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ABSTRACT

We evaluate by simulation three model-based methodtest the influence of a single
nucleotide polymorphism on a pharmacokinetic patamef a drug: ANOVA on the
empirical Bayes estimates of the individual pararsgtlikelihood ratio test between models
with and without genetic covariate, and Wald teststhe parameters of the model with
covariate. Analyses are performed using the FO BOGCE method implemented in the
NONMEM software. We compare several approachesnfmiel selection based on tests and
global criteria. We illustrate the results with pmacokinetic data on indinavir from HIV-
positive patients included in COPHAR 2-ANRS 111stady the gene effect prospectively.
Only the tests based on the EBE obtain an empityged | error close to the expected 5%.
The approximation made with the FO algorithm resuita significant inflation of the type |

error of the LRT and Wald tests.
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INTRODUCTION

Pharmacokinetics studies the time course of a drupe body (Gabrielsson and Weiner,
1999). The variability in the pharmacokinetics atugs when administered to different
subjects is often important and should be studeednprove the use of drugs, avoid toxic
events and allow individualization of therapy. Toentribution of genetic factors to this
variability is potentially important (Licinio and @hg, 2002). Some genes have already been
the subject of much attention, for example the ABGfgne coding for the P glycoprotein (P-
gP) found on the main exchange barriers (Marzainal., 2003). The involvement of this
protein in drug absorption processes has been darated directly in animals and indirectly
in humans. For example, co-administration of pax#t and cyclosporine, respectively a
substrate and an inhibitor of P-gP, has been showntrease the bioavailability of paclitaxel
(Meerum et al., 1999). More recently, Yamaguchi aaleagues demonstrated the impact of
ABCB1 polymorphism on paclitaxel pharmacokinetics patients with ovarian cancer
(Yamaguchi et al., 2006). The ABCB1 gene is comga#e209 kb (Bodor et al., 2005), and
to date 28 polymorphisms concerning a nucleotidedifimation have been described,
including several with potential clinical impactaf&eda et al., 2002). In the present study, we
consider data from patients treated with indinawir the COPHAR2-ANRS11 study
investigating the benefit of early therapeutic dmgnitoring in anti-retroviral therapy. Since
the ABCB1 genetic polymorphism was found to havéenfinence on the pharmacokinetics of
protease inhibitors (Fellay et al., 2002), patiemése genotyped for two exons (exon 21 and

26) of the ABCBL1 gene.

The influence of genetic polymorphism on concdigradata is usually analysed
using non-compartmental analysis (NCA). The aregeuthe concentratiorersustime curve
as well as model-independent parameters are ctddufar each individual concentration

profile using, for example, the log-trapezoidal huet (Gabrielsson and Weiner, 1999) and
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individual pharmacokinetic (or PK) parameters dment compared between the different
genotype groups using ANOVA (Inomata et al., 20080re sophisticated approaches using
nonlinear PK models in individual regression (Minat., 2004) or mixed effects models
(Taguchi et al., 2006) have also been applied tege data in PK studies. Nonlinear mixed
effects models (NLMEM) require fewer blood sample®ach patient and can be important
in special populations such as patients with adigease or neonates, for whom extensive

sampling is obviously impractical.

Various methods can be used to include pharmaetigeimformation in NLMEM
(Comets et al., 2007). Empirical Bayes estimatd3=)eof the individual parameters can be
computed from the fit of a model with no covariaied compared between the different
genotype groups with an ANOVA to test the genetitymorphism effect (Henningsson et
al., 2005). Another approach is to perform Waldstem the estimates of the gene effect
coefficients in the covariate model (Kerbusch et 2003), while stepwise model building is
frequently based on the comparison of models witd aithout gene effect using the
likelihood ratio test (LRT) (Mamiya et al., 2000)he first purpose of this work is to assess
the statistical properties of these three differmtegies to test for a gene effect through a
simulation study. The setting for the simulationdst is based on the COPHAR2-ANRS11
study. We have also taken the impact of estimanethods into account, comparing results
from the FO and FOCE methods implemented in the MEM (nonlinear mixed effect
model) software (Sheiner and Beal, 1998). The tiyperor of the tests is evaluated using
simulations under the null hypothesig &f no gene effect for two designs (40 patientsnas
the study, 200 patients to examine the influencgaofple size), while the power is compared

using simulations under an alternative hypothesgis H

In the same simulation study, we also examine ingglection strategies, in which the

aim is to choose the best covariate model for teeegeffect. We compare test-based
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strategies with general selection criteria thatehbgen proposed, like the Bayes information
criterion (BIC) (Schwartz, 1978) and the Akaikeamhation criterion (AIC) (Akaike, 1974).
According to the parsimony principle, these cragyenalize the log-likelihood by the number
of model parameters which limits overfitting. Alb@tive criteria derived from the AIC have
been developed in order to deal with small sammesto improve AIC asymptotic
consistency. The properties of these criteria Haeen studied in generalized linear models
(Burnham and Anderson, 2002), like the trend t@dean over-parameterized model with
AIC and under-parameterized model with BIC. AIC aBIC have been widely used in
population PK and PK/PD studies during the pasadecin the present paper, we compare

through a simulation study their properties for Imeear mixed effects model selection.

In this paper, we first introduce the model, tiogations, the different tests and model
building strategies under study and the estimati@thods. Then we describe the case study
and the simulation study based on its design. Mexjresent the results of the simulation

study and the application to the real data. Finalydiscuss our findings.

METHODS
Model and notations
Let the functionf denote the PK model, which depends nonlinearlytooparameter®. The

concentratiory;; at timet;; for subjecti=1,...,Nand measuremejt1,...,n is given by:
¥ = f(tij, 8) + &; 1)

where 4 is the vector of PK parameters for thdiindividual andg; the residual error,
assumed to be normally distributed with zero meah @arianceg 2. Here we assume a

proportional error model:

ag?= o2 (i, ) (2
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We assume a multivariate log-normal distribution tfee vector of individual parameter§,

are then expressed as:

8=y e” (3)
with 4 the vector of fixed effects arg the vector of random effects. The random effégcts
are assumed to be independenggpfand normally distributed with zero mean and vargan
matrix Q. In this work, we used a diagon& with interindividual variance of the"p

parametemzp, however an unspecified positive definite matiax de assumed.

For simplicity, let us assume that our aim is ébegdt the effect of a single nucleotide
polymorphism (SNP) on one PK parameter, for instathe {§' component ofg; 6°. Let C
denote the wild-type allele and T the mutant. Agividual can be one of three genotypes (eg.
CC for the wild-type homozygotes, CT or TT). l@&tdenote the genotype for subject i, and
let B(G)) = K, fL or B for G = CC, CT or TT, respectively. We write the modet tbe

genetic polymorphism effect in subjeds:
& =pP fG) & (4)
We assume that CC is the reference class s¢ibal.

Let model Masebe the model in the absence of genetic polymonplefect: {30 =31 =B2 =
1}, (CC = CT = TT). There are three models inclgfdithe gene effect as a covariate: a
complete model where the mean of the parameteffésant in the three groups, M {Bo =
1,B1# B2# 1}, (CC# CT# TT) and two reduced models dvssive {Bo = B1 = 1,B2# 1}, (CC
= CT+#TT) and Miominani {Bo =1, B = P2# 1}, (CC#CT =TT).

In the following, L corresponds to the model log-likelihooB,o, represents the

number of population model parameters (mean PK npetexrs, covariate coefficients,

variances and error model parameteid)the sample size andy the total number of
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observations. The standard error and covariantieegbarameter estimates are abbreviated by

SE and cov, respectively.

Testsfor genetic polymor phism effect
In this section, we examine different tests basedNbMEM that can be used to test the

existence of a genetic polymorphism effect on car@aimeter of a PK population model.

Analysis of variance (ANOVA)
Data are analysed with a model with no covariaMg.{§) and Empirical Bayes estimates
(EBE) of the individual PK parameters are compufedne-way analysis of variance is used

to detect differences in these EBE between therdifft genetic groups.

Wald test
The data are analysed using the complete mogdgk,Mnd the significance of the parameters

is assessed using a global Wald test:

T
W :(ﬂlj z—l (ﬂlj (5)
B B,
whereX represents the variance covariance matrix of patens3, and,. The statistidV is

compared to the critical value ofgawith two degrees of freedom.
Likelihood Ratio Test (LRT)

The third test relies on the comparison betweenribdel with no covariate effect fyeand
the complete model M. These two nested models are compared with the. ORE test
statisticS g = -2(Lpase— Lmur) IS compared with g with two degrees of freedom wheltg,se
and L, are the log-likelihood of Mseand Mny: respectively. The two degrees of freedom

correspond to the difference in the number of pafuh parametersetween the two models.

Strategies for model building

In this section, we examine a second aspect, whialodel selection. The different strategies
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under study provide decision rules for covariatelusion in order to get the best model.
Figure 1 represents in a diagram the decision phathe three strategies using tests. When
performing multiple tests, a correction which prgss the false discovery rate is used

(Benjamini and Hochberg, 1995).

Selection based on EBE

If the test that compares means of EBE obtaineld Mif;scbetween CC, CT and TT using an
ANOVA is significant, the means of the EBE obtaineith Mysseare compared between the
CC and the CT, on one hand, and between the CThandT, on the other hand, using t-tests.
If none or one test is significant, the one witk thwer p-value leads to model selection, or
else Mnuit is selected. For example, if the test comparimgGiC to the CT has the lower p-

value, MiominantiS chosen.

If the global test is non-significant, the mearisttee EBE obtained with Mee are
compared using t-tests opposing: i) the CC to thea@d TT put together, and ii) the TT to
the CT and CC put together. If one or both testssagnificant, the model corresponding to
the test with the lower p-value is selected, elsgMs selected. For example if the test
comparing the CC to the group formed by the CT thedTT has the lower p-value, ®hinant

is chosen.

Selection based on Wald test

If the global Wald test compaririy to ay® with two degrees of freedom is significant, two

-1\
Wald tests on coefficients estimated ip,)Mare then realized; comparing boggl;(% and

1

(:31 -5, )2

with ay? with one degree of freedom. If none or one test is
SEz(l[i’l) + SEZ( 2) - 2COV(,31,,32)
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significant, the one with the lower p-value leadsrtodel selection, or else M is kept. As

—-1)2
an example, if(Sﬂlil) has the lower p-value, MhinantlS chosen.

2(3,)

If the global test is non-significant, data arelgeed using the two models with the

gene effect in two classes and Wald tests are ipeeid on the coefficients estimated in

(:Brec _1)2 and (ﬁdom _1)2

M recessive@Nd Myonminant The two statistics B(ﬂrec) SEZ(,Bdom) are compared with g

with one degree of freedom. If one or both testssagnificant, the model is chosen based on

dom — 1)2

the test with the lower p-value, or elsgMis conserved. By way of example, SB(ﬂ )
dom

has the lower p-value, MhinantiS Selected.
Selection based on LRT

If the LRT comparing Masewith My is significant, then two LRT are performed compgri
M muit With the nested models dyhinantand Mecessive If NONE or one test is significant, the test
with the higher p-value leads the model choiceglse My, is selected. As an example, if the

test comparing Mui With Mgominantobtains the higher p-value,shhinantis selected.

If the global test is non-significant, JMe is compared with Myminant aNd Mecessive
using LRT. Then, if one or both tests are significahe model is chosen based on the test
with the lower p-value, or else MMcis selected. For example, if the test comparingsMo

M gominantobtains the lower p-value, dhinantiS selected.
Selection based on information criteria

As an alternative, criteria such as AIC or BIC danused for model selection. Here, the
model with the lowest criterion is chosen. Bothtloése criteria balance the log-likelihood
with the number of parameters in the population @hoficcording the parsimony principle, a

simpler model is preferred for equivalent inforroatgain. The AIC is written as:
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AIC = -2L + 2Ppop (6)
The expression of the BIC involves the total nundfevbservations:

BIC = -2L + Ppop l0g(Nior) (7)

The BIC is related to the Bayes factor which is easure of the strength of evidence in

favour of a given model and can thus be used tatgyanodel uncertainty.

Other criteria have been defined, derived frons¢habove: the corrected AIC (AICc)
defined by Akaike for small samples i.e. wheg/Ppp < 40 (Sugiura, 1978) and the
consistent AIC (CAIC) (Bozdogan, 1987). They arenaa from AIC and involve the total

number of observations:

2P (P, +1

AlCc= AIC+ 2Foop (Pop + 1) (8)
Ny - I:)pop -1

CAIC = -2L + Pyop (10g(eoy) +1) 9)

Another formulation for BIC has also been propodeif;c, whereny, is replaced by the

number of subjects (Raftery, 1995):
BICc=-2L + Ppoplog(N) (10)
Estimation methods

In NLMEM, the parameters and their standard errer mainly estimated using maximum
likelihood. However the likelihood function for the models is expressed as an integral and
has no analytical solution. Specific algorithms éndlkerefore been proposed to perform the
maximization. The approach most frequently usegseain first-order approximations of the
likelihood function. This approach has been impleted in the NONMEM software version

V which is the most frequently used software in PB/analyses. In NONMEM two

approximations can be used: the first-order metl@J), relying on a first-order linearization
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of the likelihood function arount; = 0, and the first-order conditional estimationtinoe
(FOCE), relying on a first-order linearization tietlikelihood function around the estimates
of the individual random effects. Although the FCthod suffers from bias and lack of
precision it is still frequently used as it is faseand has less convergence problems than
FOCE. In this paper, we compare both estimatiorhods. More precisely, we use the FOCE

with interaction method, allowing possible interantbetween inter- and intra-variability.
Real data and simulation study
Real data

We illustrate the different approaches on data feoRK sub-study of the COPHAR 2-ANRS
111 study, a multicentre non-comparative pilotltahearly therapeutic drug monitoring in
HIV positive patients naive of treatment. The obyecof the trial was to assess the benefit of
a pharmacological intervention after measurementtroigh plasma concentrations of
protease inhibitors (Mentré et al., 2005). We foousthe PK sub-study from the group of
patients receiving indinavir boosted with ritonaviatients were genotyped for the ABCB1
exons 21 and 26 to investigate genetic polymorphisipact on pharmacokinetics of the

protease inhibitors, which are well-known subssatkthe P-gp (Fellay et al., 2002).

Forty-two patients were included, one patient didw from the study and one
switched to another protease inhibitor during thet fweek of treatment. We therefore
obtained PK data for 40 patients (27 men, 13 wometh) an average age of 36.5 years. PK
profiles were determined at 1, 3, 6 and 12 h aténinistration of the drug at a date two
weeks after the treatment onset. One patient hadimg information for the two genotypes,

and ABCB1 exon 26 genotype was missing in two opfagients.

Simulated data

The design used in the simulation mimics that af éipplication data set. We simulate PK



Model-based tests for pharmacogenetic analyses

studies of N = 40 (equivalent to the applicatiompke size) and N = 200 patients with four
samples (1, 3, 6, 12 h after dose) at steady statesame bid doses of 400 mg for indinavir
and 100 mg for ritonavir are assumed for all pasefhe concentrations are simulated using
the steady-state one-compartment model with firdeoabsorption and elimination that was
used to model the indinavir concentrations in tl@PEIAR 1-ANRS 102 study (Brendel et

al., 2005):

f(é?t): D Kk, expCk,t)  exp(Ckt) (11)
" VIF k—-k (1-expCk, 1) 1-exp(kr)

whereF represents the bioavailabilitik, the absorption raté the elimination ratey the
volume of distribution andr = 12 h the time between two doses. We use thewaoil
population parameters/F = 102 L with interindividual variabilityoy = 41.3%,k, = 1.4 R
with w,=113%,k = 0.2 ht with w = 26.4% obtained with a preliminary analysis of thal

data using the FO method in NONMEM and a residuedreof 20%. The measurements
below the quantification limit (BQL) are treatedthre analysis using a standard approach: the
first value in a series of BQL was set to LOQ/2 dhd remaining values were discarded

(Beal, 2005).

Under H, 1000 data sets are simulated with a design of4Q patients and 1000 with
a design of N = 200 patients. We simulate a contlmnaf SNP on two exonscated orthe
same chromosome. The bioavailabiktys assumed to depend on the diplotype. Because the
model is parameterized &3F, k, andk, this is equivalent to assuming thaF depends on
the diplotype. The distribution of the exons mimitst of exon 26 and exon 21 of the
ABCBLI1 gene as reported by Sakaeda and colleaga&saé8a et al., 2002) — we note C and G
respectively the wild-type allele for the 2 exonsdaT the mutant allele. With those
properties, for data sets with 40 patients we expecaverage 9 individuals with a CC

genotype, 18 with CT genotype and 13 with TT gepetipr exon 26.
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Under the alternative hypothesis, we assume thHiewing effect of the two
polymorphisms (modified from equation (4)), whég;; denotes the genotype for the exon

26 andGg;; the genotype for the exon 21:
(VIF)= VIF B(Gasi) AGoai) € (12)

whereAGzg) is Bo, B1 or B2 if = CC, CT or TT as previously andG,1)) is do, 81 or &; if Gyy;

= GG, GT or TT. Under Hwe set3(G) = 1, 1.2, 1.6 and(G;1) = 1, 1.1, 1.3. These values
were chosen to provide a good power for the deteaf one SNP effect in the context of the
simulations while remaining consistent with resutisnd in the literature concerning the
effect of ABCB1 polymorphism. With those geneticeffwient effects and the distribution
from the literature, we simulated 100 data seté wie N = 40 design. When we computed
the V/F); EBE from M,aseandperformed bilateral t-tests to compare the wild baygotes
and the mutant homozygotes for the exon 26, weirddaa power of 80% (Machin et al.,

1997).

The simulation of each data set is performed Bewes. The set of possible genotypes
for exon 26 and exon 21 is S={CC-GG, CC-GT, CC-TT-GG, CT-GT, CT-TT, TT-GG,
TT-GT, TT-TT} with corresponding simulated frequéss f={0.2, 0.02, 0.02, 0.05, 0.38,
0.05, 0.04, 0.04, 0.2}. For each individual the @fgpes are drawn from this distribution.
Under H, both genotypes condition the value of the fixdféas for V/F according to
equation 11. Then we simulate a random effect vdgtrom a normal distributiomN(0,Q),
yielding the individual parameters vectgraccording to equation 3. The concentrations are
computed using these parameters. Finally we adebsidual error, generated from a normal
distribution N(O, azf(ati,,-)), to each predicted concentration to obtain theukted

concentration.
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Simulations were performed using the statisticdtvgare R (R Development Core

Team 2006) running under Linux (Red Hat 9.0).

Evaluation of the tests for genetic polymorphisraceff

In the first step, each of the three tests predeab®ve is applied to detect the effect of the
exon 26 polymorphism on the 1000 data sets similateler H for each design (40 and 200
patients). Tests are performed on estimations dédafor each data set using FO and FOCE
in NONMEM. The type | error for each analysis idided as the percentage of data sets
where the corresponding test was significant. Tkigeeted prediction interval with 1000
simulations and a value of 5% is [3.7; 6.3]. Townsa type | error of 5%, we define a
correction threshold as thd' percentile of the distribution of the p-valuestloé test under

Ho.

In the second step, for the design with 40 patiegihie same tests are performed using
the 1000 data sets simulated under Fhe power is defined as the percentage of dag se
where the corresponding test was significant. Weethe corrected threshold to compute the
corrected powers. This allows comparison of théetbht tests even if the type | error is

different from 5%.

Data sets with a group defined by the genotypefan 26 with less than two patients
are discarded from the analysis. It should be esipbd that the number of simulated data
sets for which the tests can be applied are oétes than 1000. Indeed, the algorithms FO and
FOCE used in the NONMEM software are sometimes lertalbconverge on a data set. In that
case, estimates are not available and no testsbeaapplied. Similarly, even when the
linearization algorithms achieve convergence, thgance covariance matrix is not always
available. More precisely, to perform the ANOVA thre EBE only the convergence of model
Mypase IS required with or without the SE estimates. Mald test requires the parameter

estimation error to compute the test statistiogs thot only the convergence of mode}\is
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required but the variance covariance matrix musd ale available. The convergence of both
Mpase @and Myt IS necessary to apply the LRT but the covariarte@ s not needed to
succeed. The three tests were also evaluated ambsetsof data sets fulfilling all the

conditions listed in this paragraph using FO or EOC

Evaluation of the strategies for model building

The different model building strategies describ&dve based either on tests or selection
criteria are evaluated on data sets with the N =dé8ign. Results are reported as the
percentage of data sets for which each model oéxloa 26 polymorphism effect is selected,
and this with simulation undergtbr under H. The correct model is pMseunder H and Myt
under H. The results of the strategies obtained by sinariainder H are not used to modify
the strategies under; ks there are no simple correction methods for-eebscting covariate

models under K

As for the evaluation of tests, the analyses atealways performed on the 1000 data
sets. The conditions to perform model buildingdaling an ANOVA are identical to those
described for the test. To choose the best mode{ \Wald tests, the convergence and the
covariance step are required for the three modelsiding the gene effect. For the selection
with the LRT, convergence of the four models isuiegf and for the criteria based selection,
at least one model must have achieved convergertoe. different strategies were also

evaluated on samples satisfying all conditions Wwithand FOCE.
Application to real data

The indinavir concentrations are analysed withsddume PK model as in the simulation study.
The estimation method is chosen based on perfomsaimcthe simulation study. Both the
exons 26 and 21 of the ABCB1 gene are investigasat the three tests and the eight model

building strategies.
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RESULTS

Typel error and power of the detection tests

For the design with N = 40, three simulated data ¢éene under fHand 2 under Ij are
discarded from the analysis due to a group of fleas two patients with the TT genotype.
Also, FOCE encounters many more convergence prabtban FOK, the number of data

sets among the 1000 on which the test is perforisedways lower with FOCE.

Type | error estimates of the three tests perfdrraee shown in Table 1. For the
design with N = 40, the ANOVA type | errors do magnificantly differ from 5% with both
estimation algorithms. The LRT type | error estiesashow a slight significant increase with
FOCE and increase by ten times using FO. For thé&l \Wst, there is a rather important
significant increase for FOCE and again inflatignfour times with FO. For the design with
200 patients, the LRT attain a type | error nomsigantly different from 5% and the Wald
test still has an estimate slightly superior to leeninal level with FOCE. The large increase

of the type | error remains the same with FO fer tRT and the Wald test.

Estimates are given of the power of the testsguboth estimation algorithms for the
ANOVA, the Wald test and the LRT, for the desigrth\0 patients, in Table 2. For each test
and each estimation method, the corrected powesomputed using the corresponding
empirical threshold in order to maintain a typerbe of 5%. The corrected power for LRT
and Wald tests based on the FO method were lowHauinflated type | error in these
situations already show that this estimation mettsogoor. The powers for the ANOVA
(using FO or FOCE) and the LRT for FOCE are arodfiéo, but the power of the Wald
approach for FOCE is much lower (25%). We expldred FOCE outputs to understand this
last result. In fact, with the FOCE algorithm in NMEM, we observe correlations between

the estimates of the gene effect coefficients aed estimation errors. This relationship leads
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to decreased values of the Wald statistic and fitvereeduces the power to detect a genetic
polymorphism effect. The same results were obtagwetsidering only the subset of data sets

fulfilling all convergence conditions for both FQ&FOCE.

Model selection strategies

The results of the model selection strategies agpb the data sets simulated undemith

the design of 40 patients are presented in Tablddain, the performances of the FO
algorithm are unsatisfactory except for the stiaedased on EBE. With FOCE, both model
selection strategies based on EBE and LRT selectdirect model NMisein about 90% of
instances whereas the Wald approach selects a mitled gene effect in around 15% of the
data sets. Using selection criteria, the AIC an@&bbtain the worst performances, selecting
a model with a gene effect in 57.8% and 51.7% efdhta sets respectively. BICc shows
performance close to that of the approach based/ald tests, while CAIC (4.7%) and BIC

(6.7%) select a model with a gene effect in abéatdd the data sets.

The results on data sets with N = 40 simulatedeurt] are given in Table 4. The
results of the strategies using the LRT, Wald testsa criterion with the FO estimation
method are not presented because of the poor piegander il A model with a gene effect
is selected for about 70% of the data sets usintCC#r about 80% of the data sets using the
different model-building strategies based on testBIC, for about 90% of the data sets using
BICc, and for about 99% of the data sets using Aid AlCc. However, for the latter, the
percentage of data sets wherg,Mis not selected undergHs greater than 50%. Another
noticeable result is that the model used to sirulad data My is seldom selected compared
with the intermediate model Messive Which is chosen in 30 to 50% of the data setsguie
different methods. The simulated valfdgis low compared witlf3,, therefore if the model-

building strategies succeed in selecting a mod#l wigene effect, it is not always the correct



Model-based tests for pharmacogenetic analyses

one. The performances are similar using the saofpdata sets for which all conditions were

put together with FO and FOCE.

Figure 2 represents a summary of these resuleing each strategy on a bi-
dimensional plan; the ability to select a modehvatgene effect under;ersus the trend not
to select Maseunder H. The CAIC is the test which has the best propedieder H, but the
BIC more often selects a model with covariate undHerwhile it is only slightly less
conservative under $AWe also note that the LRT, the BIC and the ANO¥® clustered

together, and thus offer similar compromises.

Application

Figure 3 represents a spaghetti plot of concentratversus time for the 37 patients from the
indinavir arm of the COPHAR?2 study, sorted by ggpetclasses for exon 26. Concentrations
show an important interindividual variability andnlp three patients were mutant

homozygotes for this polymorphism.

As the simulation study has shown poor performanegh the FO algorithm, we
estimated the model parameters using the FOCE inténaction algorithm. Therefore, the
estimates are different from the simulated valubtioed in the preliminary analysis. In
addition, the estimate of the interindividual vaildy for k was very small and we fixed it to
0 (no variability). The model with no covariate hau absorption constant of 0.8 with an
important interindividual variability of 70.3%, aiimination constant of 0.2*hand a volume
of distribution of 99.3 L with an interindividualwability of 47%. All the estimation errors

were below 20% for the fixed effects and below 4@%the variances.

For the influence of the ABCB1 exon 26 on the madir volume of distribution, the
ANOVA and the LRT were non-significant (P = 0.7 an@ respectively). The global Wald
test obtained a p-value of 0.02, however the ctadethreshold defined in the simulation

study for this test is 7.5.T0 The model with no covariate was chosen usings#lection
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strategies based on the EBE, or on the LRT, usk®iCBIC and BICc, whereas the strategy
based on Wald tests, AIC and AICc selectggddive NO influence of the ABCB1 exon 21 on
indinavir volume of distribution was detected usigy of the tests or selection strategies

under study.

DISCUSSION

In this work, we evaluate several statistical testgl model selection strategies using
nonlinear mixed effects models to analyse the impéaa genetic polymorphism on one PK
parameter through simulation. We also study theaghmf the estimation algorithms in
NONMEM, comparing the two first-order approximatomost widely used FO and FOCE,
which linearize the model function respectively ward the random effects equal to 0 and
around the individual estimates of the random ¢dfedlthough the FO method has been
shown to suffer from various problems, it is gitled because the FOCE algorithm is known
for numerical difficulties and for its slowness. illg the FO algorithm we observe
unsatisfactory performances for all the tests andehselection strategies with the exception
of methods based on the EBE. The linearizatiorheflikelihood function around the fixed
effects leads to type | error inflation (Comets amehtré, 2001, Wahlby et al., 2001, Panhard

and Mentré, 2005).

With FOCE, there is a significant increase intyye | error of the LRT and the Wald
approach with a design including 40 patients. Tinisease has already been described for the
LRT (Comets and Mentré, 2001, Wahlby et al., 2081id has been also shown for the Wald
test (Panhard and Mentré, 2005). The design with Rtients is closer to asymptotic
conditions and shows as expected a correct typ®i. éerforming simulations undeg ldan
be used to correct the threshold for the test uitjeas we did in the present study. We

observe a power around 70% for the tests using AN@Yd LRT which is close to the
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power of 80% expected from the simulation settir@6.course if the study was designed
specifically to detect a gene effect the sample sauld be increased to ensure a higher (more
ethical) power. Our objective here was to compafferént methods and we used the data
from the COPHAR2-ANRS 111 trial to provide the swf$ for the PK simulations, as we
have analysed these data thereafter. The simutdtect of gene was chosen to be consistent
with the literature, though in the COPHAR?2 trialetlygenotype distribution is slightly
unbalanced. The reduced power of the Wald appraadnthe unsatisfactory efficacy of the
model selection strategy based on the Wald testlsl cesult partly from a wrong estimation
of the standard errors due to the log-likelihoadction linearization. Indeed, we observe with
FOCE that in the simulations the estimation er@mes highly correlated to their estimates.
Because the Wald statistic is based on the ratibhefestimates to the estimation error, this
could explain the poor performance of the Waldstastder H. Finally, FOCE met with
convergence problems: ongMnd MccyscvsttWhich involved no mathematical complexities
for N = 40 under H 35 (3.5%) and 48 (4.8%) runs did not achieve eogence, either for
numerical reasons or because they had to be taedimad we could not obtain an estimate
of the variance-covariance matrix in 32 (3.2%) 88d(3.8%) runs, respectively. This could
have been improved partly by the use of differaitial conditions, nonetheless the results
were identical using the sample of data sets lnifjl convergence conditions for the three
tests using both estimation methods. Among thedifft implementations of both algorithms
available, we chose to use NONMEM as it is the npagiular tool in the pharmaceutical
industry. Our results can be extended to the FChoadeimplemented in SAS as it computes
the same likelihood function up to a constant (Wa2@07), although it is not the same
algorithm (Roe, 1997). Similarly, FOCE with intetiac and the nime method with the
varConstPower option implemented in Splus showe te same results, save for the lower

accuracy of the Splus approximation (Girard and ten2005, Wang, 2007). The
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simulations and analyses in the present paper baea performed using version 5.1 of
NONMEM. A new version of NONMEM, version 6, has beeleased in December 2006,
and was implemented in our department after th@npgrt of the analyses had already been
run, so that we kept NONMEM 5.1 for this study. TR@CE routine in NONMEM 6 has
been rewritten and should provide more stable nwhgh may reduce the convergence issues
we have found in the present study. However, in pteliminary results with using
NONMEM 6 on a subset of the simulated datasetsnareased number of runs failed the
covariance-step. Rather than reporting partiallteso the present study, we will investigate

this matter in a subsequent work.

Model selection strategies based on tests hawecertain extent, a high rate of false
inclusion under kK (over 10%) which could result from the uncorrectedltiple model
comparisons. Further there is no simple way toembrthe model selection under bl taking
into account the simulations undeg. Lonsequently, we have to be cautious about asgess

the performance under;kvhen the behaviour is poor undey. H

With respect to selection based on criteria, efmapthe performances of the BIC and
the BICc not showing any trend to conservatism,eunkh our results agree with the
literature. The acceptable performance of the CIAdS to be noted, as well as the very poor
performance of AIC and AlCc. UndenrHhere is a satisfactory weak selection gfdvith a
rather important representation ofeMssive INdeed, in our simulation conditions ;dMssiveand
Mmuit are close and the power to detect a differencsdsst these two models is much lower
than the power to detect a difference betweggddnd My, As a side-note, in the Bayesian
literature, it is usual also to consider not orilg best model (i.e. the model with the lowest
criterion), but also models close to the best m@daftery, 1995). However in our study, the

simulation model is rarely close in this sensenwliest model.
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Finally, in our study, for the design with 40 eais, the ANOVA on the EBE is the
only test that maintained a 5% type | error, ad @&la good power. It should be noted that
we simulated a sufficient number of samples pelepatvith respect to the number of model
parameters. In sparse sample situations, regressithie mean is known to occur with EBE
(Panhard and Mentré, 2005), which could resulbmdr power to detect differences between
genotype groups. We plan to test this hypotheses subsequent study with a sparse design

including only two samples per patient.

We also confirm that both AIC and AICc should et used for model building but
further studies are required to provide recommeadston the other selection strategies.
Regarding the estimation methods, if FO can s#ilubed in covariate screening on the EBE,
one should avoid performing model building with thRT or Wald tests based on results

from this algorithm.

We illustrate the different approaches using diadm the indinavir PK sub-study of
the COPHAR2 ANRS-111 trial. The PK model has alyelagen described but no gene effect
has been investigated using a population appraadate. The estimated parameters are in
accordance with estimations obtained in other sgidCsajka et al., 2004, Goujard et al.,
2005, Kappelhoff et al., 2005). The Wald test is dimly test to detect an influence of ABCB1
exon 26 on the volume of distribution. Considerthg corrected threshold provided by the
simulation study, we can probably ascribe this réisant result to the inflated type | error.
Similarly, it is the three strategies with the heghpercentage of data sets whergsMs not
selected under #ithat select a model with the ABCB1 exon 26 polypmsm as covariate.
The polymorphism on the exon 26 of the ABCB1 geas lbeen shown to impact on plasma
concentrations of nelfinavir, another proteasehitbor (Fellay et al., 2002). However, this
work agrees with another study (Verstuyft et 200%2), where no effect of the polymorphisms

from ABCBL1 exon 26 and 21 on indinavir bioavail#gilvas found.
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Another extension of this work would be to simelainder H various levels of the
gene effects, which would provide more informatanthe relationship between the strength
of the genetic polymorphism effect and the powegsibning an optimal sampling schedule
for testing a gene effect with a given power i als interesting challenge and the extension
of the PFIM software for design optimization in tbese of models with covariates could be
used (Retout and Mentre, 2003, Retout et al., 20@adjeover in the genetic framework one
should keep in mind the complex pathway leadinghfidNA to metabolic activity, which is
usually controlled by more than one exon. Anothenspective would therefore be to analyse
the influence of the haplotypes (Innocentia et2005), since such a classification seems to

be more relevant at the DNA level.

Pharmacogenetic studies using NLMEM have many radges as fewer samples are
required to estimate parameters with a biologicahning. The current literature presents a
wide array of methods for covariate selection usNigMEM. We show in this study that
methods using EBE are not only efficient in datalesation but also in model selection on
data sets with enough samples per patient. We afmphasize that using estimation
algorithms based on likelihood linearization, LRy#e | error is inflated, thus one has to
perform simulations or work with large data seisalty, the problems of the FO and FOCE
algorithm in terms of convergence and bias arenaentive to use more recent estimation

methods (Samson et al., 2007).
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Table 1. Type | error for each test and for eagorahm.

. N =40 N = 200
Test Algorithm
K Type | error (%) K Type | error (%)
FO 997 5.9 1000 4.4
ANOVA
FOCE 986 5.6 982 5.1
FO 975 23.4* 984 10.3*
Wald
FOCE 924 11.7* 860 6.5*
FO 989 46.9* 977 54.0*
LRT
FOCE 964 7.9* 956 5.0

K is the number of data sets on which the testacbel performed.

*Estimate significantly different from 5%.
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Table 2. Power for each test for N = 40.

Test Algorithm K Power (%) Corrected power (%)
FO 995 69.8 66.5
ANOVA
FOCE 968 71.2 69.3
FO 974 61.5 7.7
Wald
FOCE 905 57.2 24.7
FO 958 90.2 48.7
LRT
FOCE 947 78.7 71.0

K is the number of data sets on which the testacbel performed.

The corrected power was obtained using the fiftttgtile of the empirical distribution of the tesatistic

under H as the cut-off value for the test.
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Table 3. Percentage of data sets simulated unglevitH a design of N = 40 for which

each model is selected.

_ Model
Method Algorithm K
Mbase Mrecessive Ivldominant Ivlmult
FO 997 91.6 4.1 3.9 0.4
ANOVA

FOCE 986 90.9 3.8 4.7 0.6
FO 947 68.4 111 16.3 4.2

Wald
FOCE 876 83.0 5.8 9.8 1.4
FO 976 50.3 18.7 17.0 14.0

LRT
FOCE 951 91.3 4.0 35 1.2
AlC FO 999 14.9 23.2 224 395
FOCE 970 42.2 224 21.3 14.1
FO 999 17.4 24.4 32.2 35.0

AlCc
FOCE 970 48.3 20.7 20.1 9.9
FO 999 63.0 16.6 145 5.9

CAIC
FOCE 970 95.3 2.1 2.5 0.1
BIC FO 999 55.7 19.6 16.6 8.1
FOCE 970 93.3 3.1 3.0 0.6
FO 999 44.6 21.7 20.0 13.7

BICc
FOCE 970 85.6 7.0 6.0 1.2

K is the number of data sets on which the testacbel performed.
"Muase {fo == =1} (CC=CT=TT) model with no gene effect.
Miecessive { o =1 = 1,5 # 1} (CC = CT#TT), reduced model.
Mgominant {50 = 1,61 = # 1} (CC# CT =TT), reduced model.

Mt {Bo=1,01# B# 1} (CC#CT#TT), complete model.
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Table 4. Percentage of data sets simulated underntH N = 40 for which each model is

selected.
, Model
Method Algorithm K
M base Mrecessive Mdominant Mmult
FO 995 255 44.8 21.0 8.7
ANOVA

FOCE 968 22.3 43.3 25.5 8.9
Wald FOCE 878 17.9 41.7 32.7 7.7
LRT FOCE 923 19.1 47.3 20.5 13.1
AIC FOCE 962 1.3 31.1 13.1 54.5
AlCc FOCE 962 1.6 35.1 14.7 48.6
CAIC FOCE 962 28.1 48.5 19.9 35
BIC FOCE 962 21.6 50.3 21.7 6.4
BICc FOCE 962 115 51.7 33.1 13.7

K is the number of data sets on which the testacbel performed.
"Mpase {fo == =1} (CC=CT=TT) model with no gene effect.
Miecessive { o =1 = 1,5 # 1} (CC = CT#TT), reduced model.
Mgominant {50 = 1,61 = # 1} (CC# CT =TT), reduced model.
Muue {Bo=1,01# B# 1} (CC#CT#TT), complete model.

Results obtained with FO are not presented foretlstraitegies because of their poor performancerutide

(table 3).
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Figure 1. Decision path used to choose the besehfod the selection strategies based on

tests.

Figure 2. Percentage of data sets simulated ungevhdre the model with no gene effect
(Mpasg IS not selected versus the same percentage wihgdéor the eight model selection
strategies using FOCE for N = 40. The vertical loogresponds to a value of 5% and the

horizontal line to a value of 80%.

Figure 3. Indinavir concentrations (ng/mL) at steatate collected in the COPHAR2 ANRS-
111 trial versus time, sorted by ABCB1 exon 26 ggnes. The plain lines correspond to a
dose of 400 mg indinavir, the dashed lines cornredpm 600 mg and the dotted lines

correspond to 800 mg, all with a dose of 100 nmhavir bid.



