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Abstract

Electroencephalography (EEG) occupies an important place for studying human brain activity in general, and epileptic processes in

particular, with appropriate time resolution. Scalp-EEG or intracerebral-EEG signals recorded in patients with drug-resistant partial

epilepsy convey important information about epileptogenic networks that must be localized and understood prior to subsequent

therapeutic procedure. However, this information, often subtle, is hidden  into the signals. It is precisely the role of signal processing“ ”
to extract this information and to put it into a coherent and interpretable picture  that can participate into the therapeutic strategy.“ ”
Nowadays, the panel of available methods is very wide depending on the objectives like, for instance, the detection of transient

epileptiform events, the detection and/or prediction of seizures, the recognition and/or the classification of EEG patterns, the

localization of epileptic neuronal sources, the characterization of neural synchrony, the determination of functional connectivity,

among others. The intent of this paper is to focus on a specific category of methods providing relevant information about

epileptogenic networks from the analysis of spatial properties of EEG signals in the time and frequency domain. These methods apply

either to interictal or to ictal recordings and share the common objective of localizing the subsets of brain structures involved in both

types of paroxysmal activity. Most of these methods were developed by our group and are routinely used during pre-surgical

evaluation. Examples are detailed. Results, as well as limitations of the methods, are also discussed.
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Introduction

Epilepsy is a neurological disease that directly affects 50 million people worldwide ( ). It is characterized by thePrilipko et al., 2006

recurrence of seizures that markedly deteriorate the patient s quality of life. Epilepsy is a complex disease because there are many possible’
causes for seizures. In fact, any disturbance of the normal neuronal activity due to illness, brain damage or abnormal brain development

can provoke seizures and subsequently epilepsy ( ).Hauser & Lee, 2002

In 20  to 30  of the cases, anti-epileptic drugs do not allow for efficient control of seizures. In most patients, these drug-resistant% %
epilepsies are partial  or focal , i.e. seizures are generated in a hyperexcitable brain region, often referred to as the epileptogenic zone“ ” “ ”
(EZ), located in one or both hemispheres. In partial epilepsies, the localization and the precise definition of the EZ are the two main issues

to be solved in order to propose to the patient an alternative therapeutic strategy like surgery which, for these patients, may at present be

the only option to suppress seizures. Therefore, during the pre-surgical evaluation of patients with drug-resistant partial epilepsy, a number

of clinical investigations providing both anatomical (presence of a lesion, for instance) and functional (presence of abnormalities in brain

electrical or metabolic activity, for instance) data are performed in order to determine the organization of the EZ which often corresponds

to a network of structurally and functionally connected brain structures ( ; ; Bartolomei et al., 2001 Bragin et al., 2000 Briellmann et al.,

). Among these investigations, electroencephalography (scalp EEG) and stereo electroencephalography (intracerebral EEG) consist in2004

the measurement of brain electrical activity using electrodes positioned either on the head or directly implanted into brain structures

respectively, potentially involved into the generation of epileptic events, either during ictal periods (seizures) and during interictal periods

(outside seizures). Therefore, in a given patient, EEG signals contain essential information about the topology of his/her epileptogenic

network. This information must be extracted  from signals and must be decoded  by clinicians in order to define the best surgical“ ” “ ”
procedure aimed at suppressing seizures while keeping the patient s cognitive, sensory and/or motor functions intact.’

The visual inspection of intracerebral EEG signals remains a difficult task, especially in the context of pre-surgical evaluation where

epileptic patients are monitored for several days, twenty four hours a day. This visual inspection can be partly helped by the use of signal
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analysis methods that make the processing of large amounts of data easier and that can characterize some information which can hardly be

quantified visually (like the coherence between signals recorded from distant sites). Although the concept of quantified EEG  started in“ ”
the early 1960s, the past decades have seen a considerable development of digital signal processing methods due, in particular, to the use

in clinical practice of digitized video-EEG monitoring systems which progressively replaced analogous systems since the 1990s.

Nowadays, the panel of available methods is very wide depending on the objectives like, for instance, the detection of transient

epileptiform events ( ), the detection and/or prediction of seizures ( ; ; Senhadji & Wendling, 2002 Gotman, 1999 Lehnertz et al., 1999

), the recognition and/or the classification of EEG patterns ( ; ), the localizationIasemidis, 2003 Creutzfeldt et al., 1985 Wendling et al., 1997

of epileptic neuronal sources ( ), the characterization of neural synchrony ( ), theEbersole & Hawes-Ebersole, 2007 Uhlhaas & Singer, 2006

determination of functional connectivity ( ), among others.Stam et al., 2007

The intent of this paper is not to cover all the aforementioned topics but to concentrate on a specific category of methods providing

relevant information about the EZ from the analysis of time-frequency and spatial properties of EEG signals (here, the terminology spatial“
 refers to the concept of inter dependency between signals recorded from distinct brain regions). Some of the methods presented in this”

paper can be applied to transient events (epileptic spikes) occurring during interictal periods, some can be applied on the on-going EEG

activity, in particular, during the transition from interictal to ictal activity. In all cases, as used in the context of epilepsy, the general

purpose of reviewed methods is to derive relevant information about the topology of neural networks involved in both types of paroxysmal

activity from invasive (intracerebral EEG) observations. Detailed examples are based on methods that are routinely used during

pre-surgical evaluation. These methods provide interpretable and useful information about epileptogenic networks and therefore about

subsequent surgical procedure to be performed in the singularity of the problem posed by each patient.

To end with, it is noteworthy that some other approaches that are also used during pre-surgical evaluation for focus localization and

extent are not dealt with in this paper as spatial methods developed in the field of epilepsy over the past decades (see ( )Michel et al., 2004

for review). Along these lines, we did not report results about linear methods (based on multivariate autoregressive model) proposed to

estimate causality (in Granger sense) between signals like the directed coherence method (DCOH) or the partial directed coherence (PDC),

among others (see ( ) for review on potential applications in neurophysiology).Gourevitch et al., 2006

Intracerebral EEG recording in partial epilepsies

Generally speaking, electroencephalography is used for both clinical and research purpose. It consists in measuring the electrical

activity of the brain using electrodes positioned on the surface of the head (i.e. scalp). From biophysical considerations, it is known that the

EEG is mainly sensitive to the post-synaptic activity of neuronal cells aligned in space, like the pyramidal cells of the neocortex (organized

in palisades ), for instance ( ). In partial epilepsies, for pre-surgical evaluation purpose, direct recording from“ ” Lopes da Silva, 2002

intracerebral electrodes can also be performed.

In the context of partial epilepsies, most of the clinical units make use of 23 to 32 scalp electrodes in routine. The sampling rate of

EEG signals also dramatically increased during the past years as the presence of fast (gamma frequency band, 30 80 Hz) and very fast–
activity (beyond gamma) might be a signature of some particular types of epilepsy ( ). The analysis of scalp EEGRampp & Stefan, 2006

recordings (always performed in conjunction with the video) is intended to extract information on the presence of epileptiform events in

interictal periods (epileptic spikes, spike-waves), on the presence of abnormal rhythms (slow waves), on lateralization (i.e. the hemisphere

in which seizures start), on the approximate localization of the EZ in a given brain region (frontal, temporal,). Such information provides

essential arguments to determine which brain structures are potentially involved in the epileptogenic network. It is thus directly used to

define the position of intracerebral electrodes, prior to surgery. Indeed, intracerebral EEG recording may be necessary when hypotheses

about the precise location and organization of the EZ (formulated from non invasive data) are not sufficient to define the surgical

procedure (brain resection). Several techniques are available for direct recording of the brain activity depending on the type of electrode

that is used and on the way electrodes are positioned in target brain structures. One of the gold standard is the stereoelectro“
encephalography  (SEEG) introduced by Bancaud and Talairach in the 1960s ( ). This technique is illustrated in ” Bancaud & Talairach, 1973

. It is based on the stereotaxic registering of the target anatomical structures and allows for recording of electrical activity withinfigure 1

the intracranial space. This attempt to characterize the epileptic activity according to a three-dimensional topography remains in contrast to

the other existing neurophysiological methods of presurgical exploration based on electrocorticography (ECoG) that uses subdural grid

electrodes. The SEEG has been therefore developed in part with the aim of overcoming certain limitations linked with the 2-D and surface

features of EcoG recording. The core of the method is the anatomo-electro-clinical correlation : a close analysis of clinical signs“ ”
(semiology) and their relationship with the regions primarily and secondarily involved in the epileptic discharge. The aim is to define a

temporo-spatial profile of the seizure s origin and propagation, thus aiding the decision for accurate surgical intervention to be performed.’

From intracerebral EEG signals to epileptogenic networks
Identification of subsets of structures involved in interictal activity

Research context and problem statement



Philos Transact A Math Phys Eng Sci. Author manuscript

Page /3 12

As mentioned previously, two types of epileptic activity reflect in EEG signals: seizures and paroxysmal transient events, often

referred to as interictal spikes  when they show a sharp component. The exact relationship between networks of structures involved in“ ”
both types of activity is a recurrent question in epileptology. Although this relationship remains unclear, the analysis of interictal events is

complementary to the analysis of seizures and is recognized as useful in the study of the epileptogenic zone. For the past decades,

numerous studies were performed on interictal paroxysmal events both in human ( ) and animal models (Talairach & Bancaud, 1966 Avoli

). Their morphology was first studied by Penfield and Jasper ( ) who introduced two classes& Barbarosie, 1999 Penfield & Jasper, 1954

(primary and propagated) and found that sharper spikes were markers of the epileptogenic lesion. Then a central question was raised about

the characterization of their spatio-temporal distribution, both in surface and intracerebral EEG signals ( ; Barth et al., 1984 Chauvel et al.,

; ). Mapping techniques were developed ( ) and revealed the origin of interictal spikes as1987 Stefan et al., 1990 Badier & Chauvel, 1995

well as possible propagation schemes. Several studies based on intracerebral recording in human also suggested that regions leading

interictal activity may match seizure onset zones ( ; ). Their identification could therefore help toAsano et al., 2003 Hufnagel et al., 2000

tailor resections in order to improve seizure control as suggested earlier in ( ).Alarcon et al., 1997

This brief literature review indicates that the co-occurrence of interictal spikes generated within distant structures can be considered as

a key information. It also shows that questions related to the organization of transient epileptic events (in time and space) remain open: in a

given patient, what are the cerebral structures involved during these events? Are these structures involved in a reproducible way? How can

reproducibility be objectively characterized? The central question to be solved from multichannel depth-EEG signals is therefore to

automatically identify the multiple structures that are conjointly involved in the generation of transient epileptic events, in a reproducible

way. This problem is particularly complex if one considers i) the tremendous amount of spikes (up to several thousands per hour) that can

be recorded during pre-surgical evaluation that usually lasts for 5 to 8 days and ii) the apparent variability of electrophysiological patterns

(in terms of EEG waveforms and involved brain structures during interictal events).

Method: automatic identification of subsets of co-activated structures (SCAS)

Only few information processing methods able to statistically characterize the spatio-temporal distribution of interictal transient events

in large data sets have been reported up to now. The objective of this section is to present the approach proposed in ( ; Bourien et al., 2005

) that can be seen as a complement to the visual analysis performed by the epileptologist. From the processing of longBourien et al., 2004

duration intracerebral EEG recordings, this approach can automatically extract the subsets of brain structures frequently and conjointly

involved in the generation of intracerebral interictal spikes (referred to as subsets of co-activated structures  or SCAS ). The approach is“ ” “ ”
summarized in . It proceeds according to three steps that are briefly described below: a) the automatic detection of monochannelfigure 2

intracerebral interictal spikes (mono-IIS), b) the formation of multichannel intracerebral interictal spikes (multi-IIS), c) the automatic

extraction of SCAS which makes use of a data mining algorithm and statistical tests.

Detection of monochannel intracerebral interictal spikes (mono-IIS)

Mono-IIS are transient events frequently observed in EEG signals recorded in epileptic patients. The detection of interictal spikes is

considered as a difficult problem. It has been - and is still - the topic of a large number of publications in the field of EEG analysis. Many

algorithms have been proposed based on Fourier or wavelet transforms, on mimetic and rule-based approaches, on neural networks, on

adaptive filtering (template matching), on principal or independent component analysis. Readers may refer to ( ) and to (Gotman, 1999

; ) for partial reviews. As shown in many studies, even very recent ( ), theSenhadji & Wendling, 2002 Tzallas et al., 2006 Brown et al., 2007

ideal spike detector does not exist as the specificity and the sensitivity remain difficult to control in a context where i) the frequency of

spikes is modulated by the patient state ( ) and ii) where human experts have themselves difficulties, in some cases,Gotman & Wang, 1992

to assess the presence of spikes in EEG signals ( ).Dumpelmann & Elger, 1999

From electrographic viewpoint, interictal events are generally characterized by a sharp component called spike, sometimes followed

by a slow wave ( ). The spike component (the useful signal ) is high amplitude and short duration compared toChatrian et al., 1974 “ ”
background EEG activity (the noise ). In this section, we present a time-frequency domain method that makes use of a first stage for“ ”
enhancing the signal-to-noise ratio and of a second stage for deciding whether or not a spike is present. The first stage is based on a

wavelet decomposition which has proven particularly suited for enhancing transient signals well localized in time and in frequency. More

specifically, a quadratic approach is used in which the cumulative value  of squared modulus of outputs of a wavelet filter banks isq(t)

computed at each sample time t ( ). The amplitude of quantity  is random and depend on the signal content. DuringSenhadji et al., 1995 q(t)

background EEG, its mean value is low. Conversely, during spike episodes, its mean value become higher as coefficients associated with

high frequency bands transiently increase. This behaviour is used in the second stage which makes use of a Page-Hinkley change-point

algorithm ( ) in order to automatically estimate time instants corresponding to abrupt changes of  In thisBasseville & Nikiforov, 1993 q(t).

method, two parameters (the bias and the threshold) are to be adjusted separately to adapt detection performances (in terms of false

negatives and false positives). Using simulations (not reported here), authors showed that this detection method produces only few false

negatives even if the rate of false positives may be higher compared to other methods. This feature was considered as acceptable since it

minimizes the lost information (spikes not detected) and consequently has a limited effect on the next steps of the entire procedure of
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SCAS extraction. For the first stage of the whole detection procedure, authors also found that performances obtained for a wavelet based

approach were similar to those obtained for a Gabor decomposition based approach in which filters have a uniform bandwidth (see for

example ( ) in which different quadratic spike detectors are quantitatively compared).Senhadji et al., 1997

Identification of multichannel intracerebral interictal spikes (multi-IIS)

The purpose of this step is to identify muti-IIS, defined as electrographic events appearing in multichannel EEG signals and including

at least 2 mono-IIS that co-occur  in the same temporal interval of duration  Typically, this issue can besolved using an algorithm based“ ” D.

on a window of duration  sliding on multichannel EEG signals, after detection of mono-IIS (previous step), as described in (D Bourien et

). This algorithm leads to the construction of an boolean matrix whose element is equal to 1 if a mono-IIS is present on channelal., 2004

within the jth multi-IIS, and is equal to zero otherwise. The columns of matrix  contain the co-occurrence information extracted fromB

multichannel EEG data. This information is the input of the third step on the procedure aimed at extracting SCAS. In the following, this

matrix is referred to as the co-occurrence boolean matrix . In the identification of multi-IIS, the critical parameter is  which is dependant“ ” D

on both the duration of multi-IIS and on the time separating distinct multi-IIS. It must be sufficiently short to avoid fusion of temporally

unrelated monochannel events but it must be long enough to avoid the situation where temporally related events are not detected.

Experimentally, authors obtained good extraction of multi-IIS in mesial temporal lobe epilepsy (MTLE) for  values ranging between 100D

msec and 250 msec in accordance with range values indicated in ( ).  was then chosen to be equal to 150 msec.Alarcon et al., 1994 D

Extraction of subsets of co-actived structures (SCAS)

This third step consists in extracting, from matrix  maximal  and frequent  SCAS, i.e. the subsets including a maximal numberB, “ ” “ ”
distant brain structures that frequently co-activate during transient events. A straightforward exhaustive method for solving this problem is

to classify all subsets present in  (each class corresponding to a set of column vectors with the same coordinates equal to 1) and toB

compute the frequency of occurrence of each class. However, for a high number  of channels, the algorithmic complexity becomes veryN

high. As described in ( ), an alternative solution is to use algorithmic techniques coming from data mining that wereBourien et al., 2004

proposed to efficiently extract frequent sets of items (or itemsets ) from large databases with reduced computation time. Such techniques“ ”
were initially developed by Agrawal et al. ( ) and Mannila et al. ( ) who first proposed iterativeAgrawal & Srikant, 1994 Mannila et al., 1994

methods that considerably reduce the number of candidate itemsets to be tested at each step. The key idea starts from the fact that i) a set

of n items (or n-itemset ) is composed of at least 2 parent (n-l)-itemsets which partially overlap and ii) a n-itemset is frequent only if its“ ”
two parents are themselves frequent. Based on these ideas, an algorithm called APRIORI was developed. The basic principle of APRIORI

is quite simple: at iteration n, the candidate n-itemsets are built from the frequent (n-l)-itemsets and are compared to a threshold in order to

evaluate if they are frequent. If so, they are called -frequent itemsets. Finally, for each discrete value of -frequent itemsets containing a

maximum number of items can also be extracted by the algorithm. In our case, these maximal -frequent itemsets correspond to the SCAS

to be extracted from co-occurrence matrix  itself constructed from the detection of mono-IIS. At this level, Monte-Carlo simulations andB,

statistical tests can be performed to evaluate the significance of extracted SCAS ( organized spatial distribution of mono-IIS  versus “ ” “
random spatial distribution of mono-IIS ).”

Results and discussion

In this section, we report the main findings obtained from the application of the method in fifteen patients with intractable partial

epilepsy of temporal origin. From simultaneous intracerebral recording of mesial (hippocampus, amygdala, entorhinal cortex,

temporo-basal cortex, internal temporal pole) and lateral (superior, middle and inferior temporal gyri, insula, external temporal pole)

structures, the first objective was to characterize the subsets of structures that co-activate during the generation of interictal spikes. The

second objective was to relate these subsets to particular anatomo-functional systems in the temporal lobe.

In order to give an idea, for a 1-hour interictal recording selected in each of the fifteen patients, the number of multi-IIS was found to

vary from 492 to 7600 (mean  SD, 3322  2190) and fifty seven SCAS were automatically extracted for all patients.  illustrates± ± Figure 3

the type of result generated by the method. In this figure, the SCAS are represented in the same schematic way: cerebral structures are

positioned along a circle (bottom: mesial temporal lobe, top: lateral temporal lobe) and extracted SCAS are represented using closed

contour lines. Surfaces delineated by contours are colored using a grey scale that indicates the SCAS occurrence frequency (  ).figure 3-a

Results obtained from the visual inspection of SCAS in the fifteen cases showed that patients may be divided into two groups depending

on the involvement of lateral structures of the temporal lobe. In the first subgroup of patients (8 out of 15) the networks generating

epileptic spikes remain limited to the mesial structures of the temporal lobe (  ). Therefore, a good spatial correspondence withfigure 3-b

the epileptogenic zone (defined as the site of primary organization of the ictal discharge) was observed. Conversely, in a second subgroup

patients (7 out of 15), the networks generating epileptic spikes extend far beyond the mesial structures as most lateral neocortical structures

were found to be involved in extracted SCAS (  ). Moreover, in all patients, at least one SCAS was localized in the mesial part offigure 3-c

the temporal lobe with a significant incidence of the subset formed by the anterior hippocampus and entorhinal cortex. This result is

consistent with respect to available data about hippocampal pathways (axons of the perforant path - major input to the hippocampus - arise

principally in layers II and III of the entorhinal cortex which is, in return, an output from the hippocampus). Among mesial structures, the
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temporobasal cortex and the internal part of the temporal pole were found to belong to SCAS identified in the mesial temporal lobe as well

as SCAS identified in the lateral temporal lobe. This pivotal role  can mainly be interpreted by the anatomy of the temporal region as“ ”
these structures are connected to both the limbic system and the lateral neocortex.

To end with, the whole method provides spatial information about mesial and/or lateral structures that are more likely to be conjointly

involved in the generation of interictal spikes and allows for categorization of patients with respect to this information. This may be the

first step towards better understanding of the relationship that may exist between networks involved in interictal activity and networks

involved in seizure activity and therefore towards enhanced use of interictal activity for diagnosis.

Identification of subsets of structures involved in ictal activity

Research context and problem statement

In human partial epilepsies, the identification of neuronal networks that are involved in the genesis and in the propagation of seizures

is the main issue. Indeed, accurate localization and determination of these epileptogenic networks (that may extend over distant brain

structures) is the pre-requisite for defining the subsequent therapeutic strategy, precisely aimed at suppressing seizures by annihilation of

epileptogenic networks. The question of identifying such networks in the brain is closely related to the question of characterizing ’
abnormal  functional couplings among neuronal ensembles possibly distributed over distant areas. Tackled questions relate to the’
characterization of interconnections between structures during the transition from preictal activity to ictal activity: are some structures

functionally connected? Can abnormal couplings be identified? How do couplings evolve during the interictal to ictal transition and during

the time course of seizures? Do some structures play a leading role in the seizure generation process?

Such questions can be approached using signal processing techniques applied on electrophysiological signals recorded from these

ensembles. As far as depth-EEG signals (that are local field potentials as recorded by macroscopic intracerebral electrodes) are concerned,

numerous studies have been dedicated to the development and/or to the use of methods aimed at quantifying the functional coupling

between recorded sites.

Formally, the two questions that are addressed can be stated as follows. Given two field signals  and  respectively recordedX(t) Y(t),

from two groups of neurons and and  1) how can we quantify, from  and  the functional coupling (in the wide sense)G  X G ,Y X(t) Y(t),

between and ? And 2) how can we estimate, by signal processing, which of the four following situations is the most likely to occur:G  X G  Y

is leading leading and mutually influence each other, and finally and are independent?G  X G , G  Y Y G , G  X X G  Y G  X G  Y

To solve these issues, proposed methods all rely on the same main assumption: the functional coupling between two neuronal

ensembles can be quantified by measuring the statistical relationship between the two signals, each signal arising from one neuronal

ensemble. In the literature, various terms are used to denote this statistical relationship, such as the degree of coupling , the degree of“ ” “
association , the synchronization  or the interdependency  between signals, among others. Proposed methods can be divided into two” “ ” “ ”
categories depending on the assumptions regarding the relationship between signals. Linear methods include the linear cross-correlation or

the coherence function. They were proposed and used to study functional couplings between brain regions during cognitive tasks or during

epileptic seizures. In this field, pioneer works were initiated by Brazier et al. ( ) who made use of the coherence function toBrazier, 1972

study the propagation of epileptic activity from intracerebral recordings. They were followed by Gotman ( ) who studiedGotman, 1987

interhemispheric relationships in partial seizures and by Duckrow et al. ( ) and Franaszczuk et al. (Duckrow & Spencer, 1992 Franaszczuk

) who analyzed synchronization mechanisms occurring at the onset of seizures. Besides these linear methods, the potential& Bergey, 1999

usefulness of nonlinear techniques in the field of EEG was also studied from the early 80 s. A first family of methods based on mutual’
information ( ) or on nonlinear regression ( ; ) was firstMars & Lopes Da Silva, 1983 Pijn & Lopes Da Silva, 1993 Wendling et al., 2001

introduced. A second family then developed based on methods coming from nonlinear physics (nonlinear dynamical systems) and chaos

theory ( ; ).Iasemidis et al., 1990 Lehnertz, 1999

Method: nonlinear regression analysis

Nonlinear regression analysis is a non parametric method aimed at evaluating the dependency of random process (a time-series signal 

 recorded from , for instance) on another process (signal  recorded from , for instance) from samples only (no data model) andY G  Y X G  X

independently of the type of relation between the two processes. This method was first used in the field of EEG analysis by Pijn and

colleages ( ; ) who showed that it performed better than methods based on linear regression or mutual informationPijn, 1990 Pijn et al., 1992

for analyzing the interdependences between intracerebral EEG signals (experimental model of generalized epilepsy). An evaluation of this

method was then performed based on realistic simulation of EEG signals generated by coupled populations of neurons (Wendling et al.,

). We showed that this method can be applied to human intracerebral EEG data for characterizing seizure patterns (2000 Wendling et al.,

). In particular, we used it to study ictal processes in patients with TLE. Results led to the proposition of a new classification of2001

seizures based on the early involvement of medial and/or lateral structures of the temporal lobe ( ).Bartolomei et al., 2001
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Nonlinear regression analysis is a bivariate method that measures the degree of association between two variables. This measure is

often referred to as the nonlinear correlation coefficient  , by analogy with the well-known linear correlation coefficient  . Formally,“ h 2” r 2

the nonlinear correlation coefficient   is computed from the signals ( ) and ( ), by considering that the amplitude  of signal (   ) ish 2 X t Y t y Y t + τ
a perturbed function of the amplitude  of signal ( ) (i.e. equal to the conditional mean of (   ) given ( )  ). The variance of thex X t Y t + τ X t = x

perturbation corresponds to the conditional variance of (   ) (i.e. the residual variance on (   ) after prediction of  values from Y t + τ Y t + τ y x

values). In pratice, this conditional variance can be estimated from a piecewise linear regression curve (   )  ( ( )).Y t + τ = h X t

where

The computation of   ( ) is reiterated for different values of the time shift  between ( ) and (   ), leading to the time shift , orh 2 τ τ X t Y t + τ τ*
time delay, for which  ( ) is maximum:h 2 τ

  is the non linear correlation coefficient. Its values are comprised between 0  and  are independent) and 1 (  is determined by h 2 (X Y Y X

). The main advantage of nonlinear regression is that it does not require any assumption of the nature (linear or nonlinear) of the

relationship between the two signals, bringing a solution to a common pitfall of linear regression. Another interesting property of the

nonlinear correlation coefficient   is that is asymmetrical: the   value, when computed from signal  to signal , differs from the valueh 2 h 2 X Y

computed from signal  to signal . This information was shown to be useful for characterizing the causality between signals (Y X Arnhold et

). Following this idea, a direction index  (named ) was proposed by ( ). It makes uses of both thisal., 1999 “ ” D Wendling et al., 2001

asymmetry information and the time delay information to provide an indication about which of the two signals is most likely driving the

other one. More recently, rigorous studies confirmed the usefulness of   parameter for quantifying statistical relationships betweenh 2

random signals ( ).Kalitzin et al., 2007

Results

An example of results obtained with nonlinear regression analysis in TLE is illustrated in . Analyzed EEG signals ( )figure 4 figure 4 - a

were recorded from intracerebral electrodes positioned in medial (amygdala, hippocampus, temporo-basal cortex, internal part of the

temporal pole) and in lateral (external temporal pole, middle temporal gyrus from anterior to posterior part) during the transition from

preictal activity to seizure activity,   values were computed pair wise (81 possible pairs for the 9 signals recorded from 9 structures in theh 2

temporal lobe) and averaged over 6 periods of 10 seconds each (2 pre-ictal, 3 per-ictal and 1 post-ictal). They were then represented in two

complementary ways: color-coded nonlinear correlation matrices ( ) and graphs ( ) in which the nodes correspond tofigure 4 - b figure 4 - c

brains structures and in which the links are proportional to   values (i.e. thick line denote high   and is interpreted as strong couplingh 2 h 2

between considered structures). In nonlinear correlation matrices, all information is represented. In the graphs, only significantly-high  h 2

values (i.e. greater than average   values computed over the interictal period 2 standard deviations) are displayed. One can see thath 2 +
dramatic modifications of   values (interpreted as couplings between structures) occur during the transition from normal  backgroundh 2 “ ”
activity to ictal activity. In particular, a strong increase of   values is observed just after the onset of the seizure marked by theh 2

appearance of fast oscillations in the limbic system (amygdala, hippocampus, temporo-basal cortex) ( , period 3). As the seizurefigure 4 - b

develops ( , period 4 and 5), the spread of ictal activity is characterized by   values which become higher, not only amongfigure 4 - b h 2

signals from the limbic system but also between signals from the limbic system and signals from lateral neocortical structures. Detailed

inspection of correlation matrices also reveals the possible strong asymmetry of the nonlinear correlation coefficient. For instance,  h 2

value computed from e.TP to p.MTG over period 5 is higher than that computed in the opposite way. This denotes the possible

propagation of the seizure from the external temporal pole (e.TP) to the posterior middle temporal gyrus (p.MTG) which is plausible from

the anatomo-functional point of view.

Discussion

This example shows the usefulness of methods aimed at characterizing the interactions between structures before and during seizures.

However, the nonlinear regression analysis is not the only method that can provide such information and the user is often confronted to the

delicate situation where several methods can be used and where discrepancies can be observed in the results provided by these methods.

Recently, two important issues were debated in this context: i) whether or not nonlinear methods perform better than linear ones and ii)

whether or not frequency-dependent methods should be preferred, as some epileptic phenomena may occur in a restricted frequency
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domain. Regarding this second point, one should notice that the frequency of EEG signals has long been considered as a key parameter

that directly relate to the oscillatory behavior of recorded brain systems. As mentioned, nonlinear methods have the capability to account

for the nonlinearity of relationship. However, the fact that most the existing ones are generally independent from frequency or at most

related to large frequency sub-bands can be considered as a limitation. Conversely, linear methods can not provide information about the

possibly nonlinear nature of the relationship but they can easily account for the signal frequency with a good resolution. The best example

is probably the coherence function defined as the cross-spectral density normalized by the power spectral densities of the two signals.

Indeed, linear coherence-based methods have been widely used in the field of EEG analysis. However, as underlined in (Zaveri et al., 1999

), the coherence function is estimated, in practice, from the Fast Fourier Transform (periodogram method) and proposed estimators are

generally characterized by strong bias and variance which make the interpretation of results difficult, especially when the correlation

between signals is weak. This problem was addressed by defining frequency bands. For instance, classical delta, theta, alpha, beta and

gamma EEG bands were used to average the coherence function ( ) or to filter signals before computation of theRazoumnikova, 2000

cross-correlation ( ; ). However, this is again not entirely satisfactory as the choice of frequencyNikolaev et al., 2001 Wendling et al., 2003

bands is critical (some important phenomena may be neglected if are bridging two user-defined sub-bands). Some of these difficulties are

addressed in ( ). The authors proposed a novel estimator for characterizing the evolution of linear relationshipAnsari-Asl et al., 2005

between signals both in the time-frequency domain. This estimator, denoted by  ( , ), is based on the computation of the Pearsonr 2 t f

Product-Moment correlation between EEG signals filtered in narrow and overlapping frequency bands (a continuous filter bank is used).

Briefly, this estimator has two advantages: i) no assumption on frequency bands is required and ii) although it asymptotically behaves like

the classical coherence estimator, it was shown to perform better in terms of bias and variance under certain conditions about frequency

dependent time delay values between signals.

An example is provided in  which shows two depth-EEG signals respectively recorded from the amygdala and the anteriorfigure 5

hippocampus during the transition to seizure in a patient with TLE ( ). Both signals are nonstationary as depicted in figure 5-a figure 5-b

which provides respective spectrograms. Typically, at seizure onset, a high frequency activity (fast oscillations around 30 Hz) is observed

in the brain structures involved in the seizure process (arrows on the spectrograms). The time-frequency characterization of the

relationship between the two signals using the  ( , ) estimator is illustrated in . It reveals that a strong relationship existsr 2 t f figure 4-c

between the narrow-band activities generated by the two structures and previously observed on spectrograms (around 30 Hz, see arrow).

Such hypersynchronization  would be very difficult to detect visually. Moreover, this phenomenon is not revealed by the“ ”
frequency-independent nonlinear regression analysis method, as illustrated in . Indeed, any method that globally performs anfigure 5-d

averaging over the frequency domain can be blind  to synchronization processes highly localized in frequency. Therefore, this example“ ”
shows the usefulness of frequency-dependent methods able to track the evolution of the relationship between signals in the time-frequency

plane with a good resolution.

Conclusions

Among electrophysiological investigation methods, electroencephalography still occupies an important place as it allows for studying

brain activity in general, and epileptic processes in particular, with appropriate time resolution.

Epilepsy is a complex dynamical disease ( ). The term epilepsy  refers to a wide variety of neurologicalLopes da Silva et al., 2003 “ ”
syndromes and disorders. In this panorama, partial epilepsies in which seizures start in a relatively circumscribed area of the brain

represent 60  of the cases. In this paper, we focused on pharmaco-resistant partial epilepsies which are considered as severe forms of%
epilepsy (since significant reduction of the frequency of seizures can not be obtained with drugs) and in which surgery may be indicated.

Scalp-EEG or depth-EEG signals recorded in patients with drug-resistant partial epilepsy convey important information about

epileptogenic networks that must be localized and understood prior to any therapeutic procedure. However, this information, often subtle,

is hidden  into the signals. It is precisely the role of signal processing to reveal this information and put it into a coherent and“ ” “
interpretable picture  that can participate to the elaboration of the decision about which part of the network should be operated on in order”
to suppress seizures (i.e. the therapeutic strategy).

The methods presented in this paper apply to intracerebral EEG. We think that progress must still be accomplished in the analysis of

scalp EEG recorded in patients with partial epilepsy. This modality has the enormous advantage of being non invasive. However, it only

allows for a global recording of the brain activity, conversely to intracerebral EEG in which electrodes implanted in brain structures record

local field potentials. Therefore, the problem of identifying epileptogenic networks from scalp recordings is highly complex in a context

where signals are also largely contaminated by patient-related artefacts (like muscular activity due to the movements of the patient during

seizures). Among recent advances in quantified scalp EEG analysis, one can mention the use of blind source separation techniques for

removal of ocular artefacts and noise (see ( ) for a review on the use of independent component analysis forJames & Hesse, 2005

biomedical signals and ( ) for performance comparisons of ICA methods or the use of nonlinear regression for theKachenoura et al., 2008

lateralization of seizures in TLE ( ).Caparos et al., 2006



Philos Transact A Math Phys Eng Sci. Author manuscript

Page /8 12

Finally, presented and quoted methods belong to a more general approach, often referred to as data-driven processing. They provide

quantities which participate in the description of the observations and subsequently in the decision that can be taken from EEG signals. We

think that such a descriptive approach can be valuably complemented by a model-driven processing aimed at providing clues about the

pathophysiological mechanisms involved into the generation of signals. In the field of epilepsy, several studies already showed that

neurophysiologically-relevant computational models can be used to interpret quantities provided by signal processing methods. For

instance, it was shown that models of coupled populations of neurons can be used to explain the time-course of interdependencies between

depth-EEG signals during partial seizures ( ). Following the same idea, the statistics of occurrence of absence seizuresWendling et al., 2001

could be explained by the bi-stable property of a model of the thalamo-cortical loop ( ). More generally, theSuffczynski et al., 2005

development of computational models is rapidly growing as there is also a need for integrating and structuring the tremendous amount of

data that is continually accumulating in epilepsy research at both clinical and experimental level ( , Suffczynski et al., 2006 Chakravarthy et

).al. 2007
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Figure 1
a) Stereo electroencephalography (SEEG) recording technique used during pre-surgical evaluation of patients with drug-resistant epilepsy, b)

An example of intracerebral EEG recording performed in a patient with TLE (interictal activity). Capital letters A, B, C,, B  refer to electrode′
labels. Targeted structures: A: amygdala and middle temporal gyrus, B: anterior hippocampus and middle temporal gyrus, C: posterior

hippocampus and middle temporal gyrus, TP: temporal pole, H : insula and superior temporal gyrus, TB: temporo-basal cortex, GC: cingular′
gyrus, B : anterior hippocampus (contra-lateral electrode)′
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Figure 2
Signal processing method for identifying subsets of structures involved in interictal epileptic events (adapted from ). SeeBourien et al. 2005

text for details.

Figure 3
Examples of results obtained from the method illustrated in . a) Recorded brain structures are placed over a circle for graphicalfigure 2

representation. The method was applied in 15 patients with mesial TLE. Results showed that in a first subgroup of patients (8 out of 15), the

networks generating epileptic spikes remain limited to the mesial structures of the temporal lobe. In the second subgroup (7 out of 15), the

networks generating epileptic spikes extend far beyond the mesial structures as most lateral neocortical structures can also be involved in

extracted subsets, b) and c) Examples of automatically-identified SCAS in both cases. Abbreviations: A amygdala; aH anterior= =
hippocampus; EC  entorhinal cortex; pH posterior hippocampus; TbC temporobasal cortex; iTP internal temporal pole; T3 middle part of= = = = =
inferior temporal gyrus; pT2 posterior part of middle temporal gyrus; mT2 middle part of middle temporal gyrus; aT2 anterior part of= = =
middle temporal gyrus; Tl superior temporal gyrus; I insula; eTP external temporal pole.= = =
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Figure 4
Characterization of epileptogenic networks in the temporal lobe during the transition from preictal to seizure activity, a) Intracerebral EEC

receding performed in a patient with mesial TLE. b) Color-coded nonlinear correlation matrices obtained from the pair-wise computation of

nonlinear correlation coefficient   over 6 different ten-second intervals chosen during the pre-ictal period (1, 2), the ictal period (3, 4, 5) andh 2

after seizure termination (6). c) Graphical representation in which the lines indicate abnormally strong  couplings between the two considered“ ”
structures (graph nodes). Only significantly high interdependencies are represented (i.e.   values greater than 0.32. This value corresponds toh 2

the average   value computed over the interictal period 2 standard deviations). Line thickness is proportional to   values.h 2 + h 2

Figure 5
Results obtained on real data. a) Depth-EEG signals recorded from amygdala (AMY) and hippocampus (HIP) in human during transition to

seizure activity in temporal lobe epilepsy. b) Spectrograms corresponding to depth-EEG signals obtained from short-term Fourier transform.

c) Estimated relationship between the two signals in the time-frequency plane using the  ( ) method (frequency-dependent). The methodr 2 t,f

reveals a synchronization process well localized in frequency at seizure onset. d) Estimated relationship between the two signals using the  (h 2

) nonlinear regression analysis method (frequency-independant). The method is not sensitive to the narrow-band synchronization process att

seizure onset.


