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Abstract 

Background and Objectives. Since pulmonary circulation is the primary vascular 

target of inhaled particulate matter, and NO a major vasculoprotective agent, this 

study investigates the effect of various particles on the NO-cGMP pathway in 

pulmonary arteries. 

Methods. Intrapulmonary arteries and/or endothelial cells, either exposed in vitro to 

particles, or removed from particle-instilled animals, were used for assessment of 

vasomotricity, cGMP and reactive oxygen species levels, and cytokine/chemokine 

release.  

Results. Endothelial NO-dependent relaxation and cGMP accumulation induced by 

acetylcholine were both decreased after 24 h exposure of rat intrapulmonary arteries 

to SRM1648 (urban particulate matter). Relaxation to NO donors was also decreased 

by SRM1648, while responsiveness to cGMP analogue remained unaffected. Unlike 

SRM1648, ultrafine carbon black, ultrafine or fine TiO2 manufactured particles did not 

impair NO-mediated relaxation. SRM1648-induced decrease in relaxation to 

acetylcholine was prevented by dexamethasone (an anti-inflammatory agent), but not 

by antioxidants. Accordingly, SRM1648 increased the release of pro-inflammatory 

mediators (tumor necrosis factor-α, interleukin-8) from intrapulmonary arteries or 

pulmonary artery endothelial cells, but did not elevate reactive oxygen species levels 

within intrapulmonary arteries. Decreased relaxation to acetylcholine was also 

evidenced in intrapulmonary arteries removed from rats intratracheally instilled with 

SRM1648, but not with fine TiO2.  

Conclusion. In contrast to manufactured particles (including nanoparticles), urban 

particulate matter impairs NO-, but not cGMP-responsiveness in intrapulmonary 

arteries. This is attributed to oxidative stress-independent inflammatory response, 
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resulting in decreased guanylyl-cyclase activation by NO. Such impairment of the NO 

pathway may contribute to urban particulate matter-induced cardiovascular 

dysfunction. 
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Introduction 

 

Epidemiological studies demonstrate a correlation between exposure to 

particulate matter (PM) pollution and cardiovascular morbidity (Hoek et al. 2001) and 

mortality (Pope et al. 2002). According to emission sources, PM is heterogeneous in 

size (aerodynamic diameter < 0.1 µm for ultrafine PM0.1; < 2.5 µm for fine PM2.5;  < 10 

µm for coarse PM10) and composition (with various adsorbed constituents, such as 

transition metals, inorganic and organic compounds). 

 

Among adverse effects, exposure to PM may induce pulmonary and systemic 

inflammation and dysfunction (Salvi et al. 1999). Two major hypotheses, which are 

not exclusive, have been proposed to account for the effects of inhaled particles that 

can deeply penetrate into the lungs. On one hand, once deposited into the lung, 

particles initiate a local inflammation, which triggers a secondary systemic 

inflammation that could exacerbate cardiovascular dysfunctions (Seaton et al. 1995). 

On other hand, even though controversial, the passage of the finest particles, 

especially nanoparticles, into the blood after inhalation has been documented 

(Nemmar et al. 2001, 2002; Wiebert et al. 2006), suggesting direct effects of 

translocated particles, or of some of their constituents, on remote target tissues. 

 

Constriction of systemic or pulmonary arteries in response to PM is generally 

observed in in vitro and in vivo animal or human studies (Batalha et al. 2002; Brook 

et al. 2002; Huang et al. 2002; Li et al. 2005). Exposure to PM also induces a 

decrease in endothelium-dependent relaxation in systemic arteries (Ikeda et al. 1995; 

Nurkiewicz et al. 2004, 2006). Nitric oxide (NO) is a major endothelium-derived 
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vasculoprotective factor, which among other effects (Gewaltig and Kojda 2002), 

decreases vascular tone through heme-dependent stimulation of soluble guanylyl-

cyclase, and subsequent activation of cGMP-dependent protein kinases 

(Schlossmann et al. 2003). A decrease in endothelial NO production and/or 

bioactivity is a key event in the pathogenesis of many cardiovascular disorders (Li 

and Forstermann 2000). Inflammation and oxidative stress, two major effects 

accounting for some adverse effects of PM (Bai et al. 2007; Oberdörster et al. 2005), 

play a central role in endothelial dysfunction in many pathological blood vessels 

(Feletou and Vanhoutte 2006), including pulmonary arteries (Fresquet et al. 2006). 

Although impairment of NO-dependent pathway may contribute to deleterious effects 

of PM on the cardiovascular system, this issue has never been specifically 

addressed in pulmonary circulation, which is a privileged target of inhaled particles. 

 

Therefore, this study investigates the influence of PM on the NO-cGMP relaxant 

pathway in intrapulmonary arteries. PM under investigation were urban PM 

(SRM1648) and manufactured carbon black and TiO2 nanoparticles, which unlike 

SRM1648 are relatively free of adsorbed constituents. 

 

Materials and Methods 

 

Chemicals 

 

Drugs and reagents were obtained from Sigma Chemical Co. (St Quentin-

Fallavier, France), except diethylammonium(Z)-1-(N,N-diethylamino)diazen-1-ium-

1,2-diolate (DEA-NONOate) and 3-(5’-hydroxymethyl-2’-furyl)-1-benzylindazole (YC-
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1), which were supplied from Alexis biochemicals (San-Diego, USA), 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) from Tocris Bioscience (Bristol, UK), 

Prostaglandin F2α (PGF2α, Dinolytic®), ketamine and xylazine from Centravet 

(Libourne, France), and dihydroethidium (DHE) from Molecular Probes (Cergy-

Pontoise, France). 

 

Particulate Matter 

 

Standard Reference Materials 1648 (SRM1648) was purchased from NIST 

(Gaithersburg, USA). Physical and chemical properties of SRM1648 have been 

previously described (Becker et al. 1996). They have a mean diameter of 0.4 µm, 

consist of greater than 63% inorganic carbon, and 4-7% organic carbon. Major 

constituent elements (> 1% mass fraction) are Silicon, Sulphur, Aluminum, Iron, 

Potassium and Sodium. 

 

Other particles used include ultrafine carbon black (ufcb) FW2 and P60 (from 

Degussa, Frankfurt, Germany), with average primary particle size of 13 and 21 nm, 

respectively. Ultrafine TiO2 (ufTiO2; average primary particle size: 15 nm) or fine TiO2 

(fTiO2; mean diameter of 0.14 µm, determined by transmission electron microscopy) 

were obtained from Sigma Chemical Co. Prior experiments, particles (10 mg/ml) 

were freshly suspended in distilled deionized water. The concentrations of PM used 

for in vitro or in vivo experiments were chosen based on literature data (Nurkiewicz et 

al. 2004; Li et al. 2005, 2006; Mutlu et al. 2007). 
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Animals, Exposition to Particles and Tissue Preparation 

 

Male Wistar rats (12-14 weeks old; Elevage Janvier, Le Genest Saint Isle, 

France) were treated humanely and with regard for the alleviation of suffering, 

according to international guidelines (NIH Publication No. 85-23, revised 1996). 

Intrapulmonary arteries were dissected as previously described (Leblais et al. 2004). 

For in vitro experiments, segments were incubated in DMEM, in absence or presence 

of particles for 24 h at 37°C in a humidified atmosphere (95% air / 5% CO2). In some 

experiments, dexamethasone (10 µM), tempol (1 mM) or ascorbate (200 µM) were 

added to DMEM for the 24 h incubation period. Some rats were anesthetised by 

intraperitoneal injection of ketamine (50 mg/kg) and xylazine (4 mg/kg), and 

intratracheally instilled with 5 mg SRM1648 or fTiO2 in 500 µl of saline (NaCl 0.9 %) 

or saline alone. After a recovery period (from 6 to 72 h), rats were euthanized and 

lungs were removed. 

 

Measurements of Isometric Tension 

 

Arterial segments were mounted in a myograph as previously described (Leblais 

et al. 2004). In some case, endothelium was removed before mounting, by perfusion 

with the non-denaturating zwitterionic detergent, CHAPS (Pourageaud et al. 2005). 

Viability of arteries was evaluated using physiological salt solution (PSS) containing 

80 mM KCl (equimolar substitution with NaCl). Preparations developing a wall 

tension below 1 mN/mm were discarded. Endothelium removal or loss of NO-

synthase functionality was evidenced when, after treatment with CHAPS or with the 

NO-synthase inhibitor Nω-nitro-L-arginine methylester (L-NAME, 300 µM), the 
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reference endothelium-dependent relaxant agent acetylcholine (30 µM) elicited less 

than 5% relaxation after submaximal pre-contraction with PGF2α (10 µM). 

 

Intrapulmonary arteries were exposed to KCl (5 to 100 mM) or PGF2α (30 nM to 

30 µM). After washout, they were submaximally contracted with PGF2α in order to 

achieve approximately 50% of the tension obtained with 80 mM KCl. Once stable 

contraction was obtained, cumulative concentrations of acetylcholine, sodium 

nitroprusside (SNP), DEA-NONOate (DEA-NO), 8-Br-cyclic-GMP, YC-1, 

isoproterenol, forskolin or levcromakalim were added. The targets of drugs activating 

the NO-cGMP pathway are illustrated in Figure 1A. YC-1 was used to activate 

soluble guanylyl-cyclase by a NO-independent manner. However, this compound 

also increases the sensitivity of the enzyme to NO (Friebe and Koesling 2003). To 

minimize the influence of the latter mechanism, effect of YC-1 was studied in 

endothelium-denuded arteries treated with ODQ, an irreversible inhibitor of NO-

dependent activation of soluble guanylyl-cyclase. When isoproterenol was studied, 

arteries were pre-treated by phenoxybenzamine (1 µM) to irreversibly inactivate α-

adrenoreceptor (Pourageaud et al. 2005). In some experiments, tempol (1 mM) was 

added to organ bath before pre-contraction with PGF2α.  

 

Detection of Reactive Oxygen Species 

 

Sections of intrapulmonary arteries were prepared and exposed to the fluorescent 

dye DHE (2.5 µM) as previously described (Fresquet et al. 2006). Slides were examined 

under a laser scanning confocal microscope equipped with a krypton/argon laser 

(excitation 488 nm, emission 610 nm). Final images were obtained after stacking. 
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Histologic Studies 

 

Lungs from SRM1648-instilled rats were fixed in phosphate-buffered (pH 7.4) 

containing 4% formaldehyde. Paraffin-embedded histologic sections (3 µm thick) 

were stained with hematoxylin, eosin and saffron (HES), and examinated under 

optical light microscope. 

 

Pulmonary endothelial cells  

 

Intrapulmonary arteries from bovine lung (obtained from local slaughterhouse) 

were opened longitudinally. Their intimal surface was digested with collagenase and 

gently scraped to remove endothelial cells (adapted from Zhao et al. 2005). 

Endothelial cells were separated by immunomagnetic beads (Dynabeads®) coated 

with CD31 antibody, and purity was assessed by CD31 and endothelial NO-synthase 

immunostainings. Cells were seeded at 105 cells/ml in MCDB 31 medium, and 

cultured at 37°C in 5% CO2. 

 

Cytokines, chemokines and cGMP determinations 

 

Incubation medium from intrapulmonary arteries or subconfluent endothelial 

cells (used at their second passage) exposed or not to SRM1648 (200 µg/ml for 24 h) 

was stored at -20°C for subsequent determination of tumor necrosis factor α 

(TNFα), interleukin-8 (IL-8) or macrophage inflammatory protein-2 (MIP2, the 

functional analogue of IL-8) using ELISA kits (R&D Systems). Arteries were then 

transferred to PSS (at 37°C, under bubbling with carbogen) containing acetylcholine 
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(10 µM) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 100 µM). 

After 15 min, arteries were frozen, stored in liquid nitrogen and homogenized in ice-

cold trichloroacetic acid (6%). Content of cGMP was determined using ELISA kit 

(Cayman Chemical Company). TNFα, MIP2 and cGMP levels were normalized to 

tissue protein content, the latter being determined by the method of Lowry.  

 

Data Expression and Statistical Analysis 

 

Relaxant responses were expressed as the percentages of the initial tone 

induced by PGF2α. Data are given as means ± S.E.M. from n experiments (n: number 

of rats). Concentration-response curves were compared using two-way analysis of 

variance (ANOVA). Other statistical comparisons were performed with one-way 

ANOVA. Differences were considered statistically significant when P < 0.05. 

 

Results 

 

SRM1648 selectively impairs NO responsiveness 

 

After 24 h pre-incubation without particles, maximal relaxation to 30 µM 

acetylcholine was 50.02 ± 3.03 % (n = 25). Such relaxation was slightly lower that the 

one obtained in freshly isolated tissue (in which maximum reaches about 75 %), as 

already observed in other arterial models (Jiménez-Altayó et al. 2006). Nevertheless, 

effect of acetylcholine was almost totally abolished by the NO-synthase inhibitor L-

NAME (5.0 ± 3.6 % relaxation with 30 µM acetylcholine + 300 µM L-NAME, n = 4) or 

after endothelium removal with CHAPS (1.0 ± 1.7 % relaxation with 30 µM 
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acetylcholine, n = 4). Neither contractile nor endothelium-independent relaxant 

maximal capacity of arteries was altered by endothelium removal, since effects of 

KCl (80 mM) and of the NO donor SNP (10 µM) were not significantly different 

between CHAPS-treated and -untreated arteries (not shown).  

 

Pre-incubation of rat intrapulmonary arteries for 24 h with SRM1648 did not 

modify contraction to KCl (5 to 100 mM) or PGF2α (30 nM to 30 µM) (not shown). A 

significant decrease in acetylcholine-induced relaxation was observed after 24 h 

exposure of intrapulmonary arteries to SRM1648 at concentrations ≥ 100 µg/ml 

(Figure 1B & Figure 2A). Acetylcholine-induced cGMP accumulation was also 

diminished after exposure of intrapulmonary arteries to 200 µg/ml SRM1648 (Figure 

2B). Relaxation induced by either SNP or DEA-NO, two compounds releasing NO by 

distinct mechanisms (a phenomenon which might explain differences in their 

respective maximal effect), was diminished after exposure to 200 µg/ml SRM1648 

(Figure 2A), while relaxation to 8-Br-cyclic-GMP (Figure 2A), a cGMP permeant 

analogue which directly stimulates cGMP-dependent protein kinase, or to YC-1 

(Figure 2A), an activator of soluble guanylyl-cyclase, remained unaffected. 

 

Other vasorelaxing agents were studied for comparison. As shown in Figure 3, 

SRM1648 (200 µg/ml) did not modify relaxation to isoproterenol (which induces 

relaxation of rat intrapulmonary artery through activation of β2-adrenergic receptor; 

Pourageaud et al. 2005), forskolin (adenylyl-cyclase activator) or levcromakalim (KATP 

activator). 
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Nanoparticles ufcb or ufTiO2, as well as fTiO2 do not impair NO responsiveness 

 

For comparison with SRM1648, the effect of ufcb, ufTiO2 or fTiO2 was studied. 

As shown in Figure 4, exposure of intrapulmonary arteries for 24 h to 200 µg/ml of 

these particles did not significantly impair acetylcholine-induced relaxation. 

 

SRM1648 impairs NO responsiveness through oxidative stress-independent 

inflammatory response 

 

The steroidal anti-inflammatory agent dexamethasone (10 µM, added 

concomitantly to SRM1648) fully prevented SRM1648-induced impairment of 

relaxation to acetylcholine in intrapulmonary arteries, without modifying its relaxant 

effect in untreated arteries (Figure 5A). Exposure of intrapulmonary arteries to 

SRM1648 (200 µg/ml) resulted in an increased release of the pro-inflammatory 

mediators TNFα  and MIP-2 (Figure 5B), the functional analogue of human IL-8. An 

increased level of IL-8 was also observed in incubation medium of pulmonary artery 

endothelial cells which were exposed to SRM1648 (200 µg/ml for 24 h) (Figure 5C). 

 

When added concomitantly to SRM1648, the antioxidants tempol (1 mM) or 

ascorbate (200 µM) failed to modify effect of acetylcholine (Figure 6A). Similarly, 

tempol did not modify the effect of acetylcholine, when it was added to SRM1648-

pretreated arteries, 15 min before pre-contraction with PGF2α (Figure 6A). Compared 

to untreated ones, SRM1648-exposed intrapulmonary arteries did not exhibit 

elevated levels of reactive oxygen species, as determined using the fluorescent 

probe DHE (Figure 6B). 
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In vivo exposure to SRM1648, but not fTiO2, impairs NO responsiveness 

 

The presence of particles (black arrow in Figure 7A) was clearly evidenced in 

lung parenchyma removed 12 or 72 h after intratracheal instillation of SRM1648. In 

arteries isolated from SRM1648-instilled animals (12 h before), relaxation to 

acetylcholine was significantly decreased, when compared to responses obtained in 

control rats (Figure 7B). No impairment of acetylcholine-induced relaxation was 

evidenced after shorter (6 h) or longer (24 or 72 h) recovery delay after intratracheal 

instillation of SRM1648 (not shown). By contrast to SRM1648, intratracheal 

instillation of fTiO2 (5 mg, 12 h before), did not modify acetylcholine-induced 

relaxation (Figure 7B). 

 

Discussion 

 

This study shows, for the first time to the best of our knowledge, that urban PM 

impairs NO-dependent relaxation in small intrapulmonary artery, not only after in vitro 

exposure, but also after in vivo intratracheal instillation. Manufactured PM however, 

including nanoparticles, did not exhibit such effect.  

 

Relaxation to acetylcholine and NO donors, but not to 8-Br-cGMP, were 

decreased after exposure of intrapulmonary artery to SRM1648 (200 µg/ml for 24 h). 

In addition to relaxation, acetylcholine-induced cGMP accumulation was also 

decreased in such conditions. This demonstrates that SRM1648 induced a decrease 

in responsiveness of smooth muscle to NO, rather than a decrease in endothelial NO 

production and/or bioactivity, and that SRM1648 impairs the NO signalling pathway 
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upstream to activation of cGMP-dependent protein kinases. YC-1-induced relaxation 

was not affected by SRM1648, supporting the view that impairment of the NO 

pathway is likely due to a decrease in guanylyl-cyclase activation by NO. This argues 

against a role of decreased expression of guanylyl-cyclase in SRM1648-induced 

impairment of NO-dependent relaxation. In addition, this study demonstrates that 

impairment is selective for the NO pathway, since other relaxant mechanisms 

(resulting from KATP, adenylyl-cyclase or β2-adrenergic receptors activation) remained 

unaffected by SRM1648. 

 

Particular core and/or adsorbed constituents may be responsible for PM-

induced impairment of NO-dependent relaxation. To address this question, effects of 

SRM1648 were compared to those of other particles, with different core composition 

and mean diameter, and which are relatively free of adsorbed constituents. It is 

shown that carbon black or TiO2 particles did not modify acetylcholine-induced 

relaxation in rat intrapulmonary arteries. Even though comparison between particle 

types is difficult, results show that, among particles of similar size range (PM2.5), 

SRM1648, but not fTiO2, decreased acetylcholine-induced relaxation. Thus, 

adsorbed components of SRM1648, rather than particulate core, are likely 

responsible for impaired NO-dependent relaxation. Water-soluble fraction of inhaled 

PM is more biologically relevant, because its components could reach more easily 

pulmonary vessels than whole particles or insoluble fraction (Li et al. 2005). 

 

Several in vivo studies have demonstrated a decrease in endothelium-

dependent relaxation of systemic or pulmonary arteries after exposure to PM (Brook 

et al. 2002; Nurkiewicz et al. 2004, 2006; Törnqvist et al. 2007). This study 
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demonstrates that, like in vitro, in vivo exposure to SRM1648 also resulted in a 

decrease of the NO-dependent relaxation to acetylcholine in intrapulmonary arteries. 

Moreover, as in in vitro studies, fTiO2 failed to alter relaxation to acetylcholine when 

instilled to animals. This not only argues against a non-specific response resulting 

from intratracheal instillation of particles, but also further supports the idea that 

impairment of NO pathway is rather due to adsorbed components of SRM1648, than 

to particular core. It should be emphasized that SRM1648 and fTiO2 possess similar 

size range. Thus, it seems unlikely that their differential in vivo effects can be 

attributed to size-related differential penetration in the bronchiolar space. 

Interestingly, SRM1648-induced decrease in relaxation to acetylcholine was 

observed 12 h after instillation, but not after longer delay. Elucidation of the 

mechanisms underlying this transient aspect of the impairment of acetylcholine-

induced relaxation deserves further investigations. Release of anti-inflammatory 

mediators (like TGF-β or IL-10) may recover or counteract SRM1648-induced 

alteration of NO-dependent relaxation. Since presence of PM was clearly evidenced 

in lung parenchyma removed 72 h after SRM1648 instillation, it is unlikely that 

recovery is related to elimination of particle deposit from lung parenchyma.  

 

Oxidative stress is a major contributor of the adverse effects of PM (Baeza and 

Marano 2007; Oberdörster et al. 2005). In this study, SRM1648-induced alteration of 

NO-dependent relaxation was not modified in the presence of the antioxidant tempol. 

Consistently, intrapulmonary artery exposed to SRM1648 did not display an increase 

in reactive oxygen species level. This argues against a role of oxidative stress in the 

SRM1648-induced impairment of NO-mediated relaxation. This differs from data 

showing that superoxide dismutase can prevent particle-induced decrease in 
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relaxation to acetylcholine in rat aorta (Ikeda et al. 1995) and that SRM1648 

increases production of reactive oxygen species in pulmonary endothelial cells (Li et 

al. 2006). Oxidative stress appears as an acute response (within 5-10 min) of 

endothelial cells (including those from pulmonary artery, Li et al. 2006) or arteries 

exposed to PM. Even though oxidative stress might be an early event in 

intrapulmonary arteries exposed to SRM1648, it does not seem to play a role in 

impairment of NO pathway, since addition of antioxidants concomitantly with 

SRM1648 failed to prevent impairment of NO-dependent relaxation. Oxidative stress 

is recognized as a key process underlying endothelial dysfunction in pulmonary 

arteries (Fresquet et al. 2006). As discussed above, SRM1648 rather decreased 

activation of guanylyl-cyclase by NO within smooth muscle, a mechanism which may 

be independent of oxidative stress.  

 
 

Release of inflammatory mediators is associated with PM-induced impairment of 

endothelium-dependent vasodilatation in systemic arteries (Nurkiewicz et al. 2006; 

Törnqvist et al. 2007). In the present study, the anti-inflammatory drug 

dexamethasone prevented SRM1648-induced impairment of NO-dependent 

relaxation in intrapulmonary arteries. Moreover, SRM1648 increased the release of 

pro-inflammatory mediators (TNFα, IL-8) from intrapulmonary arteries or endothelial 

cells. Pro-inflammatory mediators like TNFα are key players in alterations of NO 

signalling pathway in the vasculature (Huang and Vita 2006), including in pulmonary 

arteries (Greenberg et al. 1993). They may induce a decrease in NO, but not cGMP 

responsiveness in systemic resistance arteries (Jiménez-Altayó et al. 2006). It is 

shown here that SRM1648 also increased IL-8 release. This chemokine is a key 
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mediator in inflammatory pulmonary diseases, not only by attracting neutrophils, but 

also by acting on vascular cells (Mukaida 2003).  

 

In conclusion, this study shows that urban but not manufactured PM (including 

nanoparticles) impairs NO-mediated relaxation, without affecting cGMP-

responsiveness in rat intrapulmonary arteries. This is attributed to oxidative stress-

independent inflammatory response, resulting in decreased guanylyl-cyclase 

activation by NO. Such impairment of the NO pathway in pulmonary circulation may 

favour vasoconstriction, remodelling and thrombosis, all contributing to enhance 

arterial resistances, which in turn, may have negative impact on cardiac function.  
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Figure legends 

 

Figure 1: 

A. Schematic representation of the NO-cGMP relaxant pathway. The targets of the 

different drugs used are indicated. 

B. Wall tension recordings of the effect of acetylcholine in PGF2α-precontracted rat 

intrapulmonary arteries incubated for 24 h in the absence (black trace) or in the 

presence (grey trace) of SRM1648 (200 µg/ml). Oscillations during contraction are 

not a characteristic feature of SRM1648-exposed arteries, since they could also be 

observed in unexposed arteries.  

 

Figure 2: 

A. Relaxant effect of acetylcholine, sodium nitroprusside, DEA-NONOate, 8-Br-

cGMP or YC-1 in rat intrapulmonary arteries, which were incubated for 24 h in the 

absence (Control) or in the presence of SRM1648 (at the indicated concentrations). 

Mean ± S.E.M. from n = 4 to 10 experiments. Error bars represent S.E.M. *, P < 0.05; 

**, P < 0.01; ns, not significant. 

B. Levels of cGMP in rat intrapulmonary arteries incubated in the absence or in the 

presence of SRM1648 (200 µg/ml for 24 h) and subsequently exposed (black bars) 

or not (white bars) to acetylcholine (10 µM). Mean ± S.E.M. from n = 6 experiments. 

Error bars represent S.E.M. *, P < 0.05. 

 

Figure 3: 

Relaxant effect of isoproterenol, forskolin or levcromakalim in rat intrapulmonary 

arteries, which were incubated for 24 h in the absence (Control) or in the presence of 
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200 µg/ml SRM1648. Mean ± S.E.M. from n = 4 to 5 experiments. Error bars 

represent S.E.M. ns, not significant. 

 

Figure 4: 

Relaxant effect of acetylcholine in rat intrapulmonary arteries, which were incubated 

for 24 h in the absence (Control) or in the presence of 200 µg/ml of ultrafine carbon 

black particles P60 (ufcb P60), ultrafine carbon black particles FW2 (ufcb FW2), fine 

TiO2 (fTiO2), or ultrafine TiO2 (ufTiO2). Mean ± S.E.M. from n = 4 to 5 experiments. 

Error bars represent S.E.M. ns, not significant. 

 

Figure 5: 

A. Relaxant effect of acetylcholine in rat intrapulmonary arteries, which were 

incubated for 24 h in the absence (Control) or in the presence of dexamethasone (10 

µM), SRM1648 (200 µg/ml) or SRM1648 (200 µg/ml) + dexamethasone (10 µM). 

Mean ± S.E.M. from n = 4 to 5 experiments. Error bars represent S.E.M. *, P < 0.05; 

ns, not significant.  

B. TNFα and MIP-2 release from rat intrapulmonary arteries which were incubated 

for 24 h in the absence (white bars) or in the presence (black bars) of SRM1648 (200 

µg/ml). Mean ± S.E.M. from n = 9 to 10 experiments. Error bars represent S.E.M. *, P 

< 0.05; **, P < 0.01. 

C. IL-8 release from bovine intrapulmonary artery endothelial cells which were 

incubated for 24 h in the absence (white bars) or in the presence (black bars) of 

SRM1648 (200 µg/ml). Mean ± S.E.M. from n = 3 to 4 experiments. Error bars 

represent S.E.M. **, P < 0.01. 
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Figure 6: 

A. Relaxant effect of acetylcholine in rat intrapulmonary arteries. (a): arteries were 

incubated for 24 h in the absence (Control) or in the presence of tempol (1 mM), 

SRM1648 (200 µg/ml) or SRM1648 (200 µg/ml) + tempol (1 mM). (b): arteries were 

incubated for 24 h in the absence (Control) or in the presence of ascorbate (200 µM), 

SRM1648 (200 µg/ml) or SRM1648 (200 µg/ml) + ascorbate (200 µM). (c): arteries 

were incubated for 24 h in the absence (Control) or in the presence of 200 µg/ml 

SRM1648, and tempol (1 mM) was added 15 min before pre-contraction with PGF2α. 

Mean ± S.E.M. from n = 4 to 6 experiments. Error bars represent S.E.M. ns, not 

significant. 

B. Dihydroethidium staining in rat intrapulmonary arteries, which were incubated for 

24 h in the absence (Control) or in the presence of 200 µg/ml SRM1648 (SRM1648). 

Representative photomicrographs of 3 independent experiments. 

 

Figure 7: 

A. HES staining of lung slices prepared from rats which were instilled 12 h or 72 h 

before with 5 mg SRM1648. The presence of particles is indicated by black 

arrowheads. Representative light micrographs of 3 independent experiments. 

B. Relaxant effect of acetylcholine in intrapulmonary arteries from rats which were 

instilled 12 h before with saline, 5 mg SRM1648 or 5 mg fTiO2. Mean ± S.E.M. from n 

= 3 to 7 experiments. Error bars represent S.E.M. *, P < 0.05; ns, not significant. 
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