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ABSTRACT

A method is proposed for a 3D reconstruction of coronary networks from rotational projections that departs
from motion-compensated approaches. It deals with multiple views extracted from a time-stamped image se-
quence through ECG gating. This statistics-based vessel reconstruction method relies on a new imaging model
by considering both the effect of background tissues and the image representation using spherically-symmetric
basis functions, also called ’blobs’ . These blobs have a closed analytical expression for the X-ray transform,
which makes easier to compute a cone-beam projection than a voxel-based description. A Bayesian maximum
a posteriori (MAP) estimation is used with a Poisson distributed projection data instead of the Gaussian ap-
proximation often used in tomography reconstruction. A heavy-tailed distribution is proposed as image prior to
take into account the sparse nature of the object of interest. The optimization is performed by an expectation-
maximization like (EM) block iterative algorithm which offers a fast convergence and a sound introduction of the
non-negativity constraint for vessel attenuation coefficients. Simulations are performed using a model of coronary
tree extracted from multidetector CT scanner and a performance study is conducted. They point out that, even
with severe angular undersampling (6 projections over 110 degrees for instance) and without introducing a prior
model of the object, significant results can be achieved.

Keywords: cone-beam, coronary, reconstruction, X-ray, angiography, blob, maximum a posteriori, expectation-
maximization

1. INTRODUCTION

Coronary arterial disease is a major cause of mortality especially in Europe and the US. Quantitative and
accurate characterization of stenoses (length, cross-sectional area) as well as their location within the whole
coronary network is thus of major importance for diagnosis and treatment. The 3D reconstruction of arterial
trees enhanced with contrast agent has attracted much attention for years using 2D angiographic image sequences
with fairly high time resolution. This problem has been addressed first through computer vision approaches
using mono- and bi-plane systems with epipolar techniques and feature matching in order to find corresponding
primitives and retrieve their 3D geometry. However, the resolution of this ill-posed problem requires either a
prior model,1 additional views,2 or the joint use of motion.3 All the reported methods rely on a robust and
accurate detection capable to provide in a first step the vessel centerlines, which is difficult to obtain without a
significant user interaction (refer to4 for a review). The availability of X-ray C-arm imaging systems opens now
new perspectives for this reconstruction. While the clinician already gets more insights into the full 3D anatomy
during the rotation of the C-arm (covering up to 180–240 degrees within a 7–8 seconds), the full 3D reconstruction
may take benefit of a higher number of projections (150–200) by using tomographic methods. Several options can
be considered. One first consists to perform a motion-compensated tomographic reconstruction, inspired from
Bonnet’s work,5 using the motion of the coronary arteries previously estimated by means of computer vision
methods.6 Such method is highly dependent on a critical pre-processing step and on the reliability of the motion
estimate. Another way is to carry out the reconstruction from very few views (typically 5–8), corresponding
to a single cardiac phase, selected by ECG-gating. A 3D reconstruction of centerlines has been proposed by
exploring the 3D voxelized space, region growing and reprojection.7 A fully iterative method has been reported



in8,9 by minimizing the L1-norm of the reconstructed image and a regularization based on vesselness and Gibbs
smoothing priors.

This contribution describes an iterative reconstruction using a block sequential regularized EM (expectation-
maximization) algorithm (BSREM)10 for maximizing a regularized Poisson likelihood estimation, where the
update is multiplicative. Instead of using a voxel basis, we consider a spherically-symmetric basis function (i.e
the blob basis), the Kaiser-Bessel (KB), which has shown attractive properties.11 A 3D realistic phantom data
set has been built using a coronary tree extracted from MDCT volume image. Cone beam projections have been
computed from this phantom, with and without a background added coming from real angiographic projections.
A performance study has then been conducted in terms of convergence, reconstruction error.

2. METHOD

The imaging geometry used in most recent rotational X-ray angiography systems is a cone-beam geometry. We
consider a monoenergetic X-ray source, the ideal projection function due to this point source is:

Y (u; θ(t)) ∝ exp

{

−

∫

µ

(

T (θ(t))

[

x0 + s ·
xd(u) − x0

‖xd(u) − x0‖

]

; t

)
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}

(1)

where u = [u1, u2]
′ ∈ R

2, x0 = [0,−d, 0]′ and xd(u) = [u1, D − d, u2]
′ (where d is the distance from the source

to the center of rotation, and D the source-to-detector distance), ‖ · ‖ is the standard Euclidean norm. T (θ(t))
is the three-dimensional rotation transform:

T (θ(t)) =





cos(θ(t)) − sin(θ(t)) 0
sin(θ(t)) cos(θ(t)) 0

0 0 1



 (2)

where θ(t) gives the projection angle at time t. The term µ(x; t) (x ∈ R
3) represents the total linear X-ray

attenuation coefficient corresponding to the sum of the contribution of the dyed blood vessels of interest µ and
the background tissue µb, i.e.,

µ(x; t) = µ(x; t) + µb(x; t). (3)

In real cases, data acquisition is usually done with several discrete time instances, e.g., {t1, . . . , tK}. By
letting θk ≡ θ(tk) (k = 1, . . . , K), we have a projection sequence {Y (u; θk)}. From equation (3), we see that
both arteries and background tissues are projected. The contribution of background tissues is significant in
angiogram, and cannot be ignored. One conceptually simple way is to acquire additional projection images of
background tissues, denoted by {Yb(u; θk)}, and to perform logarithmic subtractions: log Yb(u; θk)−log Y (u; θk).
However, this is unrealistic since, at least, it requires that the X-ray system has a very accurate repositioning so
that it can provide two spatially matched sequences. In addition, any patient motion between the acquisitions
will produce artifacts due to incomplete subtraction. An alternative solution is to numerically approximate the
background and then subtract it.

In this paper, we adopt this latter strategy with a slightly different implementation. Suppose we already have
virtual background images Ŷb(u; θk). Instead of a logarithmic subtraction as shown previously, we propose the
following approximation for the kth projection image:

Y (u; θk) ∝ Ŷb(u; θk) exp

{

−

∫
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T (θk)

[

x0 + s ·
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]

; tk

)

ds

}

. (4)

The challenge still remains when performing a direct reconstruction using {Y (u; θk)}. The vessel attenuation
coefficient function µ is a function of time, depending on, e.g., the distribution of contrast agent, and much more
important, the motion of vessels during the acquisition procedure. These effects lead to the inconsistency in
projection data. We will consider in this paper that the attenuation within the vessel is constant over time and
that all other motions (due to patient movement or respiration) can be neglected. Since the cardiac motion is
relatively regular and periodical, through ECG gating, we are able to choose several projections from a rotational



sequence which correspond to the same 3D heart motion. We have limited our reconstruction study to a single
instant within a cardiac phase. We assume Y (u; θk)’s consist of K selected projection images. Further, we
can use µ(x) instead of µ(x; tk) for conciseness. Now the task turns to how these selected angiographic images
Y (u; θk)’s can be utilized to reconstruct µ(x) of interest.

As stated, this problem is close to the conventional static tomography reconstruction with, however, critical
features: 1) Since a usual examination of coronary angiography is often taken in a relatively short time period
(e.g., typically no more than four or five cardiac cycles), the number of consistent projections is small (i.e., K is
small, usually less than 6), and projections may not be equally spaced; 2) For relatively low X-ray exposition, the
angular scanning is severely limited (e.g., for a typical C-arm rotational X-ray angiography system, the dynamic
angle range is less than 180◦). This is sharply in contrast to the conventional cone-beam tomography in which
a normal scanning covers a full range of 360◦. Therefore, a direct 3D reconstruction of vessel from rotational
X-ray angiography is indeed a very ill-posed problem. In the following section, we will discuss our approximation
solution.

2.1 System Model

We transform the above problem into the discrete domain. A single projection image can be discretized and
stored lexicographically in one vector. All projection vectors can be stacked one by one, leading to a large data
vector Y = [Y1, . . . , YN ]′ (where N is the total number of projection data, and the prime represents the vector
or matrix transpose). Only noisy data can be obtained and we assume that these data are independent random
variables whose ensemble means, according to (4), can be expressed as

Ȳi(u) ∝ Ybi exp {−[Au]i} (5)

for all i = 1, . . . , N , where Ybi is the ith element of the background image vector Yb, u = [µ1, . . . , µJ ]′ (where J
is the length of u) is a discrete representation of vessel attenuation coefficient function µ(x), A is the cone-beam
projection operator, and [·]i returns the ith entry of a vector in brackets.

Without loss of generality, we study here the vessel reconstruction within a cubic field of view. A typical
image representation is to consider the piecewise continuous attenuation function µ(x) defined over the cubic
region. It can be written as the superposition of scaled and shifted copies of the basis function Ψ(x), as follows:

µ(x) =
J

∑

j=1

µjΨ(x − xj) (6)

where {xj} (j = 1, . . . , J) form a set of spatial basis locations (or grid points as well). There are many choices
of basis functions, one of which is: Ψ(x) = 1, if ‖x‖∞ ≤ 1/2 else Ψ(x) = 0 (assuming that the grid spacing
is unitless 1). This is the so-called voxel basis that has a constant density inside the voxels. From a signal
processing standpoint, it only provides, however, a poor interpolation. Instead of using voxel basis, we consider
in this paper another basis family: the spherically-symmetric basis function (also known as the blob basis) which
has the following general form:

Ψ(x) = B(‖x‖) (7)

where B(·) is a circularly symmetric kernel. The concept of blob in tomography has been applied for image recon-
struction, e.g.,12–14 etc. It is also widely used in the area of volume visualization, e.g., volume rendering.15 An
important blob basis is known as the Kaiser-Bessel (KB) kernel, which has shown certain attractive properties.11

It can be written as

Bm,α,R(r) =

{

1
Im(α)

(

√

1 − (r/R)2
)m

Im

(

α
√

1 − (r/R)2
)

|r| 6 R

0 otherwise
(8)

where Im(·) denotes the modified Bessel function of the first kind of order m, R is the radius of the blob, α is a
non-negative real number controlling the shape of the blob. Usually, we take m > 0 so that the blob has m − 1
continuous derivatives at the boundary.



A blob-based forward projection operator A can be determined according to the basic definition of X-ray
projection (4). For one element aij , using the X-ray transform of the blob function at location xj along the ith
ray path Γi, we have

aij =

∫

Γi

Bm,α,R(‖x − xj‖)dℓ. (9)

Since the X-ray transform of a KB kernel leads to another KB like kernel, i.e.,

Bm,α,R(r) = R

√

2π

α

Im+1/2(α)

Im(α)
Bm+1/2,α,R(r), |r| ≤ R, (10)

it follows that
aij = Bm,α,R(dist[xj , Γi]) (11)

with dist[xj , Γi] the distance between the grid point j and the ray Γi.

2.2 Image MAP estimation

The commonly used maximum likelihood (ML) estimation finds an image reconstruction that maximizes the
probability distribution of the projections, as well as the likelihood distribution. The likelihood distribution,
denoted by log Pr(Y |u), is characterized by the imaging model. Since the nature of X-ray observations is a
counting process, this paper considers a Poisson likelihood

log Pr(Y |u) ∝
∑

i

{−Ȳi(u) + Yi log(Ȳi(u))} (12)

where terms independent of u has been ignored. The choice of this model is also due to another interpretation of
the log-Poisson likelihood term which is the so-called Kullback-Leiber (KL) distance. The KL distance provides
a measure of dissimilarity between two vectors p and q, is defined by

KL(p, q) =
∑

i

{pi log(pi/qi) − pi + qi}. (13)

Now letting pi = Yi and qi = Ȳi(u) and also ignoring terms independent of u, it can be shown that log Pr(Y |u) ≡
−KL(Y , Ȳ (u)) where Ȳ (u) = [Ȳ1(u), . . . , ȲN (u)]′. The proposed Poisson model is not specific: even for non-
Poisson data, we are still able to seek a ML solution for which the likelihood term can be represented by
Pr(Y |u) ∝ exp{−KL(Y , Ȳ (u))}.

However, due to the typical limits in fidelity of data, ML estimates are often unstable, and have to be improved.
Usually a unique and stable estimate is sought by incorporating prior information on the original image u, leading
to the well known Bayesian MAP estimation. In the MAP estimation, we are interested in the maximum of the
posteriori distribution Pr(u|Y ). Using Bayes’s rule, we rewrite Pr(u|Y ) as Pr(u|Y ) ∝ Pr(Y |u) Pr(u) where
Pr(u) represents the image prior distribution. Then, the MAP estimation is found as

ûMAP = arg max
u

{log Pr(Y |u) + log Pr(u)}. (14)

The image prior is certainly the key to any MAP estimation. It can not only provide a stable solution but
also improve the quality of reconstruction, e.g., by suppressing artifacts due to limited angle projections. One
prior defined over a discrete grid system relates to the discrete Markov random field (MRF) on which a roughness
measure can be constructed from local neighborhoods. Typically, Pr(u) has the following generic form

Pr(u) ∝ exp{−βU(u)} (15)

where U(u) is the energy function, and β an adjustable parameter. Let Nj be the neighborhoods of the jth grid.
The energy function can be written as

U(u) =
∑

j

∑

s∈Nj

ωjsφ(µj − µs) (16)



(a) (b) (c)

Figure 1. Computer simulated phantom. Figures from left to right are maximum intensity projections along three axes,
x,y,z respectively.

where ωjs is the weight for the pair of grid points j and s. φ is the potential function, measuring the interaction
between the two grid points. In coronary angiography, vessels having branch-like structures occupies a very small
part of the volume, so a sparse object prior is of relevance. Now, consider the distribution of local neighborhood
differences, i.e., µj −µs: it should be sharply peaked around zero, due to the contribution of most smooth areas,
and have broad tails representing the contribution of the vessels (in particular their edges). Consequently, a
sparse object prior can be modeled by a heavy-tailed distribution. With this in mind, we selected a potential
function φ(t) = |t|. The corresponding penalty relates to the Laplacian distribution that belongs to the family
of heavy-tailed distribution. Another advantage is that the resulting R(µ) is close to the total variational (TV)
regularization that is powerful for noise smoothing while edge preserving.

3. SIMULATION STUDY

3.1 Materials

The experiments have been conducted using phantom data. The reference left coronary arteries were extracted
from a volume of cardiac MSCT reconstructions.16 Fig. 1 shows three maximum-intensity projections of the
phantom along the three axes. Stenotic areas and a simulated catheter were also added.

The imaging protocol used in this paper was adapted from the C-arm rotational X-ray coronary angiography
Siemens AXIOM-Artis system. The detector plane, 1402 mm2, which was sampled uniformly into 5122 pixels. All
reconstructions have been performed in a volume of (110 mm)3. This field of view was also uniformly sampled
into 1283 grid points that served as blob locations. According to our discussion on the choice of blob basis,
we have used m = 2, α = 6.0, and R = 1.5 blob spacing for the calculation of operator A. Six cone-beam
vessel projection images, without background tissues, uniformly spaced over the range 120◦ were first generated
(the starting angle is −29.0◦). Then, we used the method of low order polynomials approximation to create

the required background images Ŷb (called later on the “true backgound”) from some real angiography images
acquired separately on the Siemens device. The mean observation data were produced according to the model
(4). Poisson noisy data were then generated, which were used for reconstructions. Fig. 2 shows some examples
of noisy projection images at different angular views.

3.2 Reconstruction

We focus our study on the iterative reconstruction algorithm. The image reconstruction was performed by
BSREM.10 In this algorithm, a fully iteration is divided into a set of subiterations, each being performed sequen-
tially using one of the predetermined blocks of measurement data. In our simulation study, the data within each
projection image were grouped into one block. Therefore, this leads to a total number of six blocks. The BSREM
algorithm is an extension of RAMLA (row-action maximum likelihood algorithm)17 for maximizing a regular-
ized Poisson likelihood estimation as (14). They relate to the well-known algebraic reconstruction technique
(ART),18 but the update is multiplicative (rather than additive) and a grouped projection can be performed
simultaneously. BSREM has been shown even faster with guaranteed global convergence properties.10



Figure 2. Simulated noisy projection images at angle: (a)−29.0◦, (b) 18.2◦, and (c) 65.4◦, respectively.

3.3 Influence of background images

As discussed in Section 2, one can construct a set of new measurement data by using logarithm substraction.
Let Ỹ = − log (Y /Ŷb). Then, Ỹ serves as the approximate observations of projections Au. In6,8 the authors
have used Ỹ to reconstruct the vessels of interest. This method was evaluated in this paper and compared
with our strategy as expressed in (4). While the resulting data Ỹ cannot be Poisson distributed, we still can
use the BSREM algorithm but the data fidelity term should be interpreted as the KL distance, yielding a
modified BSREM for image reconstruction from the presubtracted measurement data. We named it here the
PreSub.+BSREM algorithm.

For comparison, we introduced two measures of error: 1) the global mean square error defined by

MSEglobal(n) =
‖ûn − uref‖2

‖uref‖2
× 100% (17)

which provides the normalized percentage error between the nth iteration ûn and the reference volume uref .
2) the vessel mean square error denoted by MSEvessel(n) defined in a similar way except that the error is only
measured within the support of vessels instead of the entire field of view.

Tab. 1 shows the global MSE values of the two different algorithms at several selected iteration number.
We see that the smaller MSEglobal can be obtained by the proposed BSREM. This possibly means that the
logarithm substraction operation imposed before data processing may destroy the optimality of statistical based
iterative algorithm, leading to a suboptimal one in terms of global mean square error. Fig. 3 shows the evolution
of MSEvessel during the iteration progress. Again, BSREM without pre-logarithm substraction shows a slight
better performance.

As mentioned already, the background images are usually unavailable in practice, and they can only be
estimated from the measured data. To obtain virtual projection images of background tissues, we have adapted
the method used in.6,8 First, we created the binary vessel mask. This is can be done by thresholding. Second,
a morphological closure operation was applied to the noisy projection images to remove vessels. Here, the
structure element was a disk whose radius has been chosen large enough to cover the blood vessels. Then, a
virtual background image is obtained by combining the original projection image and the filtered image: the
virtual background image takes the pixel value from the filtered image if the pixel belongs to a vessel according
to the binary vessel mask images, otherwise we use the value on the original projection image. Fig. 4 shows
some results when creating one virtual background image from the projection image at angle −5.4◦.

The estimated background images, denoted by
¯̂
Yb, were combined with either BSREM or PreSub.+BSREM

to investigate the effect of background tissues on reconstructions. Fig. 5 compares the maximum intensity

Table 1. Comparison of MSEglobal values (%) for PreSub+BSREM and BSREM (both with β = 0) at several iterations.

#Itr. 5 30 70 100
PreSub+BSREM 36.7 22.3 19.3 18.5

BSREM 52.1 18.7 16.6 16.5
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Figure 3. A comparison of MSEvessel for PreSub+BSREM and BSREM (β = 0 for both algorithms) as the function of
iteration. Here uses true background images Ŷb.

projection images with either true or virtual background images. Noise and artifacts are clearly shown and this
confirms that the accuracy of background images does affect the reconstruction quality. Nevertheless, they are
mainly found in background regions, and most of the vascular structures can be preserved. Tab. 2 lists some
MSEvessel values yielded by the two approaches. The results seem to justify the same fact that the proposed
BSREM can behave better than the one with pre-logarithm subtraction. However, it can be observed that the
mean square error becomes larger over iterations. This is a common feature of iterative ML estimation that can
produce an overfit to noisy data, leading to degeneration of reconstruction. An introduction of regularization
(or setting β > 0 as well) should improve the solution and will be discussed next.

Figure 4. Figures from left to right are 1) the projection image at angle −5.4◦; 2) the corresponding binary vessel mask
where the white color indicates the valid vessel regions. 3) the projection image after a morphological closure filtering
with a disk type structure element of radius size 10 pixels; 4) the resulting virtual background image.

Table 2. Comparison of MSEvessel values (%) yielded by PreSub+BSREM and BSREM (both with β = 0 and estimated

background image
¯̂
Yb) over iterations.

#Itr. 5 30 70 100
PreSub+BSREM 39.9 27.2 28.8 29.7

BSREM 57.4 26.1 27.7 27.2



Figure 5. From top to bottom: maximum intensity projection images of reconstructions by using: BSREM (with Ŷb),

PreSub+BSREM (with Ŷb), BSREM (with
¯̂
Yb) and PreSub+BSREM (with

¯̂
Yb), respectively. (β = 0 for all algorithms)

3.4 Choose image prior

This section evaluates the impact of the prior model on the 3D vessel reconstruction. From our former anal-
ysis, here the main task of prior is to reduce the background noise while preserving main vascular structures
undestroyed. The comparison has been conducted between a heavy-tailed model and a non-heavy-tailed model.
For the latter, we used the Gaussian quadratic prior model (where φ(t) = |t|2). The choice of parameter β is
essential due to its smoothing effects. On the other hand, for a specific prior, the choice of β also can be different.
Thus, for a fair comparison, we selected these model-based parameter with the aim to minimize the MSEvessel

error. More precisely, we chose several β values and recorded the corresponding the minima MSEvessel value of
reconstruction during iterations. We can trace out the relationship on the β and MSEvessel plane. An interpo-
lation between discrete samples is then made to predict a global optimal β. Fig. 6 shows two curves related to
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Figure 6. A comparison of the minimum MSEvessel changes as a function of parameter β yielded by BSREM using different
priors: quadratic prior (-×-) and total variation like prior (-◦-). These two curves are generated by interpolation where
discrete samples are indicated by symbols, i.e., circles and crosses. The optimal β values are approximately β = 104.0 for
the quadratic prior, and β = 102.62 for TV-like prior.

Figure 7. A comparison of MIP of image reconstruction from BSREM using: the quadratic prior with β = 104.0 (the first
row) and the TV-like prior with β = 102.62 (the second row).

different priors. In our experiments, the optimal β for the quadratic prior is close to 104.0 while for a TV-like
prior it is about 102.62. Note that the global minimum MSEvessel yielded by a TV-like prior is smaller than a
quadratic prior, which points out the advantage of TV-like prior over a quadratic one in terms of reconstruction
performance.

The results (MIP images) are displayed in Fig. 7. It is clear that the introduction of prior leads to a successful
suppression of background artifacts (Note that here we used the virtual background image instead of the true
one). From a visual point of view, we also see that the sparse prior, as well as the TV-like prior, can provide even
better result (a clear comparison from the top-to-down MIP images). Fig. 8 shows further visual comparisons
by using 3D vessel surface rendering. All surfaces are rendered by using the same isosuface values extracted from



(a) (b) (c)

Figure 8. 3D vascular surface rendering using true vessel data (a), and data reconstructed by BSREM with the quadratic
prior (b), and the TV-like prior (c).

various reconstructed volumes. Again a better result is obtained by the proposed TV-like prior. However, it is
worth to note that both priors still fail to reconstruct some vessel parts marked with circles in Fig. 8. Thus, the
introduction of prior models may not fulfil the requirements due to the incomplete rotational X-ray scanning.

3.5 The effect of data inconsistency

Till now, the used projection images were motion free data (i.e., the same cardiac phase). In real case, the key
assumption relies on the fact that the coronary network is observed exactly in the same position for different
views: The reproducibility of the heart cycle and the temporal sampling may introduce some spatial shift. In
other words, some inconsistency may exist. Two main motions were examined: rotation and translation. We
simulated this data mismatch to explore how it affects the reconstruction. The heart rotation has been simulated
by using a random bias, denoted by ǫangle, added to the projection angle. For translation, since the cardiac motion
is mainly dominated by a up-down movement, we used a random up-down displacement ǫdisplacement to change
the real vessel position when generating each projection image. We only studied the BSREM algorithm with
the TV-like prior, and the virtual background images were estimated according to the same method described
before. No pre-subtraction was used.

0 1 2 3 4 5 6
20

30

40

50

60

70

∆
angle

 (degree)

M
S

E
ve

ss
el

 (
%

)

(a)

0 1 2 3 4 5 6
20

25

30

35

40

45

50

55

60

65

∆
displacement

 (voxel)

M
S

E
ve

ss
el

(b)

Figure 9. (a) The changes of MSEvessel with ∆angle when using the proposed BSREM algorithm coupled with a TV-
like prior. Here, the β value is 102.5. (b) MSEvessel evolution when varying ∆displacement using the proposed BSREM
algorithm coupled with a TV-like prior. Here, the β value is 102.5.



Fig. 9(a) plots about the changes of MSEvessel against the maximum magnitude of ǫangle, i.e., ∆angle.
Note that ǫangle is the uniform random number within the range [−∆angle,+∆angle]. We see clearly that
the mean square error increases with error in angle. For an amount of 5◦ bias in angle, it results in almost
three times larger error in reconstruction. Fig. 9(b) shows the relationship between MSEvessel and the object
displacement error ǫdisplacement (note also that ǫdisplacement is the uniform random number within the range
[−∆displacement,+∆displacement]). The same behavior can be observed. They both show that if the assumption
made does not hold, a significant degeneration in the quality of reconstruction can be anticipated.

4. DISCUSSION AND CONCLUSION

We have described in this paper a method for the 3D reconstruction of coronary networks from sparse projections
acquired through a rotational system within a limited angle rotation. This approach, applied in a first step in
static conditions by assuming an error-free ECG gating, is based on a statistical modelling, blob basis functions
(Kaiser-Bessel) and makes use of a block iterative algorithm (BSREM, block sequential regularized expectation-
maximisation). Simulations have been performed by means of a realistic phantom representing an arterial
tree extracted from a MDCT dataset in order to have a ground truth. The performance of the method has
been assessed by using global statistics (mean square values over the reconstructed volume or over the vessel
spatial support). The reconstructions that have been reported show some promising features. They also allow
quantifying the influence of the background and the sensitivity to imprecise synchronization resulting in object
misregistration (simulated by small translation and rotation errors).

It must be said that the reconstruction of coronary network remains a difficult problem in X-ray imaging
(including the MDCT) for several reasons among which: the small size of the objects (few millimeters), the many
structures contributing to the background, the patient movements, the ballistic inaccuracies and the time-varying
heart cycle. Although this work-in-progress has been limited to a cone beam static situation, it opens a path to
deal with dynamic reconstruction. In contrast to approaches that call first for 3D motion field estimation with
feature matching, the solution that we are currently developing is based on a fully homogeneous tomographic
frame. The availability of 3D dataset (single volume or time indexed multiple volumes) as shown here should
serve as an initialization step for further refinements.
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