in developing elastic tissues[END_REF], except in the cardiovascular system, and appears to have a potential role in elastogenesis, while fibrillin-1 is expressed later and has a fundamental structural role. Moreover, fibrillin-2 is expressed mostly during embryogenesis by very different types of tissues [START_REF] Zhang | Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices[END_REF][START_REF] Zhang | Extracellular matrix protein fibulin-2 is expressed in the embryonic endocardial cushion tissue and is a prominent component of valves in adult heart[END_REF]. By studying a rat model, it has been suggested that fibrillin-2 could play a role in lung development [START_REF] Yang | Cloning of rat fibrillin-2 cDNA and its role in branching morphogenesis of embryonic lung[END_REF]. Fibrillin-1 and fibrillin-2 could perform equivalent architectural functions in some tissues while fibrillin-2 may have a distinct function in peripheral nerves [START_REF] Charbonneau | Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences[END_REF].

The two proteins can be divided into five regions called A, B, C, D, and E. The most different domains are the A domains, with 19% homology between the two fibrillins; the C domain, which is proline-rich in fibrillin-1 and glycine-rich in fibrillin-2; and the E domain, with 50% homology. The two domains B and D share more homologies, with 87% and 81% homology, respectively. This can be explained by the high representation of conserved modules presenting homology to EGF; called the EGF-like module [START_REF] Corson | Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5 0 end[END_REF][START_REF] Pereira | Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan Syndrome[END_REF].

The UMD-FBN2 Database

Codons are numbered with respect to the FBN2 gene cDNA sequence (11 5 A of ATG). Two reference sequences have been used in previous mutation reports. These two references differ in their nucleotide sequence and by the presence of an additional amino acid (A 192 Q 193 P 194 in HGMD and SwissProt;or G 192 P 193 N 194 R 195 in GenBank NM_001999). As sequencing of more than 150 individuals only displayed ''G 192 P 193 N 194 R 195 '' (C. Maslen,and C. Marschall,personal communication), mutation names were renumbered with respect to the FBN2 gene cDNA sequence obtained from the GenBank database (GenBank database accession number NM_001999, complete coding sequence of human fibrillin-2). Amino acid numbers can then be different from those published (add 11 to the published amino acid [AA] number and 13 to the published nucleotide number for residues located downstream of AA 195).

Intron-exon boundaries, as well as intronic sequences, were defined by matching the cDNA sequence to the corresponding genome sequence (NT_0347772) and module organization from SwissProt (accession number P35556 with corrections for residues located downstream of AA 195). The database follows the guidelines on mutation databases of the Hugo Mutation Database Initiative including the latest nomenclature (www.hgvs.org).

We have used UMD software to create a computerized database that currently contains information about the published mutations of the FBN2 gene, mutations only reported in meeting proceedings or contributed by the coauthors of this work. The mutation records can list point mutations, large and small deletions, insertions, and mutations affecting splicing (intronic mutation) in the FBN2 gene. It cannot accommodate complex mutations. In addition, two mutations affecting the same allele will be entered as two different records linked by the same sample ID. For each mutation, information is provided at different levels: genetic (exon and codon number, wild-type and mutant codon, mutational event, mutation name), protein (wild-type and mutant amino acid, affected domain, mutation name), and clinical (skeletal, cardiovascular, gastrointestinal symptoms, when data are available).

We have annotated the FBN2 sequence with all indirect arguments to define whether potential missense mutations are really causative. These arguments list cysteines implicated in disulfide bonds in EGF-like, cbEGF-like, and TGFBP-like modules according to SwissProt [START_REF] Downing | Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders[END_REF][START_REF] Rao | The structure of a Ca(21)-binding epidermal growth factor-like domain: its role in proteinprotein interactions[END_REF], Nglycosylated amino acids [START_REF] Ramirez | The fibrillins[END_REF], amino acids implicated in RGD sequences [START_REF] Ritty | Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment[END_REF], and highly conserved amino acids of unknown function in cbEGF-like, TGFBP-like, and EGF-like modules, as well as in 4-cys motif (Cterm) and in FibuCTDIII-like motif (Nterm).

Study of the database can be done with different routines described on our internet website at www.umd.be. It is possible to analyze mutation distribution by exon, mutation distribution by mutation type, and mechanism for deletion/insertion [START_REF] Beroud | UMD (Universal mutation database): a generic software to build and analyze locus-specific databases[END_REF][START_REF] Beroud | UMD (Universal Mutation Database): 2005 update[END_REF]. With the annotation highly conserved domain (''HCD''), it is possible to know if an amino acid has a known function in the protein.

The software has already been used successfully for other genes implicated in genetic diseases, such as FBN1 [START_REF] Collod | Software and database for the analysis of mutations in the human FBN1 gene[END_REF][START_REF] Collod-Beroud | Marfan Database (second edition): software and database for the analysis of mutations in the human FBN1 gene[END_REF], 1998, 2003], LDLR [START_REF] Varret | Software and database for the analysis of mutations in the human LDL receptor gene[END_REF][START_REF] Varret | LDLR Database, 2nd edition. New additions to the database and the soft-ware, and results of the first molecular analysis[END_REF][START_REF] Villeger | The UMD-LDLR database: additions to the software and 490 new entries to the database[END_REF], TGFBR2 (submitted), TGFBR1 (in construction), ALS2, ATP7B, CAPN3, CDH23, CFTR, DMD, DPYD, DYSF, EIF2, EMD, EIF2B, GJB2, GFAP, LMNA, MYO7A, PCDH15, PLP1, TGFBR1, USH1C, USH2A, USH3A, SANS, SGCA, SGCG, FKRP, and ZMPSTE24 (unpublished); and for different types of genes implicated in cancer, such as TP53 [Be ´roud [START_REF] Be ´roud | p53 and APC gene mutations: software and databases[END_REF]and Soussi, , 1998[START_REF] Be ´roud | The UMD-p53 database: new mutations and analysis tools[END_REF]Be ´roud et al., 1996;[START_REF] Soussi | p53 Website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis[END_REF], APC [Be ´roud and Soussi, 1996[START_REF] Be ´roud | p53 and APC gene mutations: software and databases[END_REF][START_REF] Laurent-Puig | APC gene: database o germline and somatic mutations in human tumors and cell lines[END_REF], MEN1 [START_REF] Wautot | Germline mutation profile of the MEN1 gene in multiple endocrine neoplasia type 1 and correlations between phenotype and the functional domains of MEN1 protein[END_REF], VHL [Be ´roud et al., 1998;[START_REF] Gallou | Mutations of the VHL gene is sporadic renal cell carcinoma definition of a risk factor for VHL patients to develop an RCC[END_REF], WT1 [START_REF] Jeanpierre | Software and database for the analysis of mutations in the human WT gene[END_REF]], BRCA1, BRCA2, MEN1, MLH1, MSH2, MSH6, MYH, PMS2, and SUR1 (unpublished). More information concerning the UMD software is available at www.umd.be [START_REF] Beroud | UMD (Universal mutation database): a generic software to build and analyze locus-specific databases[END_REF][START_REF] Beroud | UMD (Universal Mutation Database): 2005 update[END_REF].

The current database and subsequent updated versions are available online at www.umd.be. Notifications of omissions and errors in the current version as well as specific phenotypic data would be gratefully received by the corresponding author. The software will be expanded as the database grows and according to the requirements of its users, and new functions may be implemented.

Mutation Analysis

Today, the database contains 32 entries indexed in the UMD-FBN2 locus specific database (Tables 1 and2). One mutation is only reported in a meeting proceeding (p.E390K) [Wang et al., 1995b]. A total of 25 are published mutations [START_REF] Babcock | A single mutation that results in an Asp to His substitution and partial exon skipping in a family with congenital contractural arachnodactyly[END_REF][START_REF] Belleh | Two novel fibrillin-2 mutations in congenital contractural arachnodactyly[END_REF][START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF][START_REF] Gupta | FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly[END_REF][START_REF] Maslen | A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly[END_REF][START_REF] Nishimura | FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly[END_REF][START_REF] Park | Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development[END_REF][START_REF] Putnam | Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly[END_REF][START_REF] Putnam | Parental somatic and germline mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts[END_REF]Wang et al., 1995b[START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF] and six mutations are contributed by the coauthors of this work (Christoph Marschall, Hans George Klein, and Luitgard Neumann).

Complex Mutation

One is a complex genomic rearrangement consisting in skipping of exon 24 and duplication of exon 23 [START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF] and cannot be indexed in the database.

Nonsense and Missense Mutations

Only one reported mutation is a nonsense mutation: c.4296C4A [START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF]. A total of 15 are missense mutations. A total of 11 are mutations which modify a cysteine residue implicated in a disulfide bond: c.1198G4A [Wang et al., 1995b]; c.3758G4A and c.4301G4C [START_REF] Putnam | Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly[END_REF]; c.3425G4T and c.3759T4G [START_REF] Belleh | Two novel fibrillin-2 mutations in congenital contractural arachnodactyly[END_REF]; c.3593G4A, c.3718T4C, c.3771C4G, and c.3802T4C [START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF]; and c.3425G4A and c.4274G4T (this report). There are three mutations modifying an amino acid residue potentially implicated in Ca 21 binding, according to [START_REF] Dietz | Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders[END_REF]: c.3340G4C [START_REF] Babcock | A single mutation that results in an Asp to His substitution and partial exon skipping in a family with congenital contractural arachnodactyly[END_REF]]; c.3278T4C [START_REF] Park | Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development[END_REF]; and c.3535G4T [START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF]. One is a mutation that modifies an amino acid residue conserved in TGFBP-like domains: c.3170G4A [START_REF] Park | Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development[END_REF]]. All 15 missense mutations (including the c.976C4T mutation not located in an HCD) are predicted to be pathogenic according to conservation and biochemical data with the UMD-Predictor tool (unpublished results).

Insertion/Duplication

Only one reported mutation is an insertion, corresponding to a small duplication of an existing three-base sequence.

Splice-Site Mutations

A total of 14 are splice mutations. Three mutations modify an acceptor splice-site: c.IVS33-2A4T [START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF], c.IVS28-3C4G (this report), and c.IVS30-5T4G [START_REF] Nishimura | FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly[END_REF]; and eight modify a donor splice-site: c.IVS311 1G4C [START_REF] Park | Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development[END_REF]], c.IVS2612T4C and c.IVS2612T4G [START_REF] Gupta | Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype[END_REF], c.IVS3215G4A [START_REF] Gupta | FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly[END_REF], c.IVS32 12T4C (this report), c.IVS3111G4A and c.IVS3511G4T [START_REF] Nishimura | FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly[END_REF], and c.3343G4C (last base of exon 25, in donor splice-site consensus) [START_REF] Babcock | A single mutation that results in an Asp to His substitution and partial exon skipping in a family with congenital contractural arachnodactyly[END_REF]]. The software can compute the variation of the consensus value (CV) of the mutant ''splice-site'' vs. the wild-type. Wild type, mutated CVs as well as the variation between these values are indicated in Table 2. If variation is 410%, it is highly probable that the mutated site is preferred to the wild-type. As observed in Table 2, significant variations are found for 10 out of the 11 mutations. More arguments are then needed for the c.IVS30-5T4G mutation (variation of -9,51) [START_REF] Nishimura | FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly[END_REF]. Alternative splicing has been demonstrated in only five cases at the RNA level (Table 2). Three mutations are not localized in the canonical donor or acceptor splice-site consensus sequences. Two mutations localized in -24 and -26 of intron 30 are in the vicinity of the branchpoint, c.IVS30-26G4T [START_REF] Maslen | A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly[END_REF]] and c.IV- Ã Consensus values for each potential donor or acceptor splice site are calculated for Wild Type (WT) and mutant sequence according to Senapathy et al. [1990]; and Shapiro and Senapathy [1987]) (100 5 strong splice site; 0 5 not a splice site).

Observed consequences describe the abnormalities found at the mRNA level.

a Identified twice.

S30-24A4C [START_REF] Nishimura | FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly[END_REF], but do not involve one of the seven nucleotides of the most probable branchpoint consensus sequence (-35 to -29, agcacAt) (see Supplementary Fig. S1). One of these two mutations was confirmed to cause missplicing at the mRNA level [START_REF] Maslen | A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly[END_REF] thus suggesting the presence of a regulatory sequence in this intronic region. The natural acceptor splice site in intron 30 is weak (68.16) and the disturbance of the surrounding sequence could play an important role in splicing.

Further experimental analyses are needed to demonstrate this hypothesis and identify this key sequence regulator. The last mutation not localized in a canonical sequence is c.IVS28-15A4G [START_REF] Putnam | Parental somatic and germline mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts[END_REF]. This mutation in intron 28 does not involve one of the seven nucleotides of the most probable branchpoint consensus sequence (-34 and -28, acctgAc) (see Supplementary Fig. S4). Furthermore, the natural acceptor splice-site in this intron is strong (89.40). This mutation creates a potential alternative acceptor splice-site (caatgtggttgcag, 74.50). Nevertheless, abnormal splicing corresponding to the skipping of exon 29 has been reported. The mechanism of this skipping is thus unclear.

In conclusion, FBN2 mutations leading to a premature termination codon are significantly underrepresented (only one nonsense mutation is reported) contrasting with an overrepresentation of in-frame mutations (splice-site mutations are likely all in-frame and the unique duplication results in in-frame insertion). This particular distribution of mutation types is similar in the homologous FBN1 region (exons 24-32; c.f. paragraph 6). Nevertheless, contrary to FBN1, where mutations in this region are mainly missense (56.9% for 12.5% of splice-site mutations), the mutations currently reported in the FBN2 gene are evenly distributed between missense (50%) and splice-site mutations (46.9%).

Structure/Function Correlations

All known mutations in the FBN2 gene except two, c.976C4T (this report) and c.1168G4A [Wang et al., 1995a], are clustered in a limited region between exons 24 through 35 (Fig. 1A; graph 3). Curiously, the homologous region in the FBN1 gene (exons 24-32) clusters almost all mutations implicated in neonatal forms of MFS that correspond to the most severe end of the MFS clinical spectrum [START_REF] Park | Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development[END_REF]] (Fig. 1A; graph 2). Clinical features found in neonatal MFS and CCA can be overlapping as congenital contractures, dolichostenomelia, arachnodactyly, and abnormal ears are found in both cases. Other FBN1 mutations, implicated in a large spectrum of clinical phenotypes, are spread throughout the gene (Fig. 1A; graph 1). Furthermore, FBN1 mutations in exons 24 to 32 not implicated in neonatal cases were associated with a more severe phenotype, including younger age at diagnosis, higher probability of ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival. Therefore, more than a ''neonatal region,'' it should be considered a ''severe region.'' The presence of a mutation in this limited FBN1 region appears to be the best indicator of early onset aortic risk [START_REF] Faivre | Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study[END_REF]. Only four patients with a known FBN2 mutation among 47 had aortic root dilation at an early age and none of these individuals are known to have progressed to aortic dissection (Supplementary Table S1). This region seems then to have a different function in fibrillin-2. Nevertheless, even if the presence of a cardiac implication is rare and the prognosis for CCA patients with these abnormalities is not known, cardiac evaluation including echocardiogram must be set up for CCA patients. The most severe end of the CCA clinical spectrum corresponds to a severe/lethal form. Molecular studies of only one individual (IVS33-2A4T [START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF]) among the six cases reported with severe/lethal CCA [START_REF] Currarino | A severe form of congenital contractural arachnodactyly in two newborn infants[END_REF][START_REF] Godfrey | Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome[END_REF][START_REF] Lipson | The clinical spectrum of congenital contractural arachnodactyly. A case with congenital heart disease[END_REF][START_REF] Macnab | Cardiac anomalies complicating congenital contractural arachnodactyly[END_REF][START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF] have been performed and the identified mutation is localized in this specific region. It would be very interesting to search for the molecular abnormalities in the other reported cases and look for their localization in or out of this limited region of the FBN2 gene.

This middle-FBN1 region is the beginning of the longest stretch of EGF-like motifs. Immunohistochemical studies of neonatal patients' cell cultures showed important decrease of immunoreactive material when stained with anti-fibrillin-1 antibodies and an abnormal microfibril morphology: fibrils were short, fragmented, and frayed [START_REF] Raghunath | Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts[END_REF][START_REF] Superti-Furga | Deficiencies of fibrillin and decorin in fibroblast cultures of a patient with neonatal Marfan syndrome[END_REF]. Rotary shadowing electron microscopy analyses of these cell cultures had no identifiable 10-nm-diameter microfibrils at all [START_REF] Lonnqvist | A point mutation creating an extra N-glycosylation site in fibrillin-1 results in neonatal Marfan syndrome[END_REF]. Alteration of this region of the protein then, undoubtedly has a significant and specific effect on fibrillin-1-containing microfibril formation and their stability in the extracellular matrix. Clarifying the specific functional significance of this region in FBN1 during early development may help in understanding the specific function of the corresponding FBN2 sequence.

Finally, the clustering of CCA mutations in this FBN2 region raises the question of the phenotypes associated with mutations localized outside of this region. It is not known today if these FBN2 mutations are either silent, result in different phenotypes (part of the spectrum of phenotypes associated with a FBN1 mutation or with no relationship), or are lethal. If the clinical spectrum associated with FBN2 mutations is comparable with those linked to FBN1 mutations, mutations localized in this particular region should correspond to the most severe end of the spectrum and mutations that occur outside this region would be associated with milder phenotypes.

Genotype-Phenotype Correlations Methodology

To study the effect of mutation type, we compared patients with a missense mutation to patients with a splice-site mutation for each clinical feature: abnormal ears, micrognathia, high arched palate, arachnodactyly, joint contractures, joint dislocation, scoliosis, pectus deformity, pes deformity, dolichostenomelia, orthopedic treatment, and aortic root dilatation and refraction. As the age at diagnosis of each clinical feature was not collected, age at last follow-up was the only information available. To indirectly take into account length of patient of follow-up in this situation, we adjusted all comparisons of CCA manifestation frequencies for the ages at last follow-up, and categorized them into 10-year age groups. These adjusted comparisons were performed using the Mantel-Haenszel (MH) test [START_REF] Mantel | Statistical aspects of the analysis of data from retrospective studies of disease[END_REF]. As this test is adopted only if the relationship between the mutation type and the clinical manifestation is similar in the different strata of age at last follow-up, we checked the homogeneity between strata using the Breslow-Day chisquared test of homogeneity [START_REF] Breslow | Statistical methods in cancer research. Volume II: the design and analysis of cohort studies[END_REF]. If an interaction was observed, results were presented for each category of age at last follow-up. Stata software version 8 (Stata Corp., College Station, TX) was used for all statistical analyses. Only P values o0.005 were considered as significant since multiple tests were performed.

Only mutations with complete clinical descriptions have been taken into account in these analyses (mutations c.4296C4A and c.3269_3271dup excluded). For some mutations, clinical descriptions available for other affected relatives carrying the same FBN2 mutation were included (IVS2612T4G, IVS28-15A4G, IVS30-26G4T, IVS3215G4A, IVS33-2A4T, IVS30-24A4C, c.3170G4A, c.3278T4C, and c.3343G4C) (see Supplementary Fig. S1).

Results

A total of 29 individuals with a splice-site mutation and 19 with a missense mutation were included in these analyses (a total of 23 distinct mutations are taken into account). The only significant result was the frequency of joint dislocation that was significantly higher with missense mutations when compared to splice-site mutations (MH test, P 5 0.0028).

Polymorphisms

To assist in diagnosis, we also list published or contributed FBN2 polymorphisms (Supplementary Tables S2 andS3). The aim is to make available a complete set of FBN2 gene variations (mutations 1 polymorphisms) to the community, which may be used to quickly identify a causative mutation, thus saving time and money on testing for a polymorphism in a control population. These polymorphisms are numbered according to NM_001999 with G 192 P 193 N 194 R 195 . Coding FBN2 gene variations are represented in Supplementary Table S2 and noncoding in Supplementary Table S3.

Future Prospects

The clustering of CCA mutations in the limited region between FBN2 exons 24 through 35 raises the question of the existence or not of phenotypes associated with FBN2 mutations localized inside and outside of this region. The mutational events in previously reported severe/lethal CCA cases [START_REF] Currarino | A severe form of congenital contractural arachnodactyly in two newborn infants[END_REF][START_REF] Godfrey | Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome[END_REF][START_REF] Lipson | The clinical spectrum of congenital contractural arachnodactyly. A case with congenital heart disease[END_REF][START_REF] Macnab | Cardiac anomalies complicating congenital contractural arachnodactyly[END_REF][START_REF] Wang | Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2[END_REF], as well as in isolated associated CCA signs, such as arthrogryposis, kyphoscoliosis, and osteopenia, must now be investigated to define just how broad the clinical spectrum associated with FBN2 mutations is. For example, familial forms of severe scoliosis could be investigated for the presence of FBN2 gene mutations.
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 1 Figure 1. Comparison of the distribution of FBN1 and FBN2 mutations. A: Distribution of FBN1 and FBN2 mutations per exon. The number for each type of mutation (missense, deletions, insertions/ duplications, and nonsense) is represented for each exon. Splice mutations are not part of this graph. Distribution of mutations identified in the FBN1 gene (second graph) or associated with neonatal MFS (first graph) are compared with mutations identified in the FBN2 gene and implicated in CCA (third graph).
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  Each line represents a single FBN2 mutation report. Codons are numbered with respect to the FBN2 gene cDNA sequence (11 5 A of ATG). If the mutation predicts a premature protein-termination, the novel stop codon position is given, e.g., ''Stop at 130.'' Module group is numbered separately and according to the position of the module with respect to the amino-terminal end of the protein.HUMANMUTATION, Vol. 30, No. 2, 181-190, 2009 
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 1 Missense, nonsense and insertion/duplication FBN2 mutations Ã

	Exon
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 2 Splice FBN2 mutations Ã

	Splice site type Wild type sequence WT CV Mutant sequences Mutant CV Variation
	Mutation
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