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Modelling temporal evolution of cardiac electrophysiological features
using Hidden Semi-Markov Models

Jérôme Dumont and Alfredo I. Hernández and Julien Fleureau and Guy Carrault

Abstract— This paper presents a new method to analyse
cardiac electrophysiological dynamics. It aims to classify or
to cluster (i.e. to find natural groups) patients according to the
dynamics of features extracted from their ECG. In this work,
the dynamics of the features are modelled with Continuous Den-
sity Hidden Semi-Markovian Models (CDHSMM) which are
interesting for the characterization of continuous multivariate
time series without a priori information. These models can be
easily used for classification and clustering. In this last case,
a specific method, based on a fuzzy Expectation Maximisation
(EM) algorithm, is proposed. Both tasks are applied to the
analysis of ischemic episodes with encouraging results and a
classification accuracy of 71%.

I. INTRODUCTION

The analysis of ECG signals for the caracterization of
various cardiovascular pathologies is usually based on the
extraction of several features such as magnitude of the ECG
waves, duration of the QRS complex, QT interval or cardiac
rhythm.

The diagnosis is generally based on these features, but
without taking into account their temporal evolution. In this
work, we propose to model the dynamics of the features
with Continuous Density Hidden Semi-Markovian Models
(CDHSMM). HMM, which have been extensively used in
speech processing, present many interesting particularities:
they are able to represent the dynamics in a compact model,
very few hyper-parameters have to be tuned and reliable
methods are available to learn the model parameters. Thanks
to the probabilistic approach, HMM are here used for clas-
sification purposes, according to the maximum likelihood.

The clustering problem is also adressed. Clustering time
series with HMM is not new. Three different techniques
exist: (1) hierarchical clustering and down-top approach,
it begins with one HMM per time series and successively
merges series according to a distance measure between
HMM; (2) top-down approach, it begins with one or two
HMM and creates new models from the time series which
have low likelihood to be generated by the current models;
(3) hybrid approach, it begins with a hierarchical cluster-
ing (for example with a distance based on Dynamic Time
Warping) and then uses a classical top-down approach with
the HMM. The proposed contribution can be viewed as an
extension of the top-down approach where CDHSMM and
fuzzy membership are introduced.
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The first section presents the different methodology steps,
starting from the ECG and arriving to the patients classifica-
tion and/or clustering according to the observed dynamics.
The way in which these dynamics are modelled is detailed
section 2, where a description of the model structure, the
learning method and the estimation of the hyper-parameters
are presented. In section 3, the clustering approach is de-
scribed step by step. Finally, the last section is dedicated to
classification and clustering of ischemic episodes.

II. GENERAL PROCEDURE

Figure 1 summarizes the general procedure used to anal-
yse the cardiac electrophysiological dynamics. The ECG
acquired during various tests (effort and tilt tests, Holter
recordings...) are cleaned and relevant features are extracted
[1], thus creating multivariate time series.

In a learning phase, the CDHSMM models are adjusted on
a subset of these time series X = {O1,O2, ...,ON} (Oi is one
time series and N is the number of time series). This step
aims to maximise the probability P(X |θ) where θ defines
the model parameters:

θopt = argmax
θ

{P(X |θ)}

In a test phase, the likelihood that a time series has been
generated by an existing model with parameters θ , P(Oi|θ),
is computed.

Based on the learning and test phases, the classification
assigns a time series to the model index kwin which gives
the highest likelihood:

kwin = argmax
1≤k≤K

{P(Oi,θk)}

where K is the number of competitive models.
On the other side, the clustering carries out several itera-

tions of the learning and test phases, in order to retrieve the
natural time series classes.

III. CDHSMM MODELLING

CDHSMM [2] is the most common specialisation of
HMM for modelling continuous time series. For a good
understanding, this section details the structure of the model,
the initialisation step, the learning phase and the definition
of the hyper-parameters.
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Fig. 1. General process of the proposed methodology based on CDHSMM.

A. structure of the model

CDHSMM’s states differ from standard HMM’s states by
two points. Indeed, each state:

• represents a subspace of the observation distributions.
To reduce computation time, these distributions (multi-
dimensional in our case) are formulated as a multivariate
Gaussian probability density function [3].

• models its duration probability with a Gaussian
probability function. In this case, duration densities do
not decrease exponentially with time as in standard
HMM. It is thus suited to continuous signals, where
the state durations can be quite long.

According to [4], using only one Gaussian is equivalent
of using a mixture of Gaussian but with less states. Thus,
for simplicity, only one Gaussian is considered. Finally, the
model is defined by one hyper-parameter S (the number
of states of the model) and the set of parameters θ , θ =
{πi,ai j,bi(~µ,σ), pdi(µd ,σd)} where πi are the initial prob-
abilities, ai j are the transition matrix coefficients, bi(~µ,σ)
are the multivariate gaussian probability density functions
of each state (~µ is the mean vector and Σ is the covariance
matrix), pdi(µd ,σd) are the parametric gaussian distributions
of the time duration in each state (µd , σd are respectively
the mean and the standard deviation).

B. Initialisation and learning the parameters of the model

The initialisation of the state’s emission probability,
bi(~µ,σ) is done with a spatial clustering based on Gaussian

Mixtures Models (GMM). Each component of the GMM will
correspond to one state. Uniform probabilities are set to ai j
and πi. The estimation of the pdi(µd ,σd) distributions starts
with the training of a CDHMM, then the most plausible paths
are determined on the time series and an estimation of the
time spent in each state can be computed.

In the clustering process, models have to be iteratively
trained and a fast procedure for learning θ is required.
In consequence, the Viterbi algorithm [5] has been chosen
instead of the standard Baum-Welch algorithm [6] which is
recognized to be time consuming.

C. Definition of the hyper-parameters

The number of states S is the only hyper-parameter to
adjust. Creating models with the appropriate number of states
is not a trivial problem: a model with too much states will
over-fit the observations, while a model with too few states
will wrongly describe the time series that should belong to
this model. Many methods have been proposed to estimate
S. They consist in approximating the marginal likelihood of
the observations P(X |S) defined as:

P(X |S) =
∫

θ

P(X |θ ,S)P(θ |S)dθ (1)

by some popular approaches such as the Laplace approx-
imation [7], the Bayesian Information Criterion [8] or the
Cheeseman-Stutz approximation [9]. Due to the iterative
scheme of the clustering algorithm, the BIC approximation,
which is less time consuming, has been retained:

Sopt = argmax
S

(logP(X |S, θ̂(S))− f (S)/2∗ logN) (2)

where f (S) returns the number of parameters according
to the number of states. Finally, to avoid the problem due
to initialisation, the probability P(X |S, θ̂(S)) is computed 20
times and the average value is considered.

IV. CLUSTERING PROCESS

Clustering aims to retrieve the different natural groups of
the observed time series. As mentioned previously, the top-
down approach has been retained. Justifications and details
about this approach are presented in the next subsections.

A. Top-Down approach

A top-down approach has been chosen for two main
reasons:

i) In clustering tasks, the number K of clusters is usually
small compared to the number of individuals (in our case an
individual is a multivariate continuous time series). Thus, it
seems natural to initialise the process with a small number
of clusters. A small number of clusters will also ensure to
group together individuals with respect to the main global
dynamics.

ii) The loglikelihood of all the models can be used to
define a featuring space (see figure 4 for example) of small
dimension based on the dynamics and where all the time
series can be easily embedded and compared. This can be
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Fig. 2. Top-down clustering with fuzzy Expectation Maximization.

opposed to hierarchical clustering where a distance between
all pairs of models is computed, which is time consuming.

Our clustering process is organised, as depicted figure2,
in several steps.

• Step 1: Initialisation: random assignment of all the time
series to two different CDHSMMs.

• Step 2.1: Learning the number of states Sopt for each
CDHSMM with the BIC criteria: for simplicity the BIC
is computed only at the first iteration of the EM loop.

• Step 2.2: Learning each model with the Viterbi Algo-
rithm (VA): the VA takes into account the membership
of each individuals (equation 6). The computation of the
cluster k likelihood integrates also this membership:

LLk = P(∑
i

P(k|Oi,Λ)logP(Oi|θ̂k)) (3)

Λ denotes the mixture of the K CDHSMM. The conver-
gence is assumed when LLk varies less than α = 0.01%
from one iteration to the next.

• Step 2.3: Computing the full partition likelihood (LL)
by integrating the likelihood on all the clusters and all
the time series, let:

LL = logP(X |Λ) = ∑
i

log(∑
k

αkP(Oi|θk)) (4)

.
• Step 2.4: Testing the convergence of the EM process:

if LL does not vary from one iteration to the next, of
more than β = 0.1%, it is assumed that the mixture
of a CDHSMMs has been sufficiently fitted and a new
cluster is added. Otherwise, another iteration of the EM
is performed.

• Step 2.5: Updating the weights of each clusters (αk)
and the membership of each individual by applying
equations 5 and 7.

• Step 3: Inserting a new cluster: the likelihood space
proposes a good featuring space for representing the
time series. With a K+1 gaussian mixtures model, it is
easy to cluster this featuring space with an additional
model, while keeping a fuzzy membership.

B. EM partitioning with fuzzy membership
The membership of a time series to a cluster (i.e. to a

CDHSMM) is given by its prior probability to belong to this
cluster and taking into account the current partitioning, let:

P(k|Oi,Λ) =
αkP(Oi|θk)

∑ j α jP(Oi|θ j)
(5)

this probability is integrated in the maximisation step when
updating parameters of each HSMM:

θ̂k = argmax
θk

∑
i

P(k|Oi,Λ)logP(Oi|θk) (6)

whereas αk, the weight of each cluster, is updated with:

α
new
k =

1
N ∑

n
P(k|Oi,Λ) (7)

This procedure avoids hard assignation of one particular
time series, with probability equal to 1 to a given cluster and
0 to the others, which can lead to a biased convergence.

V. RESULTS

The ECG records come from the LTST database [10],
which is dedicated to the assessment of ischemic episodes
classification algorithms. The detection of ischemia is tra-
ditionally based on ST-segment deviations. This feature
presents a low specificity because other causes, such as heart
rate increasing or position changes, can induce the same kind
of deviations. In this database, experts annotated several ST-
segment deviations into three classes:

• Transitory ST episodes compatible with ischemia, ST-
Ischemia (ST-IS). They are distinguished by changes in
the ST-segment morphologies, potentially accompanied
with changes in the heart rate. Clinical information
suggesting ischemia are taken into account.

• Non-ischemic ST episodes due to cardiac rhythm
changes, ST-Rhythm Change (ST-RC). They are distin-
guished by changes in the ST-segment morphologies,
potentially accompanied with changes in heart rate and
when clinical informations do not suggest ischemia.

• ST episodes due to position changes of the patient, ST-
Axis shift (ST-AS). They are characterized by abrupt or
progressive changes of morphologies of the ST segment,
accompanied with amplitude changes of the QRS waves.

A. Modelling

An exemple of the modelling achieved with the CDHSMM
on 15 bivariate (ST level and RR interval) time series
extracted from LTST database is presented on figure 3.

B. Classification

We aim to classify the ST change episodes. The beginning
of each episode, which is identified when the ST deviation
exceeds a threshold Vmin and during a minimum time Tmin,
is annotated in the database and used as a reference to
model the time series. For the classification step, it has been
empirically observed that:

i) the following variables V = {ST deviations, RR inter-
vals, amplitudes of the R and T waves},

ii) the modelling time window, starting 4mn30s before the
beginning of the episode and of a total length of 8 minutes
(figure 1)

provide the best results. In these conditions, the BIC
equation (2) suggests a model with 38 states. With a random
training and test sets of respectively 2/3 and 1/3 of the ST
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Fig. 3. ST levels/RR-intervals normalized trajectories of 15 ST-IS episodes
modelled with a CDHSMM: the ellipses represent the bivariate gaussians
assigned to each state, the straight lines represent the transitions between
the states, the numbers into the ellipses are the state time duration means.

episodes, the classification rates obtained on the test set are
presented table I. Comparing these rates with those reported
in [11], we observed an improvement of 17.7% (53.3% of
accuracy in [11], 71% in our case).

C. Clustering

Figure 4 represents the output of the clustering process
with two models. The experimental conditions (variables and
time windows) are identical to those used in the classification
procedure.

The clustering into two groups is clearly visible: ST-AS
episodes in one hand and ST-RC, ST-IS episodes in the other
hand. ST-RC events are merged with ST-IS events. This result
can be explained by the fact that the ST-RC episodes group is
a mixture of patients suffering of various pathologies (mitral
stenosis, Wolf-Parkinson-White syndrome, hypertension,...).

VI. CONCLUSION

A full methodology for classifying and clustering elec-
trophysiological dynamics observed from the ECG signal
has been proposed. The modelling of the temporal evolution
of the features is efficiently carried out with CDHSMM
models. It has been firstly applied to the classification of
ST-episodes observed in Holter recordings. The proposed
methodology is able to select the best features and the
most adequate analysing window that permit an optimal
classification. In these conditions, the classification accuracy
has been inscreased of 17.7% compared to [11]. In a second

TABLE I
RESULTS OF CLASSIFICATION ON THE TEST EPISODES, THE LAST

COLUMN ARE THE SENSITIVITY PUBLISHED IN [11]

Classified as
ST-IS ST-AS ST-RC Sensitivity Sensitivity (ZI)

ST-IS 852 163 95 76.8% 80.6%
ST-AS 402 1166 82 70.7% 48.6%
ST-RC 150 42 228 54.3% 33.3%
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Fig. 4. Clustering result with two models . o points are the ST-AS episodes,
* are the ST-IS episodes and + are the ST-RC episodes.

step, clustering has been applied to the ST-episodes to
retrieve the natural groups. We bring to light that the ST-AS
episodes are clearly separated in the loglikelihood featuring
space, compared to the ST-IS and ST-RC episodes. It is
worthy to remind that the proposed methodology is generic.
It could be applied to other cardiac diseases where temporal
evolution must be taken into account. For example, we are
currently working on the classification of symptomatic and
asymptomatic patients suffering from Brugada’s syndrome.
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