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Model-based tests for pharmacogenetic analyses 

ABSTRACT 

We evaluate by simulation three model-based methods to test the influence of a single 

nucleotide polymorphism on a pharmacokinetic parameter of a drug: ANOVA on the 

empirical Bayes estimates of the individual parameters, likelihood ratio test between models 

with and without genetic covariate, and Wald tests on the parameters of the model with 

covariate. Analyses are performed using the FO and FOCE method implemented in the 

NONMEM software. We compare several approaches for model selection based on tests and 

global criteria. We illustrate the results with pharmacokinetic data on indinavir from HIV-

positive patients included in COPHAR 2-ANRS 111 to study the gene effect prospectively. 

Only the tests based on the EBE obtain an empirical type I error close to the expected 5%. 

The approximation made with the FO algorithm results in a significant inflation of the type I 

error of the LRT and Wald tests. 
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INTRODUCTION 

Pharmacokinetics studies the time course of a drug in the body (Gabrielsson and Weiner, 

1999). The variability in the pharmacokinetics of drugs when administered to different 

subjects is often important and should be studied to improve the use of drugs, avoid toxic 

events and allow individualization of therapy. The contribution of genetic factors to this 

variability is potentially important (Licinio and Wong, 2002). Some genes have already been 

the subject of much attention, for example the ABCB1 gene coding for the P glycoprotein (P-

gP) found on the main exchange barriers (Marzolini et al., 2003). The involvement of this 

protein in drug absorption processes has been demonstrated directly in animals and indirectly 

in humans. For example, co-administration of paclitaxel and cyclosporine, respectively a 

substrate and an inhibitor of P-gP, has been shown to increase the bioavailability of paclitaxel 

(Meerum et al., 1999). More recently, Yamaguchi and colleagues demonstrated the impact of 

ABCB1 polymorphism on paclitaxel pharmacokinetics in patients with ovarian cancer 

(Yamaguchi et al., 2006). The ABCB1 gene is composed of 209 kb (Bodor et al., 2005), and 

to date 28 polymorphisms concerning a nucleotide modification have been described, 

including several with potential clinical impact (Sakaeda et al., 2002). In the present study, we 

consider data from patients treated with indinavir in the COPHAR2-ANRS11 study 

investigating the benefit of early therapeutic drug monitoring in anti-retroviral therapy. Since 

the ABCB1 genetic polymorphism was found to have an influence on the pharmacokinetics of 

protease inhibitors (Fellay et al., 2002), patients were genotyped for two exons (exon 21 and 

26) of the ABCB1 gene. 

 The influence of genetic polymorphism on concentration data is usually analysed 

using non-compartmental analysis (NCA). The area under the concentration versus time curve 

as well as model-independent parameters are calculated for each individual concentration 

profile using, for example, the log-trapezoidal method (Gabrielsson and Weiner, 1999) and 
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individual pharmacokinetic (or PK) parameters are then compared between the different 

genotype groups using ANOVA (Inomata et al., 2005). More sophisticated approaches using 

nonlinear PK models in individual regression (Min et al., 2004) or mixed effects models 

(Taguchi et al., 2006) have also been applied to genetic data in PK studies. Nonlinear mixed 

effects models (NLMEM) require fewer blood samples in each patient and can be important 

in special populations such as patients with acute disease or neonates, for whom extensive 

sampling is obviously impractical. 

 Various methods can be used to include pharmacogenetic information in NLMEM 

(Comets et al., 2007). Empirical Bayes estimates (EBE) of the individual parameters can be 

computed from the fit of a model with no covariate and compared between the different 

genotype groups with an ANOVA to test the genetic polymorphism effect (Henningsson et 

al., 2005). Another approach is to perform Wald tests on the estimates of the gene effect 

coefficients in the covariate model (Kerbusch et al., 2003), while stepwise model building is 

frequently based on the comparison of models with and without gene effect using the 

likelihood ratio test (LRT)  (Mamiya et al., 2000). The first purpose of this work is to assess 

the statistical properties of these three different strategies to test for a gene effect through a 

simulation study. The setting for the simulation study is based on the COPHAR2-ANRS11 

study. We have also taken the impact of estimation methods into account, comparing results 

from the FO and FOCE methods implemented in the NONMEM (nonlinear mixed effect 

model) software (Sheiner and Beal, 1998). The type I error of the tests is evaluated using 

simulations under the null hypothesis H0 of no gene effect for two designs (40 patients as in 

the study, 200 patients to examine the influence of sample size), while the power is compared 

using simulations under an alternative hypothesis H1. 

 In the same simulation study, we also examine model selection strategies, in which the 

aim is to choose the best covariate model for the gene effect. We compare test-based 
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strategies with general selection criteria that have been proposed, like the Bayes information 

criterion (BIC) (Schwartz, 1978) and the Akaike information criterion (AIC) (Akaike, 1974). 

According to the parsimony principle, these criteria penalize the log-likelihood by the number 

of model parameters which limits overfitting. Alternative criteria derived from the AIC have 

been developed in order to deal with small samples or to improve AIC asymptotic 

consistency. The properties of these criteria have been studied in generalized linear models 

(Burnham and Anderson, 2002), like the trend to select an over-parameterized model with 

AIC and under-parameterized model with BIC. AIC and BIC have been widely used in 

population PK and PK/PD studies during the past decade. In the present paper, we compare 

through a simulation study their properties for nonlinear mixed effects model selection. 

 In this paper, we first introduce the model, the notations, the different tests and model 

building strategies under study and the estimation methods. Then we describe the case study 

and the simulation study based on its design. Next we present the results of the simulation 

study and the application to the real data. Finally we discuss our findings. 

 

METHODS 

Model and notations 

Let the function f denote the PK model, which depends nonlinearly on its parameters θ. The 

concentration yi,j at time ti,j for subject i= 1,…,N and measurement j= 1,…,ni is given by: 

    yi,j = f(t i,j, θi) + εi,j     (1) 

 where θi is the vector of P PK parameters for the ith individual and εi,j the residual error, 

assumed to be normally distributed with zero mean and variance σi,j². Here we assume a 

proportional error model: 

    σi,j²=σ ²  f(ti,j, θi)²     (2) 
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We assume a multivariate log-normal distribution for the vector of individual parameters, θi 

are then expressed as:  

    θi = µ  e bi      (3) 

with µ the vector of fixed effects and bi the vector of random effects. The random effects bi 

are assumed to be independent of εi,j  and normally distributed with zero mean and variance 

matrix Ω. In this work, we used a diagonal Ω with interindividual variance of the pth 

parameter ω2
p, however an unspecified positive definite matrix can be assumed.  

 For simplicity, let us assume that our aim is to detect the effect of a single nucleotide 

polymorphism (SNP) on one PK parameter, for instance the pth component of θ; θ p. Let C 

denote the wild-type allele and T the mutant. An individual can be one of three genotypes (eg. 

CC for the wild-type homozygotes, CT or TT). Let Gi denote the genotype for subject i, and 

let β(Gi) = β0, β1 or β2 for Gi = CC, CT or TT, respectively. We write the model for the 

genetic polymorphism effect in subject i as: 

    θi
p =µ p β(Gi)  e

b i p     (4) 

We assume that CC is the reference class so that β0 = 1. 

Let model Mbase be the model in the absence of genetic polymorphism effect: {β0 = β1 = β2 = 

1}, (CC = CT = TT). There are three models including the gene effect as a covariate: a 

complete model where the mean of the parameter is different in the three groups, Mmult: {β0 = 

1, β1 ≠ β2 ≠ 1}, (CC ≠ CT ≠ TT) and two reduced models, Mrecessive: {β0 = β1 = 1, β2 ≠ 1}, (CC 

= CT ≠ TT) and Mdominant: {β0 = 1, β1 =  β2 ≠ 1},  (CC ≠ CT = TT). 

 In the following, L corresponds to the model log-likelihood, Ppop represents the 

number of population model parameters (mean PK parameters, covariate coefficients, 

variances and error model parameters), N the sample size and ntot the total number of 
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observations. The standard error and covariance of the parameter estimates are abbreviated by 

SE and cov, respectively. 

Tests for genetic polymorphism effect 

In this section, we examine different tests based on NLMEM that can be used to test the 

existence of a genetic polymorphism effect on one parameter of a PK population model. 

Analysis of variance (ANOVA) 

Data are analysed with a model with no covariates (Mbase) and Empirical Bayes estimates 

(EBE) of the individual PK parameters are computed. A one-way analysis of variance is used 

to detect differences in these EBE between the different genetic groups.  

Wald test 

The data are analysed using the complete model Mmult, and the significance of the parameters 

is assessed using a global Wald test: 
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where Σ represents the variance covariance matrix of parameters β1 and β2. The statistic W is 

compared to the critical value of a χ² with two degrees of freedom. 

Likelihood Ratio Test (LRT) 

The third test relies on the comparison between the model with no covariate effect Mbase and 

the complete model Mmult. These two nested models are compared with the LRT. The test 

statistic SLR = -2(Lbase – Lmult) is compared with a χ² with two degrees of freedom where Lbase 

and Lmult are the log-likelihood of Mbase and Mmult respectively. The two degrees of freedom 

correspond to the difference in the number of population parameters between the two models. 

Strategies for model building 

In this section, we examine a second aspect, which is model selection. The different strategies 
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under study provide decision rules for covariate inclusion in order to get the best model. 

Figure 1 represents in a diagram the decision path of the three strategies using tests. When 

performing multiple tests, a correction which preserves the false discovery rate is used 

(Benjamini and Hochberg, 1995).  

Selection based on EBE 

If the test that compares means of EBE obtained with Mbase between CC, CT and TT using an 

ANOVA is significant, the means of the EBE obtained with Mbase are compared between the 

CC and the CT, on one hand, and between the CT and the TT, on the other hand, using t-tests. 

If none or one test is significant, the one with the lower p-value leads to model selection, or 

else Mmult is selected. For example, if the test comparing the CC to the CT has the lower p-

value, Mdominant is chosen. 

 If the global test is non-significant, the means of the EBE obtained with Mbase are 

compared using t-tests opposing: i) the CC to the CT and TT put together, and ii) the TT to 

the CT and CC put together. If one or both tests are significant, the model corresponding to 

the test with the lower p-value is selected, else Mbase is selected. For example if the test 

comparing the CC to the group formed by the CT and the TT has the lower p-value, Mdominant 

is chosen. 

Selection based on Wald test 

If the global Wald test comparing W to a χ² with two degrees of freedom is significant, two 

Wald tests on coefficients estimated in Mmult are then realized; comparing both 
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significant, the one with the lower p-value leads to model selection, or else Mmult is kept. As 

an example, if 
( )

( )1

1

²

²1

β
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−
 has the lower p-value, Mdominant is chosen. 

 If the global test is non-significant, data are analysed using the two models with the 

gene effect in two classes and Wald tests are performed on the coefficients estimated in 

Mrecessive and Mdonminant. The two statistics 
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with one degree of freedom. If one or both tests are significant, the model is chosen based on 

the test with the lower p-value, or else Mbase is conserved. By way of example, if 
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has the lower p-value, Mdominant is selected.  

Selection based on LRT 

If the LRT comparing Mbase with Mmult is significant, then two LRT are performed comparing 

Mmult with the nested models Mdominant and Mrecessive. If none or one test is significant, the test 

with the higher p-value leads the model choice, or else Mmult is selected. As an example, if the 

test comparing Mmult with Mdominant obtains the higher p-value, Mdominant is selected. 

 If the global test is non-significant, Mbase is compared with Mdominant and Mrecessive 

using LRT. Then, if one or both tests are significant, the model is chosen based on the test 

with the lower p-value, or else Mbase is selected. For example, if the test comparing Mbase to 

Mdominant obtains the lower p-value, Mdominant is selected. 

Selection based on information criteria 

As an alternative, criteria such as AIC or BIC can be used for model selection. Here, the 

model with the lowest criterion is chosen. Both of these criteria balance the log-likelihood 

with the number of parameters in the population model. According the parsimony principle, a 

simpler model is preferred for equivalent information gain. The AIC is written as:  
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    AIC = -2L + 2Ppop     (6) 

The expression of the BIC involves the total number of observations: 

    BIC = -2L + Ppop log(ntot)    (7) 

The BIC is related to the Bayes factor which is a measure of the strength of evidence in 

favour of a given model and can thus be used to quantify model uncertainty. 

 Other criteria have been defined, derived from those above: the corrected AIC (AICc) 

defined by Akaike for small samples i.e. when ntot/Ppop < 40 (Sugiura, 1978) and the 

consistent AIC (CAIC) (Bozdogan, 1987). They are derived from AIC and involve the total 

number of observations: 

    AICc = AIC+  
1-P-n

1)(P 2P

poptot

poppop +
   (8) 

    CAIC = -2L + Ppop (log(ntot) +1)   (9) 

Another formulation for BIC has also been proposed, BICc, where ntot is replaced by the 

number of subjects (Raftery, 1995): 

    BICc = -2L + Ppop log(N)    (10) 

Estimation methods 

In NLMEM, the parameters and their standard error are mainly estimated using maximum 

likelihood. However the likelihood function for these models is expressed as an integral and 

has no analytical solution. Specific algorithms have therefore been proposed to perform the 

maximization. The approach most frequently used relies on first-order approximations of the 

likelihood function. This approach has been implemented in the NONMEM software version 

V which is the most frequently used software in PK/PD analyses. In NONMEM two 

approximations can be used: the first-order method (FO), relying on a first-order linearization 
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of the likelihood function around bi = 0, and the first-order conditional estimation method 

(FOCE), relying on a first-order linearization of the likelihood function around the estimates 

of the individual random effects. Although the FO method suffers from bias and lack of 

precision it is still frequently used as it is faster and has less convergence problems than 

FOCE. In this paper, we compare both estimation methods. More precisely, we use the FOCE 

with interaction method, allowing possible interaction between inter- and intra-variability. 

Real data and simulation study 

Real data 

We illustrate the different approaches on data from a PK sub-study of the COPHAR 2-ANRS 

111 study, a multicentre non-comparative pilot trial of early therapeutic drug monitoring in 

HIV positive patients naïve of treatment. The objective of the trial was to assess the benefit of 

a pharmacological intervention after measurement of trough plasma concentrations of 

protease inhibitors (Mentré et al., 2005). We focus on the PK sub-study from the group of 

patients receiving indinavir boosted with ritonavir. Patients were genotyped for the ABCB1 

exons 21 and 26 to investigate genetic polymorphism impact on pharmacokinetics of the 

protease inhibitors, which are well-known substrates of the P-gp (Fellay et al., 2002).  

 Forty-two patients were included, one patient withdrew from the study and one 

switched to another protease inhibitor during the first week of treatment. We therefore 

obtained PK data for 40 patients (27 men, 13 women) with an average age of 36.5 years. PK 

profiles were determined at 1, 3, 6 and 12 h after administration of the drug at a date two 

weeks after the treatment onset. One patient had missing information for the two genotypes, 

and ABCB1 exon 26 genotype was missing in two other patients.  

Simulated data 

The design used in the simulation mimics that of the application data set. We simulate PK 
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studies of N = 40 (equivalent to the application sample size) and N = 200 patients with four 

samples (1, 3, 6, 12 h after dose) at steady state. The same bid doses of 400 mg for indinavir 

and 100 mg for ritonavir are assumed for all patients. The concentrations are simulated using 

the steady-state one-compartment model with first-order absorption and elimination that was 

used to model the indinavir concentrations in the COPHAR 1-ANRS 102 study (Brendel et 

al., 2005): 
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where F represents the bioavailability, ka the absorption rate, k the elimination rate, V the 

volume of distribution and τ = 12 h the time between two doses. We use the following 

population parameters: V/F = 102 L with interindividual variability ωV = 41.3%, ka = 1.4 h-1 

with ωka=113%, k = 0.2 h-1 with ωk = 26.4% obtained with a preliminary analysis of the real 

data using the FO method in NONMEM and a residual error of 20%. The measurements 

below the quantification limit (BQL) are treated in the analysis using a standard approach: the 

first value in a series of BQL was set to LOQ/2 and the remaining values were discarded 

(Beal, 2005). 

Under H0, 1000 data sets are simulated with a design of N = 40 patients and 1000 with 

a design of N = 200 patients. We simulate a combination of SNP on two exons located on the 

same chromosome. The bioavailability F is assumed to depend on the diplotype. Because the 

model is parameterized as V/F, ka and k, this is equivalent to assuming that V/F depends on 

the diplotype. The distribution of the exons mimics that of exon 26 and exon 21 of the 

ABCB1 gene as reported by Sakaeda and colleagues (Sakaeda et al., 2002) – we note C and G 

respectively the wild-type allele for the 2 exons and T the mutant allele. With those 

properties, for data sets with 40 patients we expect on average 9 individuals with a CC 

genotype, 18 with CT genotype and 13 with TT genotype for exon 26. 
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 Under the alternative hypothesis, we assume the following effect of the two 

polymorphisms (modified from equation (4)), where G26i denotes the genotype for the exon 

26 and G21i the genotype for the exon 21:  

    (V/F)i= V/F β (G26i ) δ(G21i )  e
bi   (12) 

where β(G26i) is β0, β1 or β2 if = CC, CT or TT as previously and δ(G21i) is δ0, δ1 or δ2 if G21i 

= GG, GT or TT. Under H1 we set β(G26) = 1, 1.2, 1.6 and δ(G21) = 1, 1.1, 1.3. These values 

were chosen to provide a good power for the detection of one SNP effect in the context of the 

simulations while remaining consistent with results found in the literature concerning the 

effect of ABCB1 polymorphism. With those genetic coefficient effects and the distribution 

from the literature, we simulated 100 data sets with the N = 40 design. When we computed 

the (V/F)i EBE from Mbase and performed bilateral t-tests to compare the wild homozygotes 

and the mutant homozygotes for the exon 26, we obtained a power of 80% (Machin et al., 

1997). 

 The simulation of each data set is performed as follows. The set of possible genotypes 

for exon 26 and exon 21 is S={CC-GG, CC-GT, CC-TT, CT-GG, CT-GT, CT-TT, TT-GG, 

TT-GT, TT-TT} with corresponding simulated frequencies f={0.2, 0.02, 0.02, 0.05, 0.38, 

0.05, 0.04, 0.04, 0.2}. For each individual the genotypes are drawn from this distribution.  

Under H1, both genotypes condition the value of the fixed effects for V/F according to 

equation 11. Then we simulate a random effect vector bi from a normal distribution N(0,Ω), 

yielding the individual parameters vector θi according to equation 3. The concentrations are 

computed using these parameters. Finally we add a residual error, generated from a normal 

distribution N(0, σ2f(θ,ti,j)), to each predicted concentration to obtain the simulated 

concentration.  
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 Simulations were performed using the statistical software R (R Development Core 

Team 2006) running under Linux (Red Hat 9.0). 

Evaluation of the tests for genetic polymorphism effect 

In the first step, each of the three tests presented above is applied to detect the effect of the 

exon 26 polymorphism on the 1000 data sets simulated under H0 for each design (40 and 200 

patients). Tests are performed on estimations obtained for each data set using FO and FOCE 

in NONMEM. The type I error for each analysis is defined as the percentage of data sets 

where the corresponding test was significant. The expected prediction interval with 1000 

simulations and a value of 5% is [3.7; 6.3]. To ensure a type I error of 5%, we define a 

correction threshold as the 5th percentile of the distribution of the p-values of the test under 

H0. 

 In the second step, for the design with 40 patients, the same tests are performed using 

the 1000 data sets simulated under H1. The power is defined as the percentage of data sets 

where the corresponding test was significant. We use the corrected threshold to compute the 

corrected powers. This allows comparison of the different tests even if the type I error is 

different from 5%. 

 Data sets with a group defined by the genotype for exon 26 with less than two patients 

are discarded from the analysis. It should be emphasized that the number of simulated data 

sets for which the tests can be applied are often less than 1000. Indeed, the algorithms FO and 

FOCE used in the NONMEM software are sometimes unable to converge on a data set. In that 

case, estimates are not available and no tests can be applied. Similarly, even when the 

linearization algorithms achieve convergence, the variance covariance matrix is not always 

available. More precisely, to perform the ANOVA on the EBE only the convergence of model 

Mbase is required with or without the SE estimates. The Wald test requires the parameter 

estimation error to compute the test statistics, thus not only the convergence of model Mmult is 
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required but the variance covariance matrix must also be available. The convergence of both 

Mbase and Mmult is necessary to apply the LRT but the covariance step is not needed to 

succeed. The three tests were also evaluated on a subset of data sets fulfilling all the 

conditions listed in this paragraph using FO or FOCE. 

Evaluation of the strategies for model building 

The different model building strategies described above based either on tests or selection 

criteria are evaluated on data sets with the N = 40 design. Results are reported as the 

percentage of data sets for which each model of the exon 26 polymorphism effect is selected, 

and this with simulation under H0 or under H1. The correct model is Mbase under H0 and Mmult 

under H1. The results of the strategies obtained by simulation under H0 are not used to modify 

the strategies under H1 as there are no simple correction methods for over-selecting covariate 

models under H0. 

 As for the evaluation of tests, the analyses are not always performed on the 1000 data 

sets. The conditions to perform model building following an ANOVA are identical to those 

described for the test. To choose the best model using Wald tests, the convergence and the 

covariance step are required for the three models including the gene effect. For the selection 

with the LRT, convergence of the four models is required and for the criteria based selection, 

at least one model must have achieved convergence. The different strategies were also 

evaluated on samples satisfying all conditions with FO and FOCE. 

Application to real data 

The indinavir concentrations are analysed with the same PK model as in the simulation study. 

The estimation method is chosen based on performances in the simulation study. Both the 

exons 26 and 21 of the ABCB1 gene are investigated using the three tests and the eight model 

building strategies. 
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RESULTS 

Type I error and power of the detection tests 

For the design with N = 40, three simulated data sets (one under H0 and 2 under H1) are 

discarded from the analysis due to a group of less than two patients with the TT genotype. 

Also, FOCE encounters many more convergence problems than FO; K, the number of data 

sets among the 1000 on which the test is performed, is always lower with FOCE.  

 Type I error estimates of the three tests performed are shown in Table 1. For the 

design with N = 40, the ANOVA type I errors do not significantly differ from 5% with both 

estimation algorithms. The LRT type I error estimates show a slight significant increase with 

FOCE and increase by ten times using FO. For the Wald test, there is a rather important 

significant increase for FOCE and again inflation by four times with FO. For the design with 

200 patients, the LRT attain a type I error non-significantly different from 5% and the Wald 

test still has an estimate slightly superior to the nominal level with FOCE. The large increase 

of the type I error remains the same with FO for the LRT and the Wald test.  

 Estimates are given of the power of the tests using both estimation algorithms for the 

ANOVA, the Wald test and the LRT, for the design with 40 patients, in Table 2. For each test 

and each estimation method, the corrected power is computed using the corresponding 

empirical threshold in order to maintain a type I error of 5%. The corrected power for LRT 

and Wald tests based on the FO method were low, but the inflated type I error in these 

situations already show that this estimation method is poor. The powers for the ANOVA 

(using FO or FOCE) and the LRT for FOCE are around 70%, but the power of the Wald 

approach for FOCE is much lower (25%). We explored the FOCE outputs to understand this 

last result. In fact, with the FOCE algorithm in NONMEM, we observe correlations between 

the estimates of the gene effect coefficients and their estimation errors. This relationship leads 
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to decreased values of the Wald statistic and therefore reduces the power to detect a genetic 

polymorphism effect. The same results were obtained considering only the subset of data sets 

fulfilling all convergence conditions for both FO and FOCE. 

Model selection strategies 

The results of the model selection strategies applied to the data sets simulated under H0 with 

the design of 40 patients are presented in Table 3. Again, the performances of the FO 

algorithm are unsatisfactory except for the strategies based on EBE. With FOCE, both model 

selection strategies based on EBE and LRT select the correct model Mbase in about 90% of 

instances whereas the Wald approach selects a model with a gene effect in around 15% of the 

data sets. Using selection criteria, the AIC and AICc obtain the worst performances, selecting 

a model with a gene effect in 57.8% and 51.7% of the data sets respectively. BICc shows 

performance close to that of the approach based on Wald tests, while CAIC (4.7%) and BIC 

(6.7%) select a model with a gene effect in about 5% of the data sets. 

 The results on data sets with N = 40 simulated under H1 are given in Table 4. The 

results of the strategies using the LRT, Wald tests or a criterion with the FO estimation 

method are not presented because of the poor properties under H0. A model with a gene effect 

is selected for about 70% of the data sets using CAIC, for about 80% of the data sets using the 

different model-building strategies based on tests or BIC, for about 90% of the data sets using 

BICc, and for about 99% of the data sets using AIC and AICc. However, for the latter, the 

percentage of data sets where Mbase is not selected under H0 is greater than 50%. Another 

noticeable result is that the model used to simulate the data Mmult is seldom selected compared 

with the intermediate model Mrecessive, which is chosen in 30 to 50% of the data sets using the 

different methods. The simulated value β1 is low compared with β2, therefore if the model-

building strategies succeed in selecting a model with a gene effect, it is not always the correct 
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one. The performances are similar using the sample of data sets for which all conditions were 

put together with FO and FOCE. 

 Figure 2 represents a summary of these results, placing each strategy on a bi-

dimensional plan; the ability to select a model with a gene effect under H1 versus the trend not 

to select Mbase under H0. The CAIC is the test which has the best properties under H0, but the 

BIC more often selects a model with covariate under H1 while it is only slightly less 

conservative under H0. We also note that the LRT, the BIC and the ANOVA are clustered 

together, and thus offer similar compromises. 

Application 

Figure 3 represents a spaghetti plot of concentrations versus time for the 37 patients from the 

indinavir arm of the COPHAR2 study, sorted by genotype classes for exon 26. Concentrations 

show an important interindividual variability and only three patients were mutant 

homozygotes for this polymorphism. 

 As the simulation study has shown poor performances with the FO algorithm, we 

estimated the model parameters using the FOCE with interaction algorithm. Therefore, the 

estimates are different from the simulated values obtained in the preliminary analysis. In 

addition, the estimate of the interindividual variability for k was very small and we fixed it to 

0 (no variability). The model with no covariate had an absorption constant of 0.8 h-1 with an 

important interindividual variability of 70.3%, an elimination constant of 0.2 h-1 and a volume 

of distribution of 99.3 L with an interindividual variability of 47%. All the estimation errors 

were below 20% for the fixed effects and below 40% for the variances. 

 For the influence of the ABCB1 exon 26 on the indinavir volume of distribution, the 

ANOVA and the LRT were non-significant (P = 0.7 and 0.2 respectively). The global Wald 

test obtained a p-value of 0.02, however the corrected threshold defined in the simulation 

study for this test is 7.5.10-3. The model with no covariate was chosen using the selection 
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strategies based on the EBE, or on the LRT, using CAIC, BIC and BICc, whereas the strategy 

based on Wald tests, AIC and AICc selected Mrecessive. No influence of the ABCB1 exon 21 on 

indinavir volume of distribution was detected using any of the tests or selection strategies 

under study. 

 

DISCUSSION 

In this work, we evaluate several statistical tests and model selection strategies using 

nonlinear mixed effects models to analyse the impact of a genetic polymorphism on one PK 

parameter through simulation. We also study the impact of the estimation algorithms in 

NONMEM, comparing the two first-order approximations most widely used FO and FOCE, 

which linearize the model function respectively around the random effects equal to 0 and 

around the individual estimates of the random effects. Although the FO method has been 

shown to suffer from various problems, it is still used because the FOCE algorithm is known 

for numerical difficulties and for its slowness. Using the FO algorithm we observe 

unsatisfactory performances for all the tests and model selection strategies with the exception 

of methods based on the EBE. The linearization of the likelihood function around the fixed 

effects leads to type I error inflation (Comets and Mentré, 2001, Wählby et al., 2001, Panhard 

and Mentré, 2005). 

 With FOCE, there is a significant increase in the type I error of the LRT and the Wald 

approach with a design including 40 patients. This increase has already been described for the 

LRT (Comets and Mentré, 2001, Wählby et al., 2001) and has been also shown for the Wald 

test (Panhard and Mentré, 2005). The design with 200 patients is closer to asymptotic 

conditions and shows as expected a correct type I error. Performing simulations under H0 can 

be used to correct the threshold for the test under H1 as we did in the present study. We 

observe a power around 70% for the tests using ANOVA and LRT which is close to the 
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power of 80% expected from the simulation settings. Of course if the study was designed 

specifically to detect a gene effect the sample size could be increased to ensure a higher (more 

ethical) power. Our objective here was to compare different methods and we used the data 

from the COPHAR2-ANRS 111 trial to provide the settings for the PK simulations, as we 

have analysed these data thereafter. The simulated effect of gene was chosen to be consistent 

with the literature, though in the COPHAR2 trial the genotype distribution is slightly 

unbalanced. The reduced power of the Wald approach and the unsatisfactory efficacy of the 

model selection strategy based on the Wald tests could result partly from a wrong estimation 

of the standard errors due to the log-likelihood function linearization. Indeed, we observe with 

FOCE that in the simulations the estimation errors are highly correlated to their estimates. 

Because the Wald statistic is based on the ratio of the estimates to the estimation error, this 

could explain the poor performance of the Wald tests under H1. Finally, FOCE met with 

convergence problems: on M0 and MCCvsCTvsTT which involved no mathematical complexities 

for N = 40 under H1, 35 (3.5%) and 48 (4.8%) runs did not achieve convergence, either for 

numerical reasons or because they had to be terminated and we could not obtain an estimate 

of the variance-covariance matrix in 32 (3.2%) and 38 (3.8%) runs, respectively. This could 

have been improved partly by the use of different initial conditions, nonetheless the results 

were identical using the sample of data sets fulfilling convergence conditions for the three 

tests using both estimation methods. Among the different implementations of both algorithms 

available, we chose to use NONMEM as it is the most popular tool in the pharmaceutical 

industry. Our results can be extended to the FO method implemented in SAS as it computes 

the same likelihood function up to a constant (Wang, 2007), although it is not the same 

algorithm (Roe, 1997). Similarly, FOCE with interaction and the nlme method with the 

varConstPower option implemented in Splus should give the same results, save for the lower 

accuracy of the Splus approximation (Girard and Mentré, 2005, Wang, 2007). The 
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simulations and analyses in the present paper have been performed using version 5.1 of 

NONMEM. A new version of NONMEM, version 6, has been released in December 2006, 

and was implemented in our department after the major part of the analyses had already been 

run, so that we kept NONMEM 5.1 for this study. The FOCE routine in NONMEM 6 has 

been rewritten and should provide more stable runs, which may reduce the convergence issues 

we have found in the present study. However, in our preliminary results with using 

NONMEM 6 on a subset of the simulated datasets, an increased number of runs failed the 

covariance-step. Rather than reporting partial results in the present study, we will investigate 

this matter in a subsequent work. 

 Model selection strategies based on tests have, to a certain extent, a high rate of false 

inclusion under H0 (over 10%) which could result from the uncorrected multiple model 

comparisons. Further there is no simple way to correct the model selection under H1 by taking 

into account the simulations under H0. Consequently, we have to be cautious about assessing 

the performance under H1 when the behaviour is poor under H0.  

 With respect to selection based on criteria, except for the performances of the BIC and 

the BICc not showing any trend to conservatism, under H0 our results agree with the 

literature. The acceptable performance of the CAIC has to be noted, as well as the very poor 

performance of AIC and AICc. Under H1, there is a satisfactory weak selection of Mbase with a 

rather important representation of Mrecessive. Indeed, in our simulation conditions, Mrecessive and 

Mmult are close and the power to detect a difference between these two models is much lower 

than the power to detect a difference between Mbase and Mmult. As a side-note, in the Bayesian 

literature, it is usual also to consider not only the best model (i.e. the model with the lowest 

criterion), but also models close to the best model (Raftery, 1995). However in our study, the 

simulation model is rarely close in this sense to the best model. 
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 Finally, in our study, for the design with 40 patients, the ANOVA on the EBE is the 

only test that maintained a 5% type I error, as well as a good power. It should be noted that 

we simulated a sufficient number of samples per patient with respect to the number of model 

parameters. In sparse sample situations, regression to the mean is known to occur with EBE 

(Panhard and Mentré, 2005), which could result in lower power to detect differences between 

genotype groups. We plan to test this hypothesis in a subsequent study with a sparse design 

including only two samples per patient.  

 We also confirm that both AIC and AICc should not be used for model building but 

further studies are required to provide recommendations on the other selection strategies. 

Regarding the estimation methods, if FO can still be used in covariate screening on the EBE, 

one should avoid performing model building with the LRT or Wald tests based on results 

from this algorithm.  

 We illustrate the different approaches using data from the indinavir PK sub-study of 

the COPHAR2 ANRS-111 trial. The PK model has already been described but no gene effect 

has been investigated using a population approach to date. The estimated parameters are in 

accordance with estimations obtained in other studies (Csajka et al., 2004, Goujard et al., 

2005, Kappelhoff et al., 2005). The Wald test is the only test to detect an influence of ABCB1 

exon 26 on the volume of distribution. Considering the corrected threshold provided by the 

simulation study, we can probably ascribe this discrepant result to the inflated type I error.  

Similarly, it is the three strategies with the highest percentage of data sets where Mbase is not 

selected under H0 that select a model with the ABCB1 exon 26 polymorphism as covariate. 

The polymorphism on the exon 26 of the ABCB1 gene has been shown to impact on plasma 

concentrations of nelfinavir, another protease inhibitor (Fellay et al., 2002). However, this 

work agrees with another study (Verstuyft et al., 2005), where no effect of the polymorphisms 

from ABCB1 exon 26 and 21 on indinavir bioavailability was found. 
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 Another extension of this work would be to simulate under H1 various levels of the 

gene effects, which would provide more information on the relationship between the strength 

of the genetic polymorphism effect and the power. Designing an optimal sampling schedule 

for testing a gene effect with a given power is also an interesting challenge and the extension 

of the PFIM software for design optimization in the case of models with covariates could be 

used (Retout and Mentre, 2003, Retout et al., 2007). Moreover in the genetic framework one 

should keep in mind the complex pathway leading from DNA to metabolic activity, which is 

usually controlled by more than one exon. Another perspective would therefore be to analyse 

the influence of the haplotypes (Innocentia et al., 2005), since such a classification seems to 

be more relevant at the DNA level. 

 Pharmacogenetic studies using NLMEM have many advantages as fewer samples are 

required to estimate parameters with a biological meaning. The current literature presents a 

wide array of methods for covariate selection using NLMEM. We show in this study that 

methods using EBE are not only efficient in data exploration but also in model selection on 

data sets with enough samples per patient. We also emphasize that using estimation 

algorithms based on likelihood linearization, LRT type I error is inflated, thus one has to 

perform simulations or work with large data sets. Finally, the problems of the FO and FOCE 

algorithm in terms of convergence and bias are an incentive to use more recent estimation 

methods (Samson et al., 2007). 
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Table 1. Type I error for each test and for each algorithm. 

N = 40 N = 200 
Test Algorithm 

K  Type I error (%) K Type I error (%) 

FO 997 5.9 1000 4.4 
ANOVA 

FOCE 986 5.6 982 5.1 

FO 975 23.4* 984 10.3* 
Wald  

FOCE 924 11.7* 860 6.5* 

FO 989 46.9* 977 54.0* 
LRT 

FOCE 964 7.9* 956 5.0 

K is the number of data sets on which the test could be performed. 

*Estimate significantly different from 5%.  
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Table 2. Power for each test for N = 40. 

Test Algorithm K Power (%) Corrected power (%) 

FO 995 69.8 66.5 
ANOVA 

FOCE 968 71.2 69.3 

FO 974 61.5 7.7 
Wald  

FOCE 905 57.2 24.7 

FO 958 90.2 48.7 
LRT 

FOCE 947 78.7 71.0 

K is the number of data sets on which the test could be performed. 

The corrected power was obtained using the fifth percentile of the empirical distribution of the test statistic 

under H0 as the cut-off value for the test. 
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Table 3. Percentage of data sets simulated under H0 with a design of N = 40 for which 

each model is selected. 

Model1 
Method Algorithm K 

Mbase Mrecessive Mdominant Mmult 

FO 997 91.6 4.1 3.9 0.4 
ANOVA 

FOCE 986 90.9 3.8 4.7 0.6 

FO 947 68.4 11.1 16.3 4.2 
Wald 

FOCE 876 83.0 5.8 9.8 1.4 

FO 976 50.3 18.7 17.0 14.0 
LRT 

FOCE 951 91.3 4.0 3.5 1.2 

FO 999 14.9 23.2 22.4 39.5 
AIC 

FOCE 970 42.2 22.4 21.3 14.1 

FO 999 17.4 24.4 32.2 35.0 
AICc 

FOCE 970 48.3 20.7 20.1 9.9 

FO 999 63.0 16.6 14.5 5.9 
CAIC 

FOCE 970 95.3 2.1 2.5 0.1 

FO 999 55.7 19.6 16.6 8.1 
BIC 

FOCE 970 93.3 3.1 3.0 0.6 

FO 999 44.6 21.7 20.0 13.7 
BICc 

FOCE 970 85.6 7.0 6.0 1.2 

K is the number of data sets on which the test could be performed. 

1 Mbase:  {β0 = β1 = β2 = 1} (CC=CT=TT) model with no gene effect. 

Mrecessive: {β0 = β1 = 1, β2 ≠ 1} (CC = CT ≠ TT), reduced model. 

Mdominant: {β0 = 1, β1 = β2 ≠ 1} (CC ≠ CT = TT), reduced model.  

Mmult: {β0 = 1, β1 ≠ β2 ≠ 1} (CC ≠ CT ≠ TT), complete model. 
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Table 4. Percentage of data sets simulated under H1 with N = 40 for which each model is 

selected.  

Model1 
Method Algorithm K 

Mbase Mrecessive Mdominant Mmult 

FO 995 25.5 44.8 21.0 8.7 
ANOVA 

FOCE 968 22.3 43.3 25.5 8.9 

Wald FOCE 878 17.9 41.7 32.7 7.7 

LRT FOCE 923 19.1 47.3 20.5 13.1 

AIC FOCE 962 1.3 31.1 13.1 54.5 

AICc FOCE 962 1.6 35.1 14.7 48.6 

CAIC FOCE 962 28.1 48.5 19.9 3.5 

BIC FOCE 962 21.6 50.3 21.7 6.4 

BICc FOCE 962 11.5 51.7 33.1 13.7 

K is the number of data sets on which the test could be performed. 

1 Mbase:  {β0 = β1 = β2 = 1} (CC=CT=TT) model with no gene effect. 

Mrecessive: {β0 = β1 = 1, β2 ≠ 1} (CC = CT ≠ TT), reduced model. 

Mdominant: {β0 = 1, β1 = β2 ≠ 1} (CC ≠ CT = TT), reduced model.  

Mmult: {β0 = 1, β1 ≠ β2 ≠ 1} (CC ≠ CT ≠ TT), complete model. 

Results obtained with FO are not presented for these strategies because of their poor performance under H0 

(table 3). 



Model-based tests for pharmacogenetic analyses 

 

Figure 1 



Model-based tests for pharmacogenetic analyses 

 

F
ig

ur
e 

2 



Model-based tests for pharmacogenetic analyses 

 

F
ig

ur
e 

3 



Model-based tests for pharmacogenetic analyses 

Figure 1. Decision path used to choose the best model for the selection strategies based on 

tests. 

Figure 2. Percentage of data sets simulated under H1 where the model with no gene effect 

(Mbase) is not selected versus the same percentage under H0 for the eight model selection 

strategies using FOCE for N = 40. The vertical line corresponds to a value of 5% and the 

horizontal line to a value of 80%. 

Figure 3.  Indinavir concentrations (ng/mL) at steady state collected in the COPHAR2 ANRS-

111 trial versus time, sorted by ABCB1 exon 26 genotypes. The plain lines correspond to a 

dose of 400 mg indinavir, the dashed lines correspond to 600 mg and the dotted lines 

correspond to 800 mg, all with a dose of 100 mg ritonavir bid. 

 


