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When it is better to estimate a slope with only one point
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One of the five basic postulates of Euclidean geometry is that one can draw a straight line between any two points . Therefore,1

intuitively two (or more) measurements seem essential in order to investigate the change in a biomarker. This note illustrates how this

simple intuition fails, leading to imprecise and biased results in common situations. We will consider the biomarker CD4  T Lymphocytes+
count (CD4) in a trial or observational study of Human Immunodeficiency Virus (HIV) infection as an example. The primary objective of

a trial could be to evaluate the change in CD4 after the initiation of a randomised intervention, or analysis of a change in the biomarker

could be a retrospective exploratory analysis in both types of study. In either case, some participants may not have two marker

measurements available, and this is likely to occur more frequently in the latter because this statistical analysis was not planned. The

question is: should these participants be excluded or not? In other words, should one use a complete data set or the whole sample?

Today, most statistical packages include methods which work with different numbers of measurements for each participant,

technically termed unbalanced data  , . Such approaches allow all participants to be included, those with only one measurement as well“ ” 2 3

as those fortunate enough to have more. One such method is a linear mixed or random effects model , . The general idea is to model the2 4

absolute levels of biomarkers from all participants - participants with only one value can still contribute population level information about

the average biomarker levels at the time of their measurement. However, this kind of model does not just estimate overall levels in the

study population  it assesses how different individual participants are from this population average. By making the reasonable assumption–
that individual level baselines (intercepts) and subsequent changes (slopes) in the participant population come from a statistical distribution

(usually Normal), one can predict the slope of a patient with a single measurement only, for example, just at baseline.

How does it work intuitively?

When measurements from an individual are not available during follow-up, the method behaves as if that participant had contributed

the follow-up values of patients whose baseline level and other measured characteristics are most similar.

How valid is the estimation of a slope when some patients only have one marker measurement?

In statistics, it is usual to distinguish three kinds of missing data : 1) missing completely at random  (MCAR), 2) missing at5–7 ‘ ’ ‘
random  (MAR) or 3) informatively missing . The first situation occurs when a marker value is missing at a given time independently of’ ‘ ’
other values of the marker or explanatory variables (measured or not). For example, it happens if the test tube is broken by accident. A

missing observation is missing at random  when the probability of not observing this value may depend on previously observed values.‘ ’
For instance, values could be missing after a participant reaches a threshold level (e.g. 200 cells/ L) that defines the end of the follow-upμ
in a given study. Finally, a missing observation is informatively missing  when the probability that data are missing depends on some‘ ’
unobserved values. This situation could happen when a participant misses a visit because they are too sick (related to very low CD4). A

linear mixed or random effects model as described above will provide unbiased estimates when missing measurements are due to either of

the first two mechanisms. This is not the case for the third mechanism.

What about the intuitive alternative of excluding patients with only one measurement available?

Excluding some participants without a second measurement for particular reasons is analogous to a complete case analysis , although‘ ’
this is more often recognised in the context of missing explanatory variables. Such complete case analysis  is known to be valid  when‘ ’ only

the data are missing completely at random, meaning in our example  if the fact that a patient has no follow-up measurement is notonly

linked to the baseline value or any explanatory variable. In this situation, excluding patients with only one measurement from analyses will

produce estimates which are unbiased but with a poorer precision (higher variance, larger confidence intervals) compared to estimates

from random effect models, that is, will give basically the same results but with reduced statistical power to detect genuine differences.

However, a more likely situation is that data are missing at random , that is whether or not a biomarker value is observed depends on at‘ ’
least one of the prior values or other explanatory variables; then excluding participants with only one measurement leads to selection bias.

For instance, this situation occurs when participants with lower baseline values are more likely lost to follow-up and also have the poorest

treatment response (positive correlation between baseline value and slope value). In this case, MCAR assumption is violated; and

excluding participants with only one baseline measurement overestimates the increase in marker values.
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An example

We illustrate this with a simulation study based on the increase in CD4  cell count after initiation of antiretroviral treatment in HIV+
infected patients . Lets take a study population of 100 patients with three measurements, i.e. at time 0 (treatment initiation), 1 and 2 years.8

Patients started a new treatment with an average of 200 cells/ L and have a mean increase of 100 cells/ L per year, strongly and positivelyμ μ
associated with the baseline value (r 0.88): the CD4  increase is more rapid in those with higher baseline CD4 . From this complete= + +
simulated dataset, we generated two incomplete datasets by simulating loss to follow-up of different groups of participants. In the first

incomplete dataset, we deleted values at year 1 and 2 for a random selection of half of the participants. In the second, observations at year

1 and year 2 were deleted for all patients with CD4  less than 200 cells/ L at baseline. With each incomplete dataset (i.e. deleting+ μ
randomly or if baseline CD4<200), changes in CD4  cell count were estimated by two different analyses using a random effects model+
including an intercept (for baseline) and a slope (for rate of change), and compared with analysis of the complete simulated dataset (N 100=
patients with 300 measurements) which would not have been available had this been a real study. The first analysis included  the dataall

that would have been available if this had been a real study (N 50 patients with 3 measurements each, 50 patients with a baseline=
measurement only, total 200 measurements) and the second excluded subjects with one measurement only (N 50 with 3 measurements=
each, total 150 measurements) as intuition based on Euclid would suggest.

Case 1: random loss to follow-up

As expected, when participants were randomly lost to follow-up, the three statistical analyses gave similar estimates of mean CD4 at

baseline and during follow-up ( ). However, excluding those with only one measurement led to an increase of almost 40  in theTable 1 %
standard error of the estimates compared to the analyses performed either on the complete dataset or including all patients. In the present

example, this led to slightly wider confidence intervals ( ).Table 1

Case 2: loss to follow-up when baseline CD4 below 200 cells/ Lμ

All data points and estimated trajectories are shown in . Estimates from the complete dataset and from all available data alsoFigure 1

including participants with only one measurement were unbiased ( ), that is the baseline CD4 and rate of change in CD4 were bothTable 1

estimated correctly compared to the underlying model used to generate the data. In contrast, estimates restricted to participants with two or

more measurements were biased upward: with a difference of 60 cells/ L for the baseline value and 31 cells/year for the rate of increase.+ μ +
This result is expected because we generated missing at random  (but not missing completely at random ) data by deleting subsequent‘ ’ ‘ ’
observations in those with baseline CD4 < 200 cells/ L); the complete case analysis that excludes those with only one availableμ
measurement excludes patients who are likely to have had poorer responses, leading to biased estimates. The random effects model

provides unbiased estimates from the dataset including all patients even if half of them had only one measurement. The model could

predict the value of CD4  for the missing values during follow-up (in red in ) thanks to the information provided by the other+ Figure 1

patients and the available value at baseline.

Conclusion

Of course, in this artificial example, we knew that analysis excluding participants with only one measurement was likely to

overestimate the increase in CD4  because of the way we generated the data. Unfortunately, when faced with real-life data it is not+
generally possible to grasp the impact of excluding such participants. Here, we would like to endorse the use of the most efficient tools

available for analysing clinical data. In particular, focussing on the analysis of change in biomarkers, we highlight that it would be far

more effective to include all patients, even those with only one measurement, providing that a relevant statistical approach is used.

Moreover, this result, whilst well known to statisticians and even used very widely in population pharmacokinetics studies , can be9

generalised to even more unbalanced data such as patients having very different numbers of available measurements . Also, other6

alternative approaches, such as multiple imputation, are also relevant in the context of the present note .10

However, it should be recognised that all models make assumptions, whether or not these are immediately obvious to clinical readers.

Excluding participants with only one measurement assumes that these participants are representative of the study population. Other simple

methods such as the commonly used single imputation based on the last available measure (last observation carried forward, LOCF) make

a major assumption of stability of marker values  and also underestimate variability by treating the single imputation as real observed11

data. The linear mixed or random effects methods described above make other less stringent assumptions that nevertheless might not be

true. For instance, if the marker is informatively missing then other approaches will be needed . Because it is very difficult, if possible at12

all, to identify the type of missingness mechanism, it is generally recommended to check the robustness of the results through sensitivity

analyses . However, the best way for handling missing information is trivially to have no missing observations in the first place . The6 7

idiom Garbage in, garbage out  still holds.“ ”
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Figure 1
Data and estimation of mean CD4 cells/ L according to data used: complete dataset (grey), excluding patients without follow-upμ

 measurements due to low baseline CD4 cell count (black), including all patients (red). Note: estimates from the complete dataset (in grey) are

very similar to with estimates from model fitted with patients having one measurement available or more (in red) (see ).Table 1
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Table 1
Estimated baseline CD4  and slope per year (mean and 95  confidence intervals) according to data used in analysis and missing data mechanism.+ %

Methods/Time Estimate of Baseline CD4 (cells/ L)μ Estimate of rate of change (slope) (cells/ L/year)μ
Complete data (100 pts, 300 measures) 205 (191;219) 105 (96;114)+

Case 1: lost to follow-up completely at random
(i) Including all patients (100 pts, 200 measures) 204 (189;220) +110 (99;121)

(ii) Excluding those with only one measurement (50 pts, 150 measures) 204 (183;224) +110 (97;123)

Case 2: lost to follow-up if baseline CD4 <200 cells/ Lμ

(i) Including all patients (100 pts, 200 measures) 205 (191;220) +107 (97;117)

(ii) Excluding those with only one measurement (50 pts, 150 measures) 265 (253;278) +138 (128;148)


