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ABSTRACT 

Objective: Endpoints used for the evaluation of immunogenicity in vaccine trials are often the 

proportion of individuals with immune response or geometric means of antibody concentrations 

for each serotype. When  a vaccine includes several types of the same species, we illustrate 

how an endpoint combining all responses may improve clinical relevance and statistical power. 

Study design and settings: The motivating example was the ANRS-114 PNEUMOVAC trial 

where the effect of two vaccine strategies against Streptococcus pneumoniae was assessed in 

adults infected by the Human Immunodeficiency Virus. The power associated with several 

endpoints was calculated in the example and in simulations. A new endpoint based on four 

ordered levels is formulated and analysed by using a proportional odds model. 

Results and conclusion: The analysis of this new endpoint led to an odds-ratio allowing 

detection of  improvement and detriment. In the simulation study, this endpoint was associated 

with the largest statistical power by increasing the amount of information used as compared to 

usual endpoints. We recommend this new endpoint formulation in the formal development of a 

new vaccination regimen, whenever applicable. 

 

Key words : Vaccine, endpoint, proportional odds model, HIV infection, statistical power, 

random effect. 

Running title  : New endpoint formulation for vaccine trials 

Word count : abstract (179), main text (3190), 31 references, three tables, two figures 
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INTRODUCTION 

 

The efficacy and safety of vaccines are assessed by several traditional parameters [1,2]: 

incidence of the disease(s) to be prevented, immune response (antibody response and 

immunocompetent cells), reactogenicity (local and systemic reactions). Phase II trials are 

usually built to test meaningful differences in the distribution of immunogenicity endpoints. 

Antibody response to the target pathogen often defines the primary immunogenicity endpoint, 

antibody concentrations being used as surrogate endpoints for a clinically relevant endpoint [1]. 

Some vaccines such as pneumococcal polysaccharide vaccines yield a response to several 

serotypes and are called multivalent vaccines. The immunogenicity evaluation of such vaccines 

must take into account the response to any serotype, all of them participating in the definition of 

the primary endpoint. In general, the comparison between groups involves the distribution of 

serotype specific antibody concentrations for each serotype using geometric means 

[3,4,5,6,7,8,9]. The P-value is then adjusted for Bonferroni or Family Discovery Rate (FDR)-

controlling methods [1,10]. Another approach consists in comparing the percentage of 

responders to a minimum number (k) of serotypes defined a priori. First, the response to each 

serotype according to a given threshold is defined and then the percentage of responders to k 

serotypes is compared between groups [4,7,11].  

Nevertheless, those endpoints are not fully satisfactory. Indeed, the former may be difficult to 

interpret, when results are discordant across serotypes. The latter, although clinically relevant, 

leads to an obvious loss of information. Furthermore, it is difficult to define the threshold for the 

number of responses to consider. When several serotypes are used to define immunogenicity 

and if they have the same relative importance, we propose to use a categorical endpoint based 

on the number of responses obtained and the mode of analysis using a proportional odds model 

[12].  

Our report aims at showing the statistical and clinical relevance of this approach; firstly through 

the motivating example and secondly based on a simulation study. 
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 METHODS 

 
Study design (Figure 1) 

The ANRS 114-Pneumovac trial was a phase II randomized trial comparing two vaccine 

strategies against pneumococcal infection among adult patients infected by the Human 

Immunodeficiency Virus (VIH) [13]. The rationale was that HIV-infected patients are more 

susceptible to infections caused by common bacterial pathogens such as S. pneumoniae and 

therefore are in need of effective preventive strategies against this infection. In this trial, 212 

patients were enrolled, 106 in each arm. The tested vaccine strategy consisted in a vaccination 

by heptavalent pneumococcal protein conjugate vaccine: Prevenar (PCV) at baseline (W0) and 

by 23-valent pneumococcal polysaccharide vaccine: Pneumo23 (PPV) at week 4 (W4). The 

currently recommended strategy was used in the control arm and consisted in a vaccination by 

PPV at W4. The 7 serotypes of PCV (4, 6B, 9V, 14, 18C, 19F, 23F) are included in PPV and are 

the most frequently encountered serotypes in Western countries. Antibody concentrations of 

each common serotype were measured at W0 and W8 for each patient. Antibody response at 

W8 was compared between the 2 arms (Figure 1). 

 

Statistical methods 

Direct comparison of antibody concentrations 

The distribution of antibody concentrations is usually not gaussian [3,4,5]. Therefore, 

antibody concentrations were log-transformed and geometric means were calculated. T-test 

was used to compare distributions and FDR-controlling method to control for multiplicity of tests 

[14]. Response to each serotype was defined as two-fold increase between W0 and W8 and 

titre >1 µg/ml measured at 8 weeks. 

Binary endpoints 

Three binary endpoints were considered: (i) response to all 7 serotypes (versus non 

response to at least one of them), (ii)  response to at least 5 serotypes among 7 (versus 

response to less than 4 serotypes) and  (iii) response to at least 3 serotypes among 7 (versus 
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response to less than 2 serotypes). The comparison of responder rates according to treatment 

group was performed with Fisher exact test.   

New endpoint formulation (figure 2) 

The new formulation is based on: i) the identification of a response to each serotype, ii) the 

number of serotypes with response. These two variables were combined into four ordered 

levels: 0 response, response to 1 or 2 serotypes, response to 3 or 4 serotypes or response to 5 

to 7 serotypes (Figure 2). This categorization was considered a priori the most relevant by 

clinicians and immunologists. All serotypes have the same importance and contribute in the 

same way in the definition of the endpoint. This endpoint is categorical but also ordered 

because the higher the category, the better the response. First, Chi-2 and trend Chi-2 were 

used for crude analysis of this endpoint. 

 

Secondly, the Proportional Odds Model (POM) [12] was used to analyse the new endpoint 

formulated. It is a generalization of a logistic model, the response variable is categorical and 

ordered (Y=1,2,…,J) instead of binary. A definition of this model is provided in appendix. 

When the only explanatory variable is the treatment group, the global odds ratio βθ e=  can be 

interpreted as the odds of being in the higher category above a given category when someone 

is vaccinated by the tested strategy compared to the control group. The comparison between 

the two groups can be performed by testing  θ = 1 using a likelihood ratio statistics or a Wald 

test. This is testing an absence of difference between the groups in the distribution of the 

patients according to each category. 

The POM assumption is that the effect of any explanatory variable is the same whatever the 

level of grouping of the response. In other words, the odds ratio between no response at all 

versus at least one response should not be different from the odds-ratio between 2 responses 

or less versus 3 responses or more, etc. 
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Either for the fixed effect POM model or the mixed effect POM model, parameters could be 

estimated using maximum likelihood methods with standard softwares. In SAS (SAS® software 

v.9.1, SAS Institute, Cary, NC, USA), we used proc LOGISTIC for the former and proc 

NLMIXED for the latter. Code for fitting random effects POM model is provided in Appendix. 

Sample size and power were calculated using Kolassa’s solution in N’Query software [18]. 

 

Simulations 

Simulations were performed in order to calculate the power associated with each endpoint 

according to different scenarii. True parameters were defined according to the distribution of 

antibody concentrations in the ANRS 114-Pneumovac trial. Antibody concentrations were 

assumed to follow a log-normal distribution. For a given patient and a given serotype, antibody 

concentrations were correlated between different time of measurements and for a given patient, 

antibody concentrations of different serotypes were also correlated. We used the following four 

steps approach to simulate such data: 

 

1) Y0 ~ MVN (M0, C) (MVN for multivariate normal) 

Y0 is the multivariate vector of the logarithm of the titre of the seven serotypes. 

M0 (7x1) and C (7x7) were estimated from a multivariate linear mixed model using real data 

presented in the results section. They represent vector of means and variance-covariance 

matrix, respectively. R(7x7) is the correlation matrix . 

2) For the reference group, the difference of antibody concentrations from baseline was 

generated according to a normal distribution: Y8  - Y0 ~ N (p1, σp) where p1 and σp were based 

on estimations from multivariate linear mixed models fitted on data from the Pneumovac trial. 

For the test group : Y8 - Y0l~ N (p2, σp) where p2 = p1 + β2 with β2 being the treatment effect 

3) Test group effect was estimated using the different methods presented above 

4) Steps 1 to 3 were repeated N=1000 times  
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Each set of simulation included 200 patients. The power is the percentage of significant tests 

out of 1000. Simulations were repeated for different values of β2 (treatment effect) including the 

one estimated using the real data set. 
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RESULTS 

 

Application with ANRS 114 Pneumovac data (table 1) 

Geometric Means (GMT) were calculated for each serotype (table 1). GMT were generally 

higher in those vaccinated with the tested strategy. These differences were statistically 

significant for 2 of them (out of 7) after correction for multiple testing. The statistical power 

associated to each serotype varied from 35% (serotype 6B) up to 99% (serotype 18C). The 

power was therefore not homogeneous among serotypes and rather low (<60%) for 4 serotypes 

among 7. We used a chi-2 and a chi-2 for trend to test the difference of response between the 

two groups, p-value was respectively 0.0373 and 0.0015.  

We then considered the binary endpoint: response to all serotypes versus non response to at 

least one of them. The proportion of patients with successful response was significantly different 

between groups according to this endpoint. The odds-Ratio (OR)=2.80 (95% Confidence 

Interval [CI] 1.22-6.43, p=0.0123), meaning that the tested vaccinal strategy was associated 

with a better immunogenicity. The statistical power of the test for the null hypothesis OR=1 was 

68%.  

With an endpoint defined as being responder for at least 5 serotypes versus less than 5, the OR 

was 2.23 (95% CI 1.28-3.89, p=0.0044) and the power was 77%. The odds to be good 

responder (more than 5 serotypes) was therefore better for the tested vaccine strategy. 

 

Finally, the global OR estimated with the proportional odds model for the previously defined 

ordered categories was 2.12 (95% CI 1.26-3.56, p=0.0047). The power was 81%. Patients in 

the tested vaccine strategy group showed a higher number of responses than the control group. 

Morever, the proportional odds assumption was satisfied (test of non homogeneity p = 0.82). In 

this trial, the categorical endpoint was the most powerful as compared to other endpoints 

considered.  
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Simulations  (table 2) 

Estimated values for simulation parameters were: 
 

 M0 = [-2.1484, -0.7459, -0.7377, 0.2910, -0.9306, -0.2530, -1.3869]  
 

1             0.6129   0.7192   0.3498   0.6342   0.6581   0.5685  
  0.6129    1            0.8517   0.4884   0.8087   0.8597   0.7902 
  0.7192    0.8517   1            0.6037   0.8032   0.7901   0.7821 

R= 0.3498    0.4884   0.6037   1            0.5022   0.4643   0.4849 
  0.6342    0.8087   0.8032   0.5022   1            0.7616   0.7841 
  0.6581    0.8597   0.7901   0.4643   0.7616   1            0.7519 
  0.5685    0.7902   0.7821   0.4849   0.7841   0.7519   1 
  

p, = [2.0728, 1.2022, 1.3784, 1.6299, 1.4080, 0.9547, 1.2380] 
 

σp = [0.3520, 0.6219, 0.5427, 0.6075, 0.6277, 0.5527, 0.8066] 
 

The statistical power for the comparison of geometric means of antibody concentrations 

between the two groups increased with the treatment effect (βt
2), as expected (table 2). 

Furthermore, the power was quite heterogeneous according to the serotype considered (eg 

from 26.0 to 42.3% when βt
2 = D). 

The statistical power was always higher with other outcomes considered (binary or ordered 

categories). Among binary outcomes, the binary endpoint using a threshold at 5 serotypes led 

to the best statistical power compared to a threshold set at 7 serotypes (13.2% vs 8.6% for βt
2 = 

B; 85.0% vs 75.9% for βt
2 = D for instance). Although the outcome based on ordered categories 

led to the best power, the differences with the binary endpoint using a threshold at 5 serotypes 

were tiny (around 3%), when the effect of the treatment (β2) was identical according to each 

serotype. With a treatment effect differing from one serotype to another (very low effect for 5 

serotypes and high effect for 2 serotypes, scenario F) the binary endpoint using a threshold at 5 

serotypes was substantially less powerful to discriminate poor responders (2 responses for 

instance) than the new endpoint formulation (54.9.6% vs 63.2%, respectively). Furthermore, a 

null effect scenario (βt
2 = 0) was tested and the type I error was slightly higher for the POM 

model (α=0.06 as compared as α=0.05 for “> 5 reponses” binary endpoint). 
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Additional simulations were performed to test the robustness of the endpoint with different 

correlation structures between serotypes (data not shown). Whatever the correlation structure 

(no correlation, slight correlation, high correlation), the power of this new endpoint formulation 

was better as compared to the other endpoints. 

 

DISCUSSION 
 
 
The new endpoint formulation based on ordered categories was more powerful than current 

endpoints used for the evaluation of a multivalent vaccine efficacy. This was even more true 

when the response was not homogeneous among all serotypes. With binary endpoints, the 

power was not satisfactory even if the test was significant in our specific study. This loss of 

power might be explained by a loss of information due to dichotomization. For an ordered 

categorical variable, a chi-2 test for trend seemed to be the most powerful test. However, the 

use of such a test does not yield a measurement of association, does not allow adjustment for 

confounders and is conditional to the existence of a linear trend of responses among 

categories.  

The main advantage of the proposed strategy is to allow evaluating the effect of the intervention 

on all serotypes estimating only one parameter (the odds ratio) and performing one test. Hence, 

it avoids any correction for multiple testing and the main result is easy to interpret. 

 

Indeed, it had practical relevance for clinicians. Firstly, all serotypes contributed in the same 

way to the construction of the endpoint. The 7 serotypes of interest were those contained in the 

PCV vaccine since they were the most frequent causes of pneumococcal infections. Therefore, 

there was no rationale to give more consideration to a serotype than another. Secondly, results 

can be summarized using a single parameter, i.e a global OR estimated by the POM model, 

and presented in a simple contingency table. Such a summary contributes to improve the 

understanding of results by practitioners and makes it easier to remind them and to disseminate 

them among those who will use the vaccines.  
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Another advantage is that the implementation is fairly easy and convenient using standard 

statistical software. It is possible to accommodate for General Linear Model and to adjust for 

fixed or random effects. Indeed, the model can be extended by including random effects to 

capture heterogeneity between centers, or between individuals with repeated measurements. In 

our study, we included testing for such random effects (SAS code in Appendix) and did not find 

significant heterogeneity among them regarding vaccine response.  

 

A major assumption for the use a POM is the homogeneity of odds ratios among the different 

categories. This assumption holded in our specific example. Table 3 shows two examples  

illustrating extreme fictive situations when the assumption holds or not. In the first example, the 

vaccine strategy is efficient for all serotypes; in that case, the assumption should be satisfied. 

This translates into quite similar partial odds ratios. In the second example, the new vaccine 

strategy generates especially very good responders and the referent strategy more likely 

generates medium responders (example 2). The first strategy could be completely efficient (for 

the whole serotypes) or not at all. The second strategy could generate responses to almost 3 or 

4 serotypes, leading to many responders in medium categories and few in the lowest and the 

strongest. According to considered cutpoints, one would differently conclude about superiority 

between vaccine strategies. If the cutpoint is “at least 1 response” versus none, referent 

strategy would be better, if the cutpoint 5-7 responses is retained, the tested strategy would be 

better. In this example, the criterion of definite judgment would not be relevant because partial 

odds-ratio would be different (p<0.0001), so proportional odds assumption would not be 

satisfied. It is especially important to check this proportionality assumption because it is not 

obvious to intuitively anticipate the homogeneity of partial odds-ratio. Indeed, a vaccine strategy 

with an effect that varies from one serotype to another may stick to partial odds homogeneity 

(see Table 2, scenarios A and F). 

When the assumption is not satisfied, other models are available such as a continuous ratio 

model or a partial odds ratio model [16,17,21]. This latter model allows odds to be partially 
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different accross subgroups of categories provided that they are homogeneous within each 

subgroup. To be able to use this model the number of categories should be large enough (at 

least 5 categories). A recent paper [15] provides SAS code for other multinomial model, which 

can be useful if the proportional odds assumption is not satisfied and more sophisticated model 

is needed. Another paper [19] suggests solutions to analyse ordinal endpoint when the 

proportional odds assumption does not hold. However those alternative models estimate 

additional parameters which leads to a decrease of statistical power to detect an effect.  

Another limitation (also shared with binary endpoints) is that the threshold for antibody 

responses should be defined a priori and according to a relevant biological and clinical 

rationale. In the litterature, definition of antibody response is varying according to the increase 

considered (e.g. 2- or 3-fold increase of antibody concentrations) [5,23], to a threshold of the 

titre (e.g. titre greater than 1 µg/ml) [3] or the combination of both: 2-fold increase and titre>1 

µg/ml at W8 [11]. This threshold seemed to be the most relevant because it took into account 

not only the increase of titre between W0 and W8 but also a minimal threshold to reach 

response level. Indeed, a 2-fold increase from 0.01 to 0.02 µg/ml, could not be considered as a 

response. In the same way, a patient could present a titre > 1 µg/ml at W8 but also at W0 and 

be considered as a responder even if the titre was stable. That is why the endpoint definition 

chosen in the present study seemed to be appropriate. 

In some studies [5,6] an alternative approach was used to analyze efficacy of multivalent 

vaccine trial. Geometric means of different serotypes were compared using mixed MANOVA 

(Multivariate analysis of variance). This type of model assumes independence of errors across 

observations. A correlation between dependant variables is modeled through a multivariate 

normal distribution. For the comparison of group effect, the null hypothesis is that global effect is 

null for all serotypes. The alternative hypothesis is that there is at least one serotype for which 

the group effect is significant. Thus, this model is not discriminant enough and does not really 

answer our initial question of whether the global immunologic efficacy is better in the test group 

compared to the reference group. Moreover, the fit of those distributions might need complex 
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assumptions such as mixture of lognormal and joint distributions in the context of antibody 

measurement with left-censuring issues due to undetectable values [3,20].  

 

Composite endpoints are frequently used as primary endpoint in randomized trials because it 

may increase the statistical power and thus the efficiency of the trial and may facilitate 

interpretation [22]. However, the main rationale for using binomial composite endpoint would be 

the ability to include a range of potentially important outcomes in the composite like in ANRS 

114 PNEUMOVAC trial. The use of categorization in vaccine area is often necessary, yet, the 

construction of such a categorical endpoint is not always suitable, depending on the vaccine 

strategy, vaccine composition, importance of every serotype. The proposed formulation might 

also be useful in other situations than vaccine evaluation, as far as a categorization of endpoint 

seems to be relevant. 

 

CONCLUSION 

Guidelines for the formulaton and analysis of primary endpoint in multivalent vaccine trials. We 

propose a formulation based on a combination of the responses to serotypes and the number of 

response achieved that is able to achieve a higher statistical power as compared to commonly 

used endpoints such as means of antibody concentrations and has better clinical relevance. 

This formulation could also be used in other contexts, whenever the outcome can be divided in 

few ordered categories formed by units of the same relative importance. 
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Tables/Figures legends 

 

Table 1. Results of several endpoint formulations in the ANRS 114 Pneumovac trial, 

measurements of association, P-value and associated statistical power. 

Table 2. Probability of rejecting the null hypothesis at 0.05 level according to possible endpoints 

with simulated data. N=200 subjects, 1000 simulations 

Table 3. Two examples of responses distributions : example 1 where proportional odds 

assumption holds and example 2 where the assumption does not hold 

 
Figure 1. ANRS 114 Pneumovac trial design. 

Figure 2. New endpoint definition: 1) response for each serotype: 2 fold-increase and a titer > 

1mg/ml at W8 2) whole response: number of serotypes with response. Example of a patient 

who had response to 4 different serotypes. 
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ABSTRACT 

Objective: Endpoints used for the evaluation of immunogenicity in vaccine trials are often the 

proportion of individuals with immune response or geometric means of antibody concentrations 

for each serotype. When  a vaccine includes several types of the same species, we illustrate 

how an endpoint combining  all responses may improve clinical relevance and statistical power. 

Study design and settings: The motivating example was the ANRS-114 PNEUMOVAC trial 

where the effect of two vaccine strategies against Streptococcus pneumoniae was assessed in 

adults infected by the Human Immunodeficiency Virus. The power associated with several 

endpoints was calculated in the example and in simulations. A new endpoint based on four 

ordered levels is formulated and analysed by using a proportional odds model. 

Results and conclusion: The analysis of this new endpoint led to an odds-ratio allowing 

detection of  improvement and detriment. In the simulation study, this endpoint was associated 

with the largest statistical power by increasing the amount of information used as compared to 

usual endpoints. We recommend this new endpoint formulation in the formal development of a 

new vaccination regimen, whenever applicable. 

 

Key words : Vaccine, endpoint, proportional odds model, HIV infection, statistical power, 

random effect. 

Running title  : New endpoint formulation for vaccine trials 

Word count : abstract (179), main text (3190), 31 references, three tables, two figures 
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INTRODUCTION 

 

The efficacy and safety of vaccines are assessed by several traditional parameters [1,2]: 

incidence of the disease(s) to be prevented, immune response (antibody response and 

immunocompetent cells), reactogenicity (local and systemic reactions). Phase II trials are 

usually built to test meaningful differences in the distribution of immunogenicity endpoints. 

Antibody response to the target pathogen often defines the primary immunogenicity endpoint, 

antibody concentrations being used as surrogate endpoints for a clinically relevant endpoint [1]. 

Some vaccines such as pneumococcal polysaccharide vaccines yield a response to several 

serotypes and are called multivalent vaccines. The immunogenicity evaluation of such vaccines 

must take into account the response to any serotype, all of them participating in the definition of 

the primary endpoint. In general, the comparison between groups involves the distribution of 

serotype specific antibody concentrations for each serotype using geometric means 

[3,4,5,6,7,8,9]. The P-value is then adjusted for Bonferroni or Family Discovery Rate (FDR)-

controlling methods [1,10]. Another approach consists in comparing the percentage of 

responders to a minimum number (k) of serotypes defined a priori. First, the response to each 

serotype according to a given threshold is defined and then the percentage of responders to k 

serotypes is compared between groups [4,7,11].  

Nevertheless, those endpoints are not fully satisfactory. Indeed, the former may be difficult to 

interpret, when results are discordant across serotypes. The latter, although clinically relevant, 

leads to an obvious loss of information. Furthermore, it is difficult to define the threshold for the 

number of responses to consider. When several serotypes are used to define immunogenicity 

and if they have the same relative importance, we propose to use a categorical endpoint based 

on the number of responses obtained and the mode of analysis using a proportional odds model 

[12].  

Our report aims at showing the statistical and clinical relevance of this approach; firstly through 

the motivating example and secondly based on a simulation study. 
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 METHODS 

 
Study design (Figure 1) 

The ANRS 114-Pneumovac trial was a phase II randomized trial comparing two vaccine 

strategies against pneumococcal infection among adult patients infected by the Human 

Immunodeficiency Virus (VIH) [13]. The rationale was that HIV-infected patients are more 

susceptible to infections caused by common bacterial pathogens such as S. pneumoniae and 

therefore are in need of effective preventive strategies against this infection. In this trial, 212 

patients were enrolled, 106 in each arm. The tested vaccine strategy consisted in a vaccination 

by heptavalent pneumococcal protein conjugate vaccine: Prevenar (PCV) at baseline (W0) and 

by 23-valent pneumococcal polysaccharide vaccine: Pneumo23 (PPV) at week 4 (W4). The 

currently recommended strategy was used in the control arm and consisted in a vaccination by 

PPV at W4. The 7 serotypes of PCV (4, 6B, 9V, 14, 18C, 19F, 23F) are included in PPV and are 

the most frequently encountered serotypes in Western countries. Antibody concentrations of 

each common serotype were measured at W0 and W8 for each patient. Antibody response at 

W8 was compared between the 2 arms (Figure 1). 

 

Statistical methods 

Direct comparison of antibody concentrations 

The distribution of antibody concentrations is usually not gaussian [3,4,5]. Therefore, 

antibody concentrations were log-transformed and geometric means were calculated. T-test 

was used to compare distributions and FDR-controlling method to control for multiplicity of tests 

[14]. Response to each serotype was defined as two-fold increase between W0 and W8 and 

titre >1 µg/ml measured at 8 weeks. 

Binary endpoints 

Three binary endpoints were considered: (i) response to all 7 serotypes (versus non 

response to at least one of them), (ii)  response to at least 5 serotypes among 7 (versus 

response to less than 4 serotypes) and  (iii) response to at least 3 serotypes among 7 (versus 
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response to less than 2 serotypes). The comparison of responder rates according to treatment 

group was performed with Fisher exact test.   

New endpoint formulation (figure 2) 

The new formulation is based on: i) the identification of a response to each serotype, ii) the 

number of serotypes with response. These two variables were combined into four ordered 

levels: 0 response, response to 1 or 2 serotypes, response to 3 or 4 serotypes or response to 5 

to 7 serotypes (Figure 2). This categorization was considered a priori the most relevant by 

clinicians and immunologists. All serotypes have the same importance and contribute in the 

same way in the definition of the endpoint. This endpoint is categorical but also ordered 

because the higher the category, the better the response. First, Chi-2 and trend Chi-2 were 

used for crude analysis of this endpoint. 

 

Secondly, the Proportional Odds Model (POM) [12] was used to analyse the new endpoint 

formulated. It is a generalization of a logistic model, the response variable is categorical and 

ordered (Y=1,2,…,J) instead of binary. A definition of this model is provided in appendix. 

When the only explanatory variable is the treatment group, the global odds ratio βθ e=  can be 

interpreted as the odds of being in the higher category above a given category when someone 

is vaccinated by the tested strategy compared to the control group. The comparison between 

the two groups can be performed by testing  θ = 1 using a likelihood ratio statistics or a Wald 

test. This is testing an absence of difference between the groups in the distribution of the 

patients according to each category. 

The POM assumption is that the effect of any explanatory variable is the same whatever the 

level of grouping of the response. In other words, the odds ratio between no response at all 

versus at least one response should not be different from the odds-ratio between 2 responses 

or less versus 3 responses or more, etc. 
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Either for the fixed effect POM model or the mixed effect POM model, parameters could be 

estimated using maximum likelihood methods with standard softwares. In SAS (SAS® software 

v.9.1, SAS Institute, Cary, NC, USA), we used proc LOGISTIC for the former and proc 

NLMIXED for the latter. Code for fitting random effects POM model is provided in Appendix. 

Sample size and power were calculated using Kolassa’s solution in N’Query software [18]. 

 

Simulations 

Simulations were performed in order to calculate the power associated with each endpoint 

according to different scenarii. True parameters were defined according to the distribution of 

antibody concentrations in the ANRS 114-Pneumovac trial. Antibody concentrations were 

assumed to follow a log-normal distribution. For a given patient and a given serotype, antibody 

concentrations were correlated between different time of measurements and for a given patient, 

antibody concentrations of different serotypes were also correlated. We used the following four 

steps approach to simulate such data: 

 

1) Y0 ~ MVN (M0, C) (MVN for multivariate normal) 

Y0 is the multivariate vector of the logarithm of the titre of the seven serotypes. 

M0 (7x1) and C (7x7) were estimated from a multivariate linear mixed model using real data 

presented in the results section. They represent vector of means and variance-covariance 

matrix, respectively. R(7x7) is the correlation matrix . 

2) For the reference group, the difference of antibody concentrations from baseline was 

generated according to a normal distribution: Y8  - Y0 ~ N (p1, σp) where p1 and σp were based 

on estimations from multivariate linear mixed models fitted on data from the Pneumovac trial. 

For the test group : Y8 - Y0l~ N (p2, σp) where p2 = p1 + β2 with β2 being the treatment effect 

3) Test group effect was estimated using the different methods presented above 

4) Steps 1 to 3 were repeated N=1000 times  
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Each set of simulation included 200 patients. The power is the percentage of significant tests 

out of 1000. Simulations were repeated for different values of β2 (treatment effect) including the 

one estimated using the real data set. 
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RESULTS 

 

Application with ANRS 114 Pneumovac data (table 1) 

Geometric Means (GMT) were calculated for each serotype (table 1). GMT were generally 

higher in those vaccinated with the tested strategy. These differences were statistically 

significant for 2 of them (out of 7) after correction for multiple testing. The statistical power 

associated to each serotype varied from 35% (serotype 6B) up to 99% (serotype 18C). The 

power was therefore not homogeneous among serotypes and rather low (<60%) for 4 serotypes 

among 7. We used a chi-2 and a chi-2 for trend to test the difference of response between the 

two groups, p-value was respectively 0.0373 and 0.0015.  

We then considered the binary endpoint: response to all serotypes versus non response to at 

least one of them. The proportion of patients with successful response was significantly different 

between groups according to this endpoint. The odds-Ratio (OR)=2.80 (95% Confidence 

Interval [CI] 1.22-6.43, p=0.0123), meaning that the tested vaccinal strategy was associated 

with a better immunogenicity. The statistical power of the test for the null hypothesis OR=1 was 

68%.  

With an endpoint defined as being responder for at least 5 serotypes versus less than 5, the OR 

was 2.23 (95% CI 1.28-3.89, p=0.0044) and the power was 77%. The odds to be good 

responder (more than 5 serotypes) was therefore better for the tested vaccine strategy. 

 

Finally, the global OR estimated with the proportional odds model for the previously defined 

ordered categories was 2.12 (95% CI 1.26-3.56, p=0.0047). The power was 81%. Patients in 

the tested vaccine strategy group showed a higher number of responses than the control group. 

Morever, the proportional odds assumption was satisfied (test of non homogeneity p = 0.82). In 

this trial, the categorical endpoint was the most powerful as compared to other endpoints 

considered.  
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Simulations  (table 2) 

Estimated values for simulation parameters were: 
 

 M0 = [-2.1484, -0.7459, -0.7377, 0.2910, -0.9306, -0.2530, -1.3869]  
 

1             0.6129   0.7192   0.3498   0.6342   0.6581   0.5685  
  0.6129    1            0.8517   0.4884   0.8087   0.8597   0.7902 
  0.7192    0.8517   1            0.6037   0.8032   0.7901   0.7821 

R= 0.3498    0.4884   0.6037   1            0.5022   0.4643   0.4849 
  0.6342    0.8087   0.8032   0.5022   1            0.7616   0.7841 
  0.6581    0.8597   0.7901   0.4643   0.7616   1            0.7519 
  0.5685    0.7902   0.7821   0.4849   0.7841   0.7519   1 
  

p, = [2.0728, 1.2022, 1.3784, 1.6299, 1.4080, 0.9547, 1.2380] 
 

σp = [0.3520, 0.6219, 0.5427, 0.6075, 0.6277, 0.5527, 0.8066] 
 

The statistical power for the comparison of geometric means of antibody concentrations 

between the two groups increased with the treatment effect (βt
2), as expected (table 2). 

Furthermore, the power was quite heterogeneous according to the serotype considered (eg 

from 26.0 to 42.3% when βt
2 = D). 

The statistical power was always higher with other outcomes considered (binary or ordered 

categories). Among binary outcomes, the binary endpoint using a threshold at 5 serotypes led 

to the best statistical power compared to a threshold set at 7 serotypes (13.2% vs 8.6% for βt
2 = 

B; 85.0% vs 75.9% for βt
2 = D for instance). Although the outcome based on ordered categories 

led to the best power, the differences with the binary endpoint using a threshold at 5 serotypes 

were tiny (around 3%), when the effect of the treatment (β2) was identical according to each 

serotype. With a treatment effect differing from one serotype to another (very low effect for 5 

serotypes and high effect for 2 serotypes, scenario F) the binary endpoint using a threshold at 5 

serotypes was substantially less powerful to discriminate poor responders (2 responses for 

instance) than the new endpoint formulation (54.9.6% vs 63.2%, respectively). Furthermore, a 

null effect scenario (βt
2 = 0) was tested and the type I error was slightly higher for the POM 

model (α=0.06 as compared as α=0.05 for “> 5 reponses” binary endpoint). 
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Additional simulations were performed to test the robustness of the endpoint with different 

correlation structures between serotypes (data not shown). Whatever the correlation structure 

(no correlation, slight correlation, high correlation), the power of this new endpoint formulation 

was better as compared to the other endpoints. 

 

DISCUSSION 
 
 
The new endpoint formulation based on ordered categories was more powerful than current 

endpoints used for the evaluation of a multivalent vaccine efficacy. This was even more true 

when the response was not homogeneous among all serotypes. With binary endpoints, the 

power was not satisfactory even if the test was significant in our specific study. This loss of 

power might be explained by a loss of information due to dichotomization. For an ordered 

categorical variable, a chi-2 test for trend seemed to be the most powerful test. However, the 

use of such a test does not yield a measurement of association, does not allow adjustment for 

confounders and is conditional to the existence of a linear trend of responses among 

categories.  

The main advantage of the proposed strategy is to allow evaluating the effect of the intervention 

on all serotypes estimating only one parameter (the odds ratio) and performing one test. Hence, 

it avoids any correction for multiple testing and the main result is easy to interpret. 

 

Indeed, it had practical relevance for clinicians. Firstly, all serotypes contributed in the same 

way to the construction of the endpoint. The 7 serotypes of interest were those contained in the 

PCV vaccine since they were the most frequent causes of pneumococcal infections. Therefore, 

there was no rationale to give more consideration to a serotype than another. Secondly, results 

can be summarized using a single parameter, i.e a global OR estimated by the POM model, 

and presented in a simple contingency table. Such a summary contributes to improve the 

understanding of results by practitioners and makes it easier to remind them and to disseminate 

them among those who will use the vaccines.  
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Another advantage is that the implementation is fairly easy and convenient using standard 

statistical software. It is possible to accommodate for General Linear Model and to adjust for 

fixed or random effects. Indeed, the model can be extended by including random effects to 

capture heterogeneity between centers, or between individuals with repeated measurements. In 

our study, we included testing for such random effects (SAS code in Appendix) and did not find 

significant heterogeneity among them regarding vaccine response.  

 

A major assumption for the use a POM is the homogeneity of odds ratios among the different 

categories. This assumption holded in our specific example. Table 3 shows two examples  

illustrating extreme fictive situations when the assumption holds or not. In the first example, the 

vaccine strategy is efficient for all serotypes; in that case, the assumption should be satisfied. 

This translates into quite similar partial odds ratios. In the second example, the new vaccine 

strategy generates especially very good responders and the referent strategy more likely 

generates medium responders (example 2). The first strategy could be completely efficient (for 

the whole serotypes) or not at all. The second strategy could generate responses to almost 3 or 

4 serotypes, leading to many responders in medium categories and few in the lowest and the 

strongest. According to considered cutpoints, one would differently conclude about superiority 

between vaccine strategies. If the cutpoint is “at least 1 response” versus none, referent 

strategy would be better, if the cutpoint 5-7 responses is retained, the tested strategy would be 

better. In this example, the criterion of definite judgment would not be relevant because partial 

odds-ratio would be different (p<0.0001), so proportional odds assumption would not be 

satisfied. It is especially important to check this proportionality assumption because it is not 

obvious to intuitively anticipate the homogeneity of partial odds-ratio. Indeed, a vaccine strategy 

with an effect that varies from one serotype to another may stick to partial odds homogeneity 

(see Table 2, scenarios A and F). 

When the assumption is not satisfied, other models are available such as a continuous ratio 

model or a partial odds ratio model [16,17,21]. This latter model allows odds to be partially 
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different accross subgroups of categories provided that they are homogeneous within each 

subgroup. To be able to use this model the number of categories should be large enough (at 

least 5 categories). A recent paper [15] provides SAS code for other multinomial model, which 

can be useful if the proportional odds assumption is not satisfied and more sophisticated model 

is needed. Another paper [19] suggests solutions to analyse ordinal endpoint when the 

proportional odds assumption does not hold. However those alternative models estimate 

additional parameters which leads to a decrease of statistical power to detect an effect.  

Another limitation (also shared with binary endpoints) is that the threshold for antibody 

responses should be defined a priori and according to a relevant biological and clinical 

rationale. In the litterature, definition of antibody response is varying according to the increase 

considered (e.g. 2- or 3-fold increase of antibody concentrations) [5,23], to a threshold of the 

titre (e.g. titre greater than 1 µg/ml) [3] or the combination of both: 2-fold increase and titre>1 

µg/ml at W8 [11]. This threshold seemed to be the most relevant because it took into account 

not only the increase of titre between W0 and W8 but also a minimal threshold to reach 

response level. Indeed, a 2-fold increase from 0.01 to 0.02 µg/ml, could not be considered as a 

response. In the same way, a patient could present a titre > 1 µg/ml at W8 but also at W0 and 

be considered as a responder even if the titre was stable. That is why the endpoint definition 

chosen in the present study seemed to be appropriate. 

In some studies [5,6] an alternative approach was used to analyze efficacy of multivalent 

vaccine trial. Geometric means of different serotypes were compared using mixed MANOVA 

(Multivariate analysis of variance). This type of model assumes independence of errors across 

observations. A correlation between dependant variables is modeled through a multivariate 

normal distribution. For the comparison of group effect, the null hypothesis is that global effect is 

null for all serotypes. The alternative hypothesis is that there is at least one serotype for which 

the group effect is significant. Thus, this model is not discriminant enough and does not really 

answer our initial question of whether the global immunologic efficacy is better in the test group 

compared to the reference group. Moreover, the fit of those distributions might need complex 
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assumptions such as mixture of lognormal and joint distributions in the context of antibody 

measurement with left-censuring issues due to undetectable values [3,20].  

 

Composite endpoints are frequently used as primary endpoint in randomized trials because it 

may increase the statistical power and thus the efficiency of the trial and may facilitate 

interpretation [22]. However, the main rationale for using binomial composite endpoint would be 

the ability to include a range of potentially important outcomes in the composite like in ANRS 

114 PNEUMOVAC trial. The use of categorization in vaccine area is often necessary, yet, the 

construction of such a categorical endpoint is not always suitable, depending on the vaccine 

strategy, vaccine composition, importance of every serotype. The proposed formulation might 

also be useful in other situations than vaccine evaluation, as far as a categorization of endpoint 

seems to be relevant. 

 

CONCLUSION 

Guidelines for the formulaton and analysis of primary endpoint in multivalent vaccine trials. We 

propose a formulation based on a combination of the responses to serotypes and the number of 

response achieved that is able to achieve a higher statistical power as compared to commonly 

used endpoints such as means of antibody concentrations and has better clinical relevance. 

This formulation could also be used in other contexts, whenever the outcome can be divided in 

few ordered categories formed by units of the same relative importance. 
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Tables/Figures legends 

 

Table 1. Results of several endpoint formulations in the ANRS 114 Pneumovac trial, 

measurements of association, P-value and associated statistical power. 

Table 2. Probability of rejecting the null hypothesis at 0.05 level according to possible endpoints 

with simulated data. N=200 subjects, 1000 simulations 

Table 3. Two examples of responses distributions : example 1 where proportional odds 

assumption holds and example 2 where the assumption does not hold 

 
Figure 1. ANRS 114 Pneumovac trial design. 

Figure 2. New endpoint definition: 1) response for each serotype: 2 fold-increase and a titer > 

1mg/ml at W8 2) whole response: number of serotypes with response. Example of a patient 

who had response to 4 different serotypes. 

 



Table 1: Results of several endpoint formulations in the ANRS 114 Pneumovac trial, measurements 
of association, P-value and associated statistical power.

Vaccine StrategyEndpoint
Referent

n=103
Test

n=104

Measurement 
of 

association

p-value Statistical
Power

(%)
Serotypes of PCV Geometric mean antibody 

titers (g/ml)
    4 1.0 1.5 = 0.5 0.052* 55
    6B 1.6 2.2 = 0.6 0.112* 35
    9V 1.9 2.7 = 0.8 0.052* 57
    14 5.9 9.2 = 3.3 0.052* 51
    18C 1.6 3.1 = 1.5 0.002* 99
    19F 2.0 2.9 = 0.9 0.052* 86
    23F 0.9 1.9 = 1.0 0.005* 88

Chi-2  0.0373

Trend Chi-2  0.0015

Response to all serotypes                    
n(%)

    9   (9)   22 (21) OR=2.80 0.0123 68

> 5 serotypes                                          
n(%)

   41 (40) 62 (60) OR=2.23 0.0044 77

> 3 serotypes                                          
n(%)

  69 (66) 82 (79) OR=1.84 0.0549 48

Responders in ordered 
categories      n(%)
    0 serotype   10 (10)     5   (5) 81
    1-2   24 (23)   17 (16)
    3-4   28 (27)   20 (19)
    5-7   41 (40)   62 (60) OR = 2.12 0.0047

* correction for multiple testing (FDR), significant level is 0.05. Abbreviations: =difference of geometric mean, 
OR=Odds-Ratio
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Table 2: Probability of rejecting the null hypothesis at 0.05 level according to possible endpoints with simulated 
data. N=200 subjects, 1000 simulations

Power (%) 2= t
2= B t

2= C t
2= D t

2= E t
2= F t

2= G

Serotypes of 
PCV 
    4 63   1 17 39 60   5 1
    6B 27   2 17 33 54   5 1
    9V 42   2 22 42 65   4 1
    14 12   2 16 29 48 39 1
    18C 89   2 20 42 64 53 1
    19F 42   3 19 40 61 56 1
    23F 85   2 12 26 42   3 1

Chi-2 94   7 55 82 97 40 4
Trend Chi-2 99 15 84 96 99 74 5

Response to all 
serotypes  

91   9 53 76 91 32 3

> 5 serotypes                           95 13 67 85 96 55 5
> 3 serotypes                           64   7 35 52 69 32 4

Responders in 
ordered categories       

96 14 72 89 98 63 6

 = [0.55, 0.34, 0.38, 0.20, 0.70, 0.38, 0.86] estimations from ANRS 114 PNEUMOVAC trial data
B = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], 
C = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
D = [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]
E = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
F = [0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.1]
G = [0, 0, 0, 0, 0, 0, 0]
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Table 3: Two examples of responses distributions : example 1 where proportional odds assumption 
holds and example 2 where the assumption does not hold

Categories of responses

0 1-2 3-4 5-7

Example 1

Test : PCV+PPV (N=100) 5 15 20 60

Referent : PPV   (N=100) 10 25 25 40

Partial odds-ratio OR1 = 2,11 OR2 = 2,15 OR3 = 2,25

p-value for proportional 
odds assumption

p = 0,9863

Global odds ratio IC95% OR = 2,21 [1,30-3,76]

Example 2

Test : PCV+PPV (N=100) 40 10 10 40

Referent : PPV   (N=100) 10 50 30 10

Partial odds-ratio OR1 = 0,17 OR2 = 1,50 OR3 = 6,00

p-value for proportional 
odds assumption

p < 0,0001 

Global odds ratio (p-value) OR = 1,07 [0,65 - 1,76]
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APPENDIX : Definition of Proportional Odds Model

Proportional Odds Model (POM) [Error! Reference source not found.] was used to analyse 

the new endpoint formulated. It is also called ordinal logistic model (Scott, 1997), cumulative 

logit model (Lee 1992, Ananth & Kleinbaum 1997), cumulative odds model (Armstrong & Sloan 

1989, Greenland 1994), or McCullagh’s grouped continuous model (Greenwood & Farewell, 

1988 [30]. It is a generalization of a logistic model, the response variable is categorical and 

ordered (Y=1,2,…,J) instead of binary. The model can be written as follows: 

  ij
i

i
i X

jYP

jYP
jYP  












)(

)(
log)(logit for i=1,..,n and j=1,…,J-1

where p[(Yi > j)] is the probability of a subject i = 1,…n to present a response in a category 

greater than j, j is the log-odds of being above category j when the vector of covariate Xi is 

equal to 0,  the q-vector of parameters to be estimated and Xi a (q x n) matrix of covariates 

including the treatment group ( 01 iX for subject i in the control group and 1 for subject i in the 

tested strategy). When the only explanatory variable is the treatment group, the global odds 

ratio   e  can be interpreted as the odds of being in the higher category above a given 

category when someone is vaccinated by the tested strategy compared to the control group. 

The comparison between the two groups can be performed by testing  = 1 using a likelihood 

ratio statistics or a Wald test. This is testing an absence of difference between the groups in the 

distribution of the patients according to each category.

With our endpoint, three logits can be calculated, one for each of the following categories: >1 vs 

0 response, >3 vs <3 responses, >5 vs <5 responses. The POM assumption is that the 

parameter  does not vary according to the categories, i.e. the model assumes that effects of 

covariates are the same for each cutpoint. This is also called ‘equal slopes assumptions’ [30]. 

Hence, the odds is proportional to the difference between the categories of X and  is the
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constant of proportionality. Because  is the same whatever j, the underlying hypothesis is that 

the effect of any explanatory variable is the same whatever the level of grouping of the 

response. In other words, the POM is invariant under collapsibility.

An extension of the model including random effects to take into account correlation between 

subunit (in case of a clinical trial performed in k=1,… K centres, for instance) was written as 

follows: 

  kikjik uXjYP  )(logit for k=1,…,K, i=1,..,nk and j=1,…,J-1

where  2,0~ uk Nu   is a random effect reflecting a centre-specific correction to the baseline risk 

[15].
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APPENDIX : SAS® code for Proportional Odds Model with random effect

   proc nlmixed data=dataset corr ecorr optcheck tech=congra;

     bounds b02 b03 s > 0; 

      parms b01=0.74 b02=0.5 b03=0.5 b1=0 s=0.01;

      eta1 = b01 - b1*group + u ;

      eta2 = (b01-b02) - b1*group + u;

eta3 = (b01-b02-b03) - b1*group + u;

/*likelihood computation*/

      p1=1-(exp(eta1)/(1+exp(eta1)));

  p2=1-(exp(eta2)/(1+exp(eta2)))-p1;

  p3=1-(exp(eta3)/(1+exp(eta3)))-p1-p2;

  p4=1-p1-p2-p3;

  L=(p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);

  ll=log(L);

  random u ~ normal(0,s) subject=center;  

      model cat ~ general(ll);

   run;
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