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Abstract

Current cardiac implantable devices (ID) are equipped witet of sensors that can provide useful
information to improve patient follow-up and to prevent hieaeterioration in the postoperative period.
In this paper, data obtained from an ID with two such sensaisansthoracic impedance sensor and an
accelerometer) are analyzed in order to evaluate theimpatepplication for the follow-up of patients
treated with a cardiac resynchronization therapy (CRT).&hudology combining spatio-temporal fuzzy
coding and multiple correspondence analysis (MCA) is agobin order to: i) reduce the dimensionality
of the data and provide new synthetic indices based on thetotfal axes” obtained from MCA, ii)
interpret these factorial axes in physiological terms andnalyze the evolution of the patient’s status
by projecting the acquired data into the plane formed by ttst fivo factorial axes named “factorial
plane”. In order to classify the different evolution pattera new similarity measure is proposed and
validated on simulated datasets, and then used to clussanau data from 41 CRT patients. The
obtained clusters are compared with the annotations on pat@édnt’s medical record. Two areas on the
factorial plane are identified, one being correlated withealtih degradation of patients and the other

with a stable clinical state.
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. INTRODUCTION

Cardiac resynchronization therapy (CRT) is indicated faigm#s suffering from drug-refractory conges-
tive heart failure (CHF) associated with intraventriculgssiynchrony [1]. CRT improves hemodynamic
parameters, ejection fraction or distance covered in theirutes walking test [2]. Furthermore, CRT
has shown to decrease hospitalizations for patients treaitt the implantable devices (ID). Although
the efficiency of this treatment has been proven, 20 to 30% tiémta show either no improvement or
worsening of their symptoms [3].

Individual follow-up of implanted patients is a key to unsand the difference between responders
and non-responders, and to prevent severe health degraddésides regular follow-up visits, during the
post-operative period, an everyday follow-up is possibithihe new IDs recently developed for CRT.
They offer an increased storage capability of data acquiyethé ID, providing information on the ID
itself (e.g. event counters of pacing and sensing actd)ithe on the state of the patient (e.g. arrhythmias,
electrograms) and on its activity [4]. Recorded data arg peomising towards the home monitoring of
patients, the prediction of adverse events or the reduaifomospitalizations. However, this source of
information is under-exploited because data are largetivatibte, time-dependent and heterogeneous,
and consequently difficult to interpret for caregivers.

The objective of the present study is to propose a methoddmgyocess this amount of multivariate
data, in order to i) evaluate and extract the informationt@onof the time-dependent data downloaded
from the pacemaker memory, ii) define synthetic indices whigheasy to interpret and iii) characterize
and compare different populations of patients. Given theedisionality of the recorded data, methods
of data reduction are investigated. The interest of the diol&nsional analysis of the data recorded
in the ID memory to objectively assess the patients’ respdosthe therapy and the validity of the
exploratory techniques to process these data have beemshaowo previous studies, using principal
component analysis (PCA) [5] and multiple correspondenadyais (MCA) associated with a spatio-
temporal fuzzy coding of the time-series [6]. The former méthas been successfully used to differentiate
a test population (patients with rate-responsive pacermpk®m a population of patients suffering from
CHF by jointly exploiting a number of physiological variall and using a simple representation for
the temporal dimension. Providing an appropriate adaptatioits table of analysis, MCA has been
successfully applied to the analysis of the evolution ofetiseries across time, and is then used here as

well. MCA performs a reduction of the dimensionality of thatal and provides synthetic indices called
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“factorial axes”. A plane formed by two factorial axes isledl “factorial plane”. Each patient is finally
represented by trajectories on the factorial plane.

From a methodological point of view, several questions asecda i) how to link the factorial axes with
the variables acquired from the ID? ii) do patients with &mtrajectories on the factorial plane have
a similar clinical state, and if yes, how to cluster patieatsording to their evolution in the factorial
plane? and iii) are the obtained clusters consistent wighdimical data available from the patients?
The study addresses the clustering of trajectories witlemdifft numbers of points in the factorial plane,
which implies the choice of appropriate distance measudecarstering method. This problem is related
to temporal clustering (i.e. the clustering of time-sérigg, [8].

The paper is organized as follows. In section Il, the clinjpadtocol and the ID data are presented.
Then, in section I, the proposed methodology is describatithe issues arising from the clustering of
trajectories are presented and solutions are proposed. ropesed methodology is tested on simulated
datasets and applied on the real recorded data in Section \él.valdity of the obtained clusters is

evaluated in comparison with the medical records of patigatticipating in the protocol.

II. DATA RECORDED BY CARDIAC IMPLANTABLE DEVICES
A. Patients

Forty-one patients (34 males, 7 females) participated & fghesent study. The mean age was 64
(minimum 38 and maximum 87). They suffered from refractonarhdailure (RHF) associated with
intraventricular dyssynchrony and present a thin QRS cermpk 120 ms), a NYHA class from Il
to IV and a left ventricular ejection fraction (LVEF) = 25%-(7). They were candidate for cardiac
resynchronization therapy and were then implanted witkliaarimplantable devices. The patients were

informed about the research protocol and gave their fullgrmed consent for participating in this study.

B. Description of the follow-up time-series

Data stored in the ID memory are retrieved in individual relsoat the end of the third, the sixth and
the twelfth postoperative months. Each record covers a-tm@&h length period. These data result from
two sensors [9]: a transthoracic impedance sensor whiclttetiee respiratory activity of the patient and
its intensity of effort, and an 1-D accelerometer which ikéd to the intensity of the physical activity
of the patient.

By combining information from the two sensors, the activigvel of the patients is classified

automatically by the device into two statesercise andrest. For each state, 24-hour cumulative values
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of a number of variables are computed and recorded in the IBxane over 30-day follow-up periods.
More details concerning the two sensors can be found in [1@], The final set of thirteen physiological
variables is listed in Table | and is constituted of sevemmged variables and of six additional variables

deducted from the seven recorded ones.

TABLE [: List of 7 physiological variables recorded in the cia implantable devices and 6 variables

computed from these recorded variables.

Description Names Units
Total duration within L
o Durg s
the activity level
Cumulative values of )
) Accg m-s “(g)
acceleration
Cumulative values of Impg .
] millivolts (mV’)
impedance Impr
Cumulative number of NbBreathsg
o NV C
ventilation cycles NbBreathsr
Cumulative number of
) NbCardCycg NbCC
cardiac cycles
“Mean”? activity )
) ) ActInt g-s_
intensity
Impg over Accg ImpOverAcc mV - g_1
Beats per minute
“Mean” heart rate HeartRateg

(bpm)

“Mean” impedance )
ImpMinVentg mV -min~

minute ventilation

“Mean” ventilation
VentFreqr NbVC - min~!
frequency

Impg over Impgr ImpRate none

!Subscripts E and R are for Exercise and Rest, respectively.
2The duration of eactExercise and Rest period that occurs
within 24 hours is unknown. Only the cumulative duration is
known. Consequently, this “mean” is not the average of the
variable values over 24 hours, excepted if all the periods are

of the same duration.
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[1l. A METHODOLOGY FOR CLUSTERING MULTIVARIATE TIME-SERIES

An overview of the proposed methodology is provided in FiglireThe analysis is first performed
on a reference population to determine significant fact@xals and clusters of similar evolutions in the
factorial planes. In a follow-up situation, new data wowddularly be retrieved from patients’ implantable
cardiac devices. The results of the analysis (i.e. factaias and clusters) would then be used by
projecting the new data on the factorial planes and asgigtiia evolution of the patient to an existing
cluster towards the diagnosis (i.e. the patient is imprgwn degrading). In this paper, only the analysis
is presented.

The analysis consists of 2 successive steps, namely fuzapngad the data and multidimensional

analysis with smoothed multiple correspondence anal§g#JA), described in the following subsections.

- . Fuzzy Smoothed Multiple
Multidimensional ? 3 . \
space-time Correspondence Clustering — Clusters

time-series . N
coding Analysis

Trajectories on the
first factorial plane

A

"
LN %

1%t factorial axis

Quantitative data

2nd factorial axis

Fig. 1. Overview of the proposed methodology. The analysiseifopmed on the reference population
and leads to the determination of clusters of similar evohs — according to an appropriately chosen
dissimilarity measure — on the factorial plane defined by theathed multiple correspondence analysis
(SMCA). A practical application of this methodology would e projection of subsequent follow-up
data as supplementary individuals on the factorial axes ekkfturing the analysis and the assignation

of the obtained trajectories to the “closest” cluster, ia #ense of the chosen distance.

A. Space-time fuzzy coding

A coding of the recorded data is required, as MCA has been atéreeived for categorical variables.
MCA exploits disjunctive tables” = (zi;) (i j)e[1,r)x[1,c] Wherez;; is the membership value of thé"
object to thej** modality. As a coding of the multivariate time-series, aziuzpace-time windowing,
defined by Loslever and Bouilland for characterizing and cgpdiomechanical temporal data [12], is

proposed. Instead of an indicator matux (i.e. z;; € {0,1}), the MCA analyses a fuzzy version of
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Z where z;; € [0,1] with the condition};.; zj; = 1, J, being the set of modalities of the/”
attribute (variable). In statistics, one modality of a abte is one possible level of this variable. In
classical crisp coding, continuous variables are divided several modalities (whose number depends
on the distribution of the variable). For example, the Jagad'age” of a population can be split into 3
modalities “age< 30", “30 < age< 60" and “age> 60".

As depicted in Figure 2, the fuzzy space-time windowing digidhe time domain of each variable
into N7 overlapping windows. The membership value of ¥ time samplet, to the time windowZ
is denotedur, (t,) and falls between [0,1]. The membership values of each ddta pothe N7 time
windows meet the conditioﬁjj.\’:’f1 pr,(tq) = 1. The amplitudes of each variable (referred to as spatial

domain) are coded in a similar manner witfy spatial fuzzy windows verifying the same properties.

Amplitude
spatial (spatial)
domain fuzzy windows| amplitude Variable V
Axpn

" membership
v value

time

membership Time fuzzy windows
value

L T, Ty,
'uwlj wr (tg) ‘>©<\/\ /)(
. ‘

Membership value of
the variable V to the
space-time fuzzy
windows Wj;

Fig. 2: Temporal and spatial (amplitude) fuzzy coding of atocwous signal.

From the membership values in the time and the spatial (amdgljtdomains, the membership value
of the space-time windoW’/";, for a given time-series (signal)Sy and the variablé/,, is defined as:
S 1y (tg) - 1a, (Valta)

whereV,,(t,) is the value taken by the'" variable at time unit,, 17, (t,) is the membership value of

(1)

pwy (T'Sk) =

the time windowZ}; for the time unitty, ua, . (Va(t,)) is the membership value of th& space window
A; n for the V,,(¢,) value, andQ is the number of time units iff"Sy,. With this definition,yyw (1'Sy) is

the weighted average of the space membership values wittinleemembership values as weights and
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verifies Zfi‘*l By, (T'Sk) = 1. This property is required to maintain the statistical contaxd to allow

By, (T'Sk) to be interpreted as the frequency of appearance of thelsigtie space-time window;";.

B. Multiple correspondence analysis (MCA)

MCA is of great interest to explore the data recorded by ID,tasandles both quantitative and
qualitative data and captures nonlinear relationshipsdxet variables. It deals with a two-way cross-
table with the observations (also called statistical iftlials) as rows and the variables (or attributes)
characterizing these observations as columns in the tabMCA, rows and columns of the cross-table
play a symmetric role and can be represented on the sameAplother advantage of this method is the
possibility of displaying supplementary variables andvittlials jointly with the variables and individuals
of analysis. They are not involved in the MCA but their projeaton the factorial plane: i) refines and
enriches the interpretation of the MCA factorial axes bwtialy them to meaningful variables (e.g. age,
sex, etc.) and ii) enables the characterization of suppiane individuals according to their location
with respect to individuals of analysis. Consequently inAl@ata acquired from other patients’ ID can
be represented on the factorial plane jointly with the mfiee population: it is possible to study their
evolution with respect to the evolution of the patients oélgsis.

Being in a follow-up frame, the temporal information contd in the recorded data is primordial and
has to be taken into account. Inherently MCA does not extiloi¢, but the temporal dimension can be
introduced artificially. A simple way consists in represegtieach time sample (or time window) of a
time-series by one statistical individual (a row of the srtsble of analysis) and in applying MCA to
the resulting table [12]. Data can then be organized in aetabth as Table Il, where a time-series is
represented by as many rows as it has time samples or timewind his method is simple and leads to
a rather easy interpretation of the results. However, thpteal dimension is not explicitly exploited by
the subjacent model of data representatieg. the same factorial axes would be obtained by introducing
the lines on the analysis table in any particular order).alletand examples on the computation and
interpretation of MCA can be found in [13]. With this conviemt, each time-series (i.e., in this study,
each three-month length period of a given patient) is regmtesl by a trajectory onto the factorial plane.

One of our objectives is to cluster the patients accordinth&evolution of their trajectories in the
factorial plane defined by MCA. To facilitate this clusterjiitgs possible to smooth the trajectories in the
factorial plane by applying a weighted and smoothed teni@werage on the tablg analyzed by MCA.
This method is named smoothed multiple correspondence sa8gl$MCA) and has been introduced

by Benali and Escofier [14]. The final table of analysisSis= P - Z, where P = (pi;)(; j)e[1,)> IS @
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TABLE II: Construction of the tableZ for multiple correspondence analysis (MCA) applied to fuzz

coded data and implicitly exploiting the temporal dimensio

Variables e Vi

Fuzzy space windows e Ain
T'S: at fuzzy time window 1 - pwn (T'S1)
TS, at fuzzy time window 2 - -- prwp, (T'S1)
TSy at fuzzy time window;j - -- pwr (T'Sk)

A;. is the fuzzy space window corresponding to tHé
modality of then'® variable, T'S, is the k*" time-series and
pwp (T'Sy) is the membership value of the'" variable to

the fuzzy time-space windowV;"; for the k'* time-series.

proximity matrix defining the weighted and smoothed tempaxadrage and is such @le pij = 1.

IV. APPLICATION OF THE FUZZY CODING AND MULTIDIMENSIONAL ANALYSIS ON THE RECORDED

DATABASE

The first two steps of the proposed methodology, namely theyfgpatio-temporal coding and the
SMCA, are applied to the time-series available in the reabmktabase. In this study, a fuzzy window
setT = {T1,---,Tj,---,Tn, }, where eacl{; is 7-day long, is considered. The length of the fuzzy time
windows has been chosen by considering the patients’ betsaveing quite similar from one week to
another. Each trajectory, representing a three-month hepgrtiod (i.e. around 13 7-day long), links then
around 13 points.

For each variabld/,, N4 = 3 modalities are considered: “Low” corresponding to the spdtizzy
window A, ,, = [-oo, mediant/},)], “Medium” corresponding tad, ,, = [prctile(V;,,2.5), prctile{/;,,97.5)]
and “High” corresponding tols,, = [median{;,), +oc], where prctilef;,,p) is the p' percentile of the
variable V,,. The 3 spatial fuzzy windows are denoted with the suffixesd?” for the higher level

(modality), “—M" for the medium level and + L” for the lower level.
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The elements of the proximity matri® are defined as:

0.2 if =i+l
0.1 if j=i+2
Pij = pji = § 0.05 if j=i+3 (2)

1= ki Pi I =i
0 otherwise

performing a temporal average of the statistical individwand respecting the conditioﬁle pij = 1.

The protocol provided 58 records for 41 patients. SMCA is thpydliad to 793 statistical individuals
related to these 41 patients, i.e. to an array of 793 rows &doBumns (13 variables witiv4 = 3
spatial fuzzy windows).

The * and 2 factorial axes represent respectively 68.0% and 15.7%eotdtal variance, showing
that the majority (83.7%) of the information is containedhe first factorial plane. So a great part of the
variance of the initial data can be represented by only twtofaal axes when 13 variables were initially
considered. These first two factors define synthetic indicepdtient follow-up but their interpretation,
from physiological and functional points of view, has to berfprmed. Consequently, this study will

focus on the clustering of trajectories on this factorialna.

0.6y o ImpMinVenty — L
p HeGrtRatep — L

0.4-

ok almpp + L
. N =~ N Db%"rect;,%ﬁz?E_fLL
Ac H \ \ ~ T ﬂAccujj;;E-— T
H ~_ ImpRdte — L

0.4 7% \ UActInt — L7
ImpRate — H .
Accp — Hdo
Durg — Ho "
NbCardCycg +

Impg
I o ImpOverAcc — H

1gf 05 0 05 1 15
15t factorial axis (68%)

Fig. 3: Variables of analysis represented on the first planeh@efSmoothed Multiple Correspondence

Analysis (SMCA). For each variable, only the first (Low,) and the third (High,—H) levels are

labelled, unlabelled squares correspond to the seconts [@Medium, — ).

The projections of the variables and individuals of analgsighe first factorial plane of the SMCA are
provided in Figures 3 and 4, respectively. The first axis is nyagi@fined by the lower{L) and higher
(—H) modalities ofImpg, Durg, NbCardCycg, NbBreathsg, Accgp and ImpRate, which reflect the
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Fig. 4: Individuals of analysis represented on the first plahth® Smoothed Multiple Correspondence

Analysis (SMCA). Each record of each patient (correspondinigree-month period) is represented by

one trajectory. The first point in time for each trajectory isrkea up by a circle.

time spent in exercise and the intensity of the efforts madthb patient. Consequently, in Figure 4, the
more the individuals are located to the right of the plane,ltwer is the time spent in exercise and the
less important are the efforts they make. The second axis islyndefined by the medium—{A/) and
extreme { H,— L) modalities ofimpMinVentg, ImpOverAcc, Impgr and Heart Rateg, which define
the ventilation activity in terms of amplitude, frequenayddlow rate, especially in rest. This axis can be
interpreted as an “axis of cardiovascular efficiency”. In Fggd the more the individuals are located to
the lower part of the plane, the less important is their Vatiin in rest (i.e. their cardiovascular system
is more “efficient”), independently of the daily activity duion and intensity (i.e. of the position along
the first axis).

As it can be seen on Figure 4, trajectories present diffexgdtions and evolutions on the factorial

plane, with a high overlapping.

V. CLUSTERING TRAJECTORIES ON THE FACTORIAL PLANE

The aim of the present study is to cluster patients accordirigdir clinical state during the follow-up
period, which, in terms of methodology, corresponds to thstering of trajectories on the factorial plane
according to their location and evolution. Considering ¢haracteristics of the trajectories, the clustering

methodology has to address the following issues:

« Unsupervised: na priori knowledge on the clusters is required.
« Similarity measure: relevance in comparing trajectoriestlom factorial plane having different

numbers of points and possibly subjects to nonlinear sypatigporal deformations.
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« Location and evolution: both locations and evolutions of titagectories on the factorial plane have

to be taken into account, as they are both informative.

Each of the previous three points is described in the follgvgactions.

A. An appropriate clustering algorithm

Among the unsupervised clustering algorithnksmeans and agglomerative hierarchical clustering
(AHC) are two classical methods.

The k-means algorithm implies the definition of centroids for eakster, which in the present study
is not trivial as the considered objects are trajectoriessindy constituted of different numbers of points
within the same cluster. Themeans method seems then not relevant for this particutdlgm.

Agglomerative hierarchical clustering only requires tlefimition of the dissimilarity matrix between
the objects (i.e. the trajectories) and of the aggregaiitn It is chosen as the clustering technique is

the present study with the complete link as an aggregatida li

B. A relevant similarity measure between trajectories

The main difficulty is the definition of a similarity measure asponding to the trajectories on
factorial planes. As mentioned above, these trajectoaaspotentially be subject to deformations and are
constituted of different numbers of points. Consequettily,Euclidian distance is not suitable. Among the
measures of dissimilarity, dynamic time warping (DTW) anddest common subsequence (LCSS) both
allow stretching in time and comparing time-series of défg lengths. DTW has been widely used as a
measure of dissimilarity in time-series clustering, indgxand retrieving [15], in speech or handwriting
recognition [16]. LCSS has also been studied as a similaritasone for heterogeneous multivariate
time-series or for multidimensional trajectories [17]. DTpVesents the advantage over LCSS to be
non-parametric and seems thus more appropriate for ungspérclustering.

The computation of the DTW vector can be adapted in two dimessio deal with two trajectories
instead of two time-series. Given one traject@tyaji, = {(Trajx(w:), Trajr(yi))}ie;1,m) constituted of
m data points and one trajectoyraj; = {(Traji(z;), Traji(y;))}jen,n constituted ofn data points,

the DTW vector is denotedT'W}, (4, j). It is defined according to the equation:
DTWkJ(Zv]) = Dk,l(ivj) + mln[DTWkJ(Z - 17] - 1)7

DTW;(i,j — 1), DTWy (i — 1, )] 3)
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where Dy (i,5) is the Euclidian distance between the coordinaté®ajy(x;), Trajx(y;)) and
(Traj(xz;), Traj(y;)). Then, the distance DTW between the two trajectories O§'W;,; =
DTWkJ (m, 7’L)

C. A similarity measure considering both locations and evolutions of the trajectories in the factorial

plane

The positions of the modalities on the factorial plane in Fég8rindicate that two trajectories with
similar shapes but located at different positions on théoféa plane are related to different modalities.
This observation underlines the fact that both thetation and theirevolution, i.e. both their coordinates
and their derivatives, in the factorial plane are informatio cluster similar trajectories and to compute
the dissimilarity matrix. The DTW can then be used with thedwihg modifications.

Given thek!” trajectoryT'rajy, its derivative is:

dTraj, = {(Traji(x;) — Trajp(zi-1),

Traje(yi) — Trajr(yi-1)) tie[1,m)- (4)

The DTW vectord DTW, (i, j) between the two derivativesl'raj, anddI'rayj; is defined according
to equation 3 and the distance DTW between the two derivaisvé® T W), ; = dDTWy, ;(m, n).

Thus in this study, givemDeuclidy,; = euclid(mean(Trajy), mean(Traj;)) the Euclidian distance
between the means of the coordinate§ ofj;, and7'raj; in the factorial plane, the dissimilarity measure

between the two trajectoriéBraj, andTraj; is defined as:
DMy, = dDTWy,; + Deuclidy,, (5)

wheredDT'W,; takes into account the derivatives of the trajectories Bdclidy.; their locations.
The N x N dissimilarity matrix used for the AHC is theWM = {DMj ;};cn,n2, N being the
number of trajectories to be clustered. After computatibrthe AHC with complete linkage and the

dissimilarity matrix DM, a dendrogram is obtained.

D. Cluster validity criterion

In AHC, in order to choose the threshold of cut in the dendxog(i.e. the number of clusters) and
to verify the validity of the clustering, cluster validityndices are used (for a review, see [18]). As

no information on the data is available (unsupervised ehirsg), only internal validation indices are
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suitable. They are based on computing the properties of thdtireg clusters, as the intra- and inter-
cluster distances. The internal validation index used insthdy is the mean silhouette value, denaofed
and described in [19]S is in the interval [-1, +1], where values close to -1 indicatewrong clustering

and values close to +1 indicate a correct clustering.

VI. RESULTS OBTAINED WITH THE CLUSTERING

Before applying the proposed clustering method, namelyloaggrative hierarchical clustering with
complete linkage and the dissimilarity matrix based on dyiedime warping, it is tested on two simulated

datasets, described in the following sections.

A. Tests on simulated datasets

The aim of the first test is to explore the capability of the prmab similarity measure to take into
account both locations and evolutions of the trajectorieshe factorial plane. The second test interests
in the complete methodology described in Figure 1, from ttezyuspace-time coding to the clustering.

1) Test on the similarity measure: From two trajectories selected among the trajectories ddaivith
the real datasetf. Figure 4), three prototypes of trajectories are computea third being obtained by
inverting the time samples of the first one.

Nine trajectories are simulated from the first prototype #edint locations in the factorial plane, 6
from the second prototype and 12 from the third prototype. daxh trajectory, a white noise is added
to obtain slightly different trajectories for the same ptgpe. The simulated dataset of 27 artificial
trajectories is represented in Figure 5. Figure 5 shows tleasithulation reproduces the characteristics
of the real dataset, namely the overlapping of severaldi@jies of different shapes at different locations
on the factorial plane.

The clustering method proposed above is applied to the siaulildataset with three dissimilarity
measures based on the DTW which is alternately computed dine itoordinates of the trajectories, ii)
the derivatives of the trajectories, iii) the derivativeghaaddition of the Euclidian distance between the
means of the coordinates as proposed in equation 5.

Figure 6 illustrates the resulting dendrogram for each whigafity measure and provides the mean
silhouette value against the number of clusters. A dendraogis a tree-like plot where each step of
hierarchical clustering is represented as a fusion of twandes of the tree into a single one. The

branches represent clusters obtained on each step of dhialr clustering. This representation eases
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Fig. 5: Simulated dataset of 27 trajectories obtained froraethneal trajectories and represented on the

first factorial plane. The first point in time for each trajectisymarked up by a circle.
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Fig. 6: Dendrograms and mean silhouette valsighe number of clusters, for three dissimilarity measures
based on the DTW. The clustering is applied to the simulatealséabf 27 trajectories. The dendrogram

is cut at the threshold whose value is obtained after the mamxi of the mean silhouette.

the choice of the number of clusters. The dendrogram is cutethreshold (horizontal dashed line)
producing the number of clusters corresponding to the maxirmean silhouette value.

For each of the three measures, the mean silhouette $apresents one global maximum, indicating
a value for the number of clustefs to be chosen, and leads to a different clustering. For the DTW o
coordinatesmaxg S is obtained forK = 3 and it tends to group the trajectories close in the sense of
their location on the factorial plane. For the DTW on derivsi maxy S is obtained forK = 3, but it
regroups trajectories only according to their evolutioar the DTW on derivatives with the addition of

the Euclidian distance between coordinateaxy S is obtained forK = 9 and each obtained cluster is
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composed of trajectories with similar evolutions and clmstions. Despite the overlapping of several
trajectories with different evolutions at the same loaatithe proposed dissimilarity measure is able to
group similar trajectories. Moreover, it is suitable totiiguish between shapes (independent of any
notion of time) and evolutions (with start- and end-poings trajectories created with the first prototype
and with the third prototype are assigned to two differenstrs, even if they have similar shapes.

2) Test of the complete method: In this section, the noise robustness of the proposed melihgy)
described in Figure 1, is tested. Among the trajectoriesiobtbwith the real databasef(Figure 4), seven
trajectories with different evolutions and locations aedested. The corresponding time-series (i.e. the
13 variables of analysis) are retrieved. For each selecégetctory, a white noise is added independently
to each of its 13 variables with a given signal-to-noiseord®NR). The original time-series and 10
realizations of the noisy time-series are coded by fuzzgefene coding and constitute the individuals
of analysis for the SMCA. The 77 resulting trajectories arentbkistered by AHC with the DTW on
derivatives with the addition of the Euclidian distance tegw coordinates as a dissimilarity measure
(cf. equation 5). Figure 7 presents the mean silhouette valuasighie number of clusters for SNR =
3 dB, and the clusters obtained for the maximum value of th®wgette value being<d = 7. Despite
the noise, the correct number of clusters is determined éyriternal validation indices, the trajectories
being grouped according to their evolution and location.

It appears that above SNR = 0 dB the clustering is correct andtiglisturbed by the noise added to
the time-series and that under SNR = 0 dBis unable to provide the correct value &f. The method
seems then robust to noise on the variables of analysishwd@in be explained by two of its steps: the
time fuzzy coding and the smoothing performed during the SMTHe mean silhouette value increases
when the length of the time fuzzy windows increases and ibdrigvith the SMCA than with the MCA.
The averaging performed by both the fuzzy coding and the SMCAcsines the time-series and the
trajectories, respectively, improving the performancehaf clustering.

The previous two tests, performed on datasets close to thela&gbase, have proven the validity of
the proposed approach in terms of clustering methodologly dissimilarity measure relevant for the

processed trajectories, and of noise robustness.

B. Performance of the clustering on the recorded database

In this section, the recorded database, constituted of &@ctiories on the first factorial plane, is
clustered with the proposed approach. Figure 8 provides #ammilhouette valug against the number

of clustersK. The number of clusters is chosenfat= 10, after the maximum value &f. The resulting
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Fig. 7: Test of the complete method on 77 trajectories contpfrtam 7 selected trajectories of the real
dataset. For each selected trajectory, a white noise isdanhdiependently to each of its 13 variables
with a given signal-to-noise ratio (SNR = 3 dB), and the rasgl7 trajectories are clustered. For each
cluster, individuals of analysis (in gray) and individualsthe given cluster (in black) are represented in

the first plane of the SMCA. The first point in time for each trajegtic marked up by a circle.

clusters are provided in Figure 8, where for each clusteviddals of analysis are in gray and individuals
of the given cluster are in black. One can notice that trajges within a given cluster have visually
similar evolutions and close locations.

To evaluate the methodology, the resulting clusters haveetoompared with the appreciation of the
physicians on the evolution of the patients during each efttihee-month length periods. For the present
protocol, information is available on the global state offepatient, updated at the end of each 3-month
period of the follow-up, and each “adverse event” is regbidate and type). In the present study, the
records with adverse events other than cardiac events scarded, as a non cardiac event like a fall
or a bronchitis can have very different effects on patients WHF. As no everyday report of patients’
clinical state is available, the difficulty resides in definitig actual evolution of a given patient: has
a patient undergoing a cardiac adverse event at the begimfihis/her three-month length period and
recovering rapidly after hospitalization a favorable oruariavorable evolution? In this context, indices

like the specificity or the sensitivity are difficult to computéonsequently, the present study can only

April 7, 2008 DRAFT



17

()
= Cluster 1 Cluster 2
0 0
> % 0.5 0.9
2 @
%0.3* 1 .g 0 0 ﬁ
gl —r & .
=04 T | 803 0.5 /f
205 ] 10f st 15 -1 0 1 -1 0 1
mber or cluster;

" Cluster'\‘f%l Y 8Iuster 4 Cluster 5 Cluster 6
% 0.5 0.5 0.5 0.5
g o 0 o 0 x%
S ﬁ
505 05 f .05 05
N -l -1 -1 -1

-1 0 1 -1 0 1 -1 0 1 -1 0 1
" Cluster 7 Cluster 8 Cluster 9 Cluster 10
"< 0.5 0.5 0.5 0.5
© a\s
8 o //-:e 0 0 0 INg
@]
g-o.s 0.5 0.5 % 0.5
T o -1 -1 -1
N

-1 0o 1. -1 R -1 R -1 0o 1

1°t factorial axis 1°% factorial axis 1°* factorial axis 1°t factorial axis

Fig. 8: Mean silhouette valug against the number of clustefs. Ten clusters are determined with the
proposed methodology for the recorded databasexf S for K = 10). For each cluster, individuals

of analysis (in gray) and individuals of the given clustar Klack) are represented in the first plane of
the SMCA. Each record of each patient (corresponding to a-time®h period) is represented by one

trajectory. The first point in time for each trajectory is matke by a circle.

focus on the relation between the different areas of thefadtplane defined by SMCA and the health
of the patients as reported at the end of each follow-up gefNore data would be necessary to study
the evolutions of patients on this factorial plane.

According to the analysis performed on the position of thdiviiduals of analysis relatively to the
position of the modalities of analysigf( Figures 3 and 4), the evolution of a patient (during one of
his/her three-month length period)aspriori i) favorable if the corresponding trajectory is located ba t
left of the plane or evolves from the right to the left of thamt, and ii) unfavorable if the corresponding
trajectory is located on the right part of the plane or evslfrem the left to the right of the plane. The
study of each cluster is necessary to confirm this divisiorheffactorial plane into several areas with
different meanings in terms of patient’s health.

On the left of the plane, clusters 2, 4 and 5 contain 13 trajexd in total. The medical reports indicate

that all the corresponding patients were, during the giveriog, in a favorable state. On the right of
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the plane, clusters 8 and 9 contain 5 trajectories in tosspeiated with patients all undergoing a health
deterioration during the given period. These five clusteebinthe definition of two distinct areas in the
factorial plane, the left one associated with a favoraldéesand the right one with a health deterioration.

The other five clusters are interesting as their trajecta@iesy transitions from one area to the other.
Cluster 1 comprises 27 trajectories, with small evolutionghe upper half-plane, overlapping both right
and left half-planes. During the given period, patients séhtrajectories belong to cluster 1 were all in
good health, except one patient. According to the mediaards on this patient, he was tired during the
period of interest (3 months post-op) and died 1 month afterend of this period, the date of his/her
adverse event is not reported. Figure 9 shows that the comdsp trajectory (solid line) is evolving
from the upper-plane to the right of the plane, with a loopuabthe 7" post-op week. The trajectory in
cluster 3 is very specific, evolving bottom-to-top firstly amght-to-left secondly. This patient underwent
an adverse event (heart failure) 28 days after the beginofirtge period of interest, corresponding to
the changing of direction in his/her trajectory, and recederapidly which explains why the trajectory
evolves from right to left. Cluster 6 groups 6 trajectorigsleing in the same direction (bottom-right to
top), associated with patients all, except one, preserdtifeyorable state during the given period. This
patient (bold line in Figure 9) underwent a cardiac adversniearound 2 months after the beginning
of the period of interest. He was hospitalized for 1 week agxbvered rapidly, as can be seen from
his/her trajectory finally evolving right to left. In Figure $he arrow corresponds to the reported date
of the adverse event, and one can notice that a changing idirtbetion of the trajectory has occurred
around 5 weeks before the adverse event. Cluster 7 com&@isegectories evolving from top-right to
top-left of the plane and corresponding to one patient witavarable evolution and one patient with an
unfavorable evolution. This patient underwent a cardiacesb/event around 2 weeks before the end of
the period of interest, as can be seen with the abrupt U-tuhisiher trajectory (dashed line in Figure 9).
Cluster 10 groups 4 trajectories with two different evalans, two trajectories have very small dynamics,
associated with patients in good health, and the two otheare large evolutions from the top to the right
of the plane, associated with patients undergoing advesset® during the given period.

The clustering performed on the real dataset provides 1Qethkjsgrouping trajectories with similar
evolutions and close locations, as expected. The obtainstees seem consistent with the medical records
of the patients, but no quantitative evaluation is avadafiiwo areas in the factorial plane have been
identified, the bottom-right quarter-plane is related withealth degradation and the bottom-left one with
a stable clinical state. The other two areas, although bestmguished by the clustering algorithm, are

not so easily identifiable.
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Fig. 9: Three specific trajectories of patients undergoing are@@ event during the period of interest.
Solid line: trajectory in cluster 1, bold line: trajectory atuster 6, dashed line: trajectory in cluster 7.
Reported dates of adverse events are indicated by an arr@irShpoint in time for each trajectory is

marked up by a circle.

VIlI. DISCUSSION AND CONCLUSION

This study was designed to show the informative potentiacoékeration and impedance data recorded
in implantable devices and to evaluate the appropriateoeasmultiple correspondence analysis in this
particular context. A clinical protocol has been desigredrovide data on patients that suffer from heart
failure.

MCA has been chosen as it is a multivariate method that eshliniear and non-linear relationships
between variables. However, MCA demands to transform poatis variables into nominal ones, i.e. to
code amplitude and time domains of the variables by meanssy or fuzzy modalities. MCA does not
explicitly exploit time, but the temporal dimension is indiuced in this study with a basic solution that
consists in representing each time sample (or time winddve) time-series by one statistical individual
(a row of the table of analysis) and to perform MCA. Statidtindividuals are represented by trajectories
onto the factorial plane and their temporal evolution caantbe exploited. Consequently, the proposed
method can be useful for graphically follow the evolutioreajiven patient’s state by means of a synthetic
representation that takes into account the most pertiméatnation in the data.

In the present study, it has been possible to evaluate amdsdighe synthetic indices provided by
the first two factorial axes of the MCA and to explain them adomy to functional and physiological
points of view. The 58 records provided by the clinical profocave been represented by trajectories
on the first factorial plane of the MCA. The definition of an appraje similarity measure has been
discussed and has enabled the clustering of the trajesfat@egroups of trajectories with similar locations

and evolutions on the factorial plane. The proposed disttiasebeen validated on simulated datasets
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and enables the clustering of trajectories in the factqiahe according to their location and/or their
evolution depending on the problem to be solved. Experimemtsimulated datasets regarding the noise
robustness also show the relevance of the association ay fsgatio-temporal coding and smoothed
MCA. The proposed method is robust to white noise with SNR asdev@ dB.

A database constituted of clinical observations from 4lep#d has also been analyzed by using a data
mining approach so as to characterize the data. Two aredweifattorial plane, corresponding to two
large groups of patients, have been identified, the bottgim-Guarter-plane being related with a health
degradation and the bottom-left one with a stable clinitaties Most of the trajectories projected on this
first factorial plane were correctly clustered accordinghirtlocation and shape. Discussed individually,
these clusters were efficient in grouping trajectories spwading to similar patients’ clinical state. The
present study has shown that patients undergoing an adeees¢ often present trajectories with abrupt
variations. A detection of such phenomena would permit emiily patients with a critical evolution.

In the future, additional data would enable the identificatimd detection of typical evolutions related
to health deterioration. Rules may be extracted from thation of modalities on the factorial plane, and
enable the definition of thresholds on time-series to geaaaktrms associated with adverse events or
health deterioration. These alarms could be sent from thenpaker, via a data communication device
(such as a mobile phone, PDA, etc.), to a telemonitoring cemteese results are encouraging and may
be useful for the definition of new selection criteria of catade patients for CRT. Finally, the proposed

methodology can be generalized to other monitoring problem
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