
1

Exploring time-series retrieved from cardiac
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Abstract

Current cardiac implantable devices (ID) are equipped witha set of sensors that can provide useful

information to improve patient follow-up and to prevent health deterioration in the postoperative period.

In this paper, data obtained from an ID with two such sensors (a transthoracic impedance sensor and an

accelerometer) are analyzed in order to evaluate their potential application for the follow-up of patients

treated with a cardiac resynchronization therapy (CRT). A methodology combining spatio-temporal fuzzy

coding and multiple correspondence analysis (MCA) is applied in order to: i) reduce the dimensionality

of the data and provide new synthetic indices based on the “factorial axes” obtained from MCA, ii)

interpret these factorial axes in physiological terms and iii) analyze the evolution of the patient’s status

by projecting the acquired data into the plane formed by the first two factorial axes named “factorial

plane”. In order to classify the different evolution patterns, a new similarity measure is proposed and

validated on simulated datasets, and then used to cluster observed data from 41 CRT patients. The

obtained clusters are compared with the annotations on eachpatient’s medical record. Two areas on the

factorial plane are identified, one being correlated with a health degradation of patients and the other

with a stable clinical state.
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I. I NTRODUCTION

Cardiac resynchronization therapy (CRT) is indicated for patients suffering from drug-refractory conges-

tive heart failure (CHF) associated with intraventricular dyssynchrony [1]. CRT improves hemodynamic

parameters, ejection fraction or distance covered in the 6 minutes walking test [2]. Furthermore, CRT

has shown to decrease hospitalizations for patients treated with the implantable devices (ID). Although

the efficiency of this treatment has been proven, 20 to 30% of patients show either no improvement or

worsening of their symptoms [3].

Individual follow-up of implanted patients is a key to understand the difference between responders

and non-responders, and to prevent severe health degradation. Besides regular follow-up visits, during the

post-operative period, an everyday follow-up is possible with the new IDs recently developed for CRT.

They offer an increased storage capability of data acquired by the ID, providing information on the ID

itself (e.g. event counters of pacing and sensing activities) or on the state of the patient (e.g. arrhythmias,

electrograms) and on its activity [4]. Recorded data are very promising towards the home monitoring of

patients, the prediction of adverse events or the reductionof hospitalizations. However, this source of

information is under-exploited because data are large, multivariate, time-dependent and heterogeneous,

and consequently difficult to interpret for caregivers.

The objective of the present study is to propose a methodologyto process this amount of multivariate

data, in order to i) evaluate and extract the information content of the time-dependent data downloaded

from the pacemaker memory, ii) define synthetic indices whichare easy to interpret and iii) characterize

and compare different populations of patients. Given the dimensionality of the recorded data, methods

of data reduction are investigated. The interest of the multidimensional analysis of the data recorded

in the ID memory to objectively assess the patients’ response to the therapy and the validity of the

exploratory techniques to process these data have been shown in two previous studies, using principal

component analysis (PCA) [5] and multiple correspondence analysis (MCA) associated with a spatio-

temporal fuzzy coding of the time-series [6]. The former method has been successfully used to differentiate

a test population (patients with rate-responsive pacemakers) from a population of patients suffering from

CHF by jointly exploiting a number of physiological variables and using a simple representation for

the temporal dimension. Providing an appropriate adaptation of its table of analysis, MCA has been

successfully applied to the analysis of the evolution of time-series across time, and is then used here as

well. MCA performs a reduction of the dimensionality of the data and provides synthetic indices called
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“factorial axes”. A plane formed by two factorial axes is called “factorial plane”. Each patient is finally

represented by trajectories on the factorial plane.

From a methodological point of view, several questions are raised: i) how to link the factorial axes with

the variables acquired from the ID? ii) do patients with similar trajectories on the factorial plane have

a similar clinical state, and if yes, how to cluster patientsaccording to their evolution in the factorial

plane? and iii) are the obtained clusters consistent with the clinical data available from the patients?

The study addresses the clustering of trajectories with different numbers of points in the factorial plane,

which implies the choice of appropriate distance measure and clustering method. This problem is related

to temporal clustering (i.e. the clustering of time-series) [7], [8].

The paper is organized as follows. In section II, the clinicalprotocol and the ID data are presented.

Then, in section III, the proposed methodology is described and the issues arising from the clustering of

trajectories are presented and solutions are proposed. The proposed methodology is tested on simulated

datasets and applied on the real recorded data in Section VI. The validity of the obtained clusters is

evaluated in comparison with the medical records of patients participating in the protocol.

II. DATA RECORDED BY CARDIAC IMPLANTABLE DEVICES

A. Patients

Forty-one patients (34 males, 7 females) participated in the present study. The mean age was 64

(minimum 38 and maximum 87). They suffered from refractory heart failure (RHF) associated with

intraventricular dyssynchrony and present a thin QRS complex (< 120 ms), a NYHA class from III

to IV and a left ventricular ejection fraction (LVEF) = 25% (± 7). They were candidate for cardiac

resynchronization therapy and were then implanted with cardiac implantable devices. The patients were

informed about the research protocol and gave their fully informed consent for participating in this study.

B. Description of the follow-up time-series

Data stored in the ID memory are retrieved in individual records at the end of the third, the sixth and

the twelfth postoperative months. Each record covers a three-month length period. These data result from

two sensors [9]: a transthoracic impedance sensor which reflects the respiratory activity of the patient and

its intensity of effort, and an 1-D accelerometer which is linked to the intensity of the physical activity

of the patient.

By combining information from the two sensors, the activitylevel of the patients is classified

automatically by the device into two states:exercise and rest. For each state, 24-hour cumulative values
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of a number of variables are computed and recorded in the ID memory over 30-day follow-up periods.

More details concerning the two sensors can be found in [10],[11]. The final set of thirteen physiological

variables is listed in Table I and is constituted of seven recorded variables and of six additional variables

deducted from the seven recorded ones.

TABLE I: List of 7 physiological variables recorded in the cardiac implantable devices and 6 variables

computed from these recorded variables.
Description Names Units

Total duration within

the activity level
DurE

1 s

Cumulative values of

acceleration
AccE m · s−2(g)

Cumulative values of

impedance

ImpE
millivolts (mV )

ImpR

Cumulative number of

ventilation cycles

NbBreathsE
NbV C

NbBreathsR

Cumulative number of

cardiac cycles
NbCardCycE NbCC

“Mean”2 activity

intensity
ActInt g · s−1

ImpE over AccE ImpOverAcc mV · g−1

“Mean” heart rate HeartRateE

Beats per minute

(bpm)

“Mean” impedance

minute ventilation
ImpMinV entE mV · min−1

“Mean” ventilation

frequency
V entFreqE NbV C · min−1

ImpE over ImpR ImpRate none

1Subscripts E and R are for Exercise and Rest, respectively.
2The duration of eachExercise and Rest period that occurs

within 24 hours is unknown. Only the cumulative duration is

known. Consequently, this “mean” is not the average of the

variable values over 24 hours, excepted if all the periods are

of the same duration.
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III. A METHODOLOGY FOR CLUSTERING MULTIVARIATE TIME-SERIES

An overview of the proposed methodology is provided in Figure1. The analysis is first performed

on a reference population to determine significant factorialaxes and clusters of similar evolutions in the

factorial planes. In a follow-up situation, new data would regularly be retrieved from patients’ implantable

cardiac devices. The results of the analysis (i.e. factorialaxes and clusters) would then be used by

projecting the new data on the factorial planes and assigning the evolution of the patient to an existing

cluster towards the diagnosis (i.e. the patient is improving or degrading). In this paper, only the analysis

is presented.

The analysis consists of 2 successive steps, namely fuzzy coding of the data and multidimensional

analysis with smoothed multiple correspondence analysis (SMCA), described in the following subsections.

Fuzzy 
space-time 
coding

Multidimensional 
time-series

Smoothed Multiple 
Correspondence 

Analysis
Clustering Clusters

1st factorial axis

2n
d
fa
ct
or
ia
l a
xi
s

Trajectories on the 
first factorial planeQuantitative data

Fig. 1: Overview of the proposed methodology. The analysis is performed on the reference population

and leads to the determination of clusters of similar evolutions – according to an appropriately chosen

dissimilarity measure – on the factorial plane defined by the smoothed multiple correspondence analysis

(SMCA). A practical application of this methodology would bethe projection of subsequent follow-up

data as supplementary individuals on the factorial axes defined during the analysis and the assignation

of the obtained trajectories to the “closest” cluster, in the sense of the chosen distance.

A. Space-time fuzzy coding

A coding of the recorded data is required, as MCA has been at first conceived for categorical variables.

MCA exploits disjunctive tablesZ = (zij)(i,j)∈[1,R]×[1,C] wherezij is the membership value of theith

object to thejth modality. As a coding of the multivariate time-series, a fuzzy space-time windowing,

defined by Loslever and Bouilland for characterizing and coding biomechanical temporal data [12], is

proposed. Instead of an indicator matrixZ (i.e. zij ∈ {0, 1}), the MCA analyses a fuzzy version of
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Z where zij ∈ [0, 1] with the condition
∑

j∈Jv
zij = 1, Jv being the set of modalities of thevth

attribute (variable). In statistics, one modality of a variable is one possible level of this variable. In

classical crisp coding, continuous variables are divided into several modalities (whose number depends

on the distribution of the variable). For example, the variable “age” of a population can be split into 3

modalities “age≤ 30”, “30 < age< 60” and “age≥ 60”.

As depicted in Figure 2, the fuzzy space-time windowing divides the time domain of each variable

into NT overlapping windows. The membership value of theqth time sampletq to the time windowTj

is denotedµTj
(tq) and falls between [0,1]. The membership values of each data point in the NT time

windows meet the condition
∑NT

j=1 µTj
(tq) = 1. The amplitudes of each variable (referred to as spatial

domain) are coded in a similar manner withNA spatial fuzzy windows verifying the same properties.

time

amplitude

V�(t�)Variable V�
timet�0

1

membership 
value

T� T� T��Time fuzzy windows

0 1 membership 
value

A���A���A����spatial
domain

Amplitude 
(spatial)

fuzzy windows

µ n
i, jW

=
Membership value of 
the variable V� to the 
space-time fuzzy 
windows W���
µ����(V�(t�))

µ��(t�)
Fig. 2: Temporal and spatial (amplitude) fuzzy coding of a continuous signal.

From the membership values in the time and the spatial (amplitude) domains, the membership value

of the space-time windowWn
i,j , for a given time-series (signal)TSk and the variableVn, is defined as:

µW n
i,j

(TSk) =

∑Q
q=1 µTj

(tq) · µAi,n
(Vn(tq))

∑Q
q=1 µTj

(tq)
(1)

whereVn(tq) is the value taken by thenth variable at time unittq, µTj
(tq) is the membership value of

the time windowTj for the time unittq, µAi,n
(Vn(tq)) is the membership value of theith space window

Ai,n for theVn(tq) value, andQ is the number of time units inTSk. With this definition,µW n
i,j

(TSk) is

the weighted average of the space membership values with thetime membership values as weights and
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verifies
∑NA

i=1 µW n
i,j

(TSk) = 1. This property is required to maintain the statistical context and to allow

µW n
i,j

(TSk) to be interpreted as the frequency of appearance of the signal in the space-time windowWn
i,j .

B. Multiple correspondence analysis (MCA)

MCA is of great interest to explore the data recorded by ID, asit handles both quantitative and

qualitative data and captures nonlinear relationships between variables. It deals with a two-way cross-

table with the observations (also called statistical individuals) as rows and the variables (or attributes)

characterizing these observations as columns in the table.In MCA, rows and columns of the cross-table

play a symmetric role and can be represented on the same plot.Another advantage of this method is the

possibility of displaying supplementary variables and individuals jointly with the variables and individuals

of analysis. They are not involved in the MCA but their projection on the factorial plane: i) refines and

enriches the interpretation of the MCA factorial axes by relating them to meaningful variables (e.g. age,

sex, etc.) and ii) enables the characterization of supplementary individuals according to their location

with respect to individuals of analysis. Consequently in MCA, data acquired from other patients’ ID can

be represented on the factorial plane jointly with the reference population: it is possible to study their

evolution with respect to the evolution of the patients of analysis.

Being in a follow-up frame, the temporal information contained in the recorded data is primordial and

has to be taken into account. Inherently MCA does not exploittime, but the temporal dimension can be

introduced artificially. A simple way consists in representing each time sample (or time window) of a

time-series by one statistical individual (a row of the cross-table of analysis) and in applying MCA to

the resulting table [12]. Data can then be organized in a table such as Table II, where a time-series is

represented by as many rows as it has time samples or time windows. This method is simple and leads to

a rather easy interpretation of the results. However, the temporal dimension is not explicitly exploited by

the subjacent model of data representation (e.g. the same factorial axes would be obtained by introducing

the lines on the analysis table in any particular order). Details and examples on the computation and

interpretation of MCA can be found in [13]. With this convention, each time-series (i.e., in this study,

each three-month length period of a given patient) is represented by a trajectory onto the factorial plane.

One of our objectives is to cluster the patients according tothe evolution of their trajectories in the

factorial plane defined by MCA. To facilitate this clustering, it is possible to smooth the trajectories in the

factorial plane by applying a weighted and smoothed temporal average on the tableZ analyzed by MCA.

This method is named smoothed multiple correspondence analysis (SMCA) and has been introduced

by Benali and Escofier [14]. The final table of analysis isS = P · Z, whereP = (pij)(i,j)∈[1,L]2 is a
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TABLE II: Construction of the tableZ for multiple correspondence analysis (MCA) applied to fuzzy

coded data and implicitly exploiting the temporal dimension.
Variables · · · Vn · · ·

Fuzzy space windows · · · Ai,n · · ·

TS1 at fuzzy time window 1 · · · µW n
i,1

(TS1) · · ·

TS1 at fuzzy time window 2 · · · µW n
i,2

(TS1) · · ·

· · · · · · · · · · · ·

TSk at fuzzy time windowj · · · µW n
i,j

(TSk) · · ·

· · · · · · · · · · · ·

Ai,n is the fuzzy space window corresponding to theith

modality of thenth variable,TSk is thekth time-series and

µW n
i,j

(TSk) is the membership value of thenth variable to

the fuzzy time-space windowW n
i,j for the kth time-series.

proximity matrix defining the weighted and smoothed temporalaverage and is such as
∑L

j=1 pij = 1.

IV. A PPLICATION OF THE FUZZY CODING AND MULTIDIMENSIONAL ANALYSIS ON THE RECORDED

DATABASE

The first two steps of the proposed methodology, namely the fuzzy spatio-temporal coding and the

SMCA, are applied to the time-series available in the recorded database. In this study, a fuzzy window

setT = {T1, · · · , Tj , · · · , TNT
}, where eachTj is 7-day long, is considered. The length of the fuzzy time

windows has been chosen by considering the patients’ behaviors, being quite similar from one week to

another. Each trajectory, representing a three-month length period (i.e. around 13 7-day long), links then

around 13 points.

For each variableVn, NA = 3 modalities are considered: “Low” corresponding to the spatial fuzzy

window A1,n = [-∞, median(Vn)], “Medium” corresponding toA2,n = [prctile(Vn,2.5), prctile(Vn,97.5)]

and “High” corresponding toA3,n = [median(Vn), +∞], where prctile(Vn,p) is thepth percentile of the

variable Vn. The 3 spatial fuzzy windows are denoted with the suffixes “−H” for the higher level

(modality), “−M ” for the medium level and “−L” for the lower level.
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The elements of the proximity matrixP are defined as:

pij = pji =















































0.2 if j = i + 1

0.1 if j = i + 2

0.05 if j = i + 3

1 −
∑L

k=1,k 6=j pik if j = i

0 otherwise

(2)

performing a temporal average of the statistical individuals and respecting the condition
∑L

j=1 pij = 1.

The protocol provided 58 records for 41 patients. SMCA is thus applied to 793 statistical individuals

related to these 41 patients, i.e. to an array of 793 rows and 39 columns (13 variables withNA = 3

spatial fuzzy windows).

The 1st and 2nd factorial axes represent respectively 68.0% and 15.7% of the total variance, showing

that the majority (83.7%) of the information is contained inthe first factorial plane. So a great part of the

variance of the initial data can be represented by only two factorial axes when 13 variables were initially

considered. These first two factors define synthetic indices forpatient follow-up but their interpretation,

from physiological and functional points of view, has to be performed. Consequently, this study will

focus on the clustering of trajectories on this factorial plane.

DurE − L

DurE − H

AccE − L

AccE − H

ImpE − L

ImpE − H

ImpR − L

ImpR − H

NbBreathsE − L

NbBreathsE − H

NbBreathsR − L

NbBreathsR − H NbCardCycE − L

NbCardCycE − H

ActInt − L

ActInt − H

ImpOverAcc − L

ImpOverAcc − H

HeartRateE − L

HeartRateE − H

ImpMinV entE − L

ImpMinV entE − H

V entFreqE − L

V entFreqE − H ImpRate − L

ImpRate − H

1st factorial axis (68%)

0

0-0.5 1.510.5-1.2

-1

-1

-0.4

0.6

0.4

Fig. 3: Variables of analysis represented on the first plane of the Smoothed Multiple Correspondence

Analysis (SMCA). For each variable, only the first (Low,−L) and the third (High,−H) levels are

labelled, unlabelled squares correspond to the second levels (Medium,−M ).

The projections of the variables and individuals of analysison the first factorial plane of the SMCA are

provided in Figures 3 and 4, respectively. The first axis is mainly defined by the lower (−L) and higher

(−H) modalities ofImpE , DurE , NbCardCycE , NbBreathsE , AccE andImpRate, which reflect the
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Fig. 4: Individuals of analysis represented on the first plane of the Smoothed Multiple Correspondence

Analysis (SMCA). Each record of each patient (corresponding athree-month period) is represented by

one trajectory. The first point in time for each trajectory is marked up by a circle.

time spent in exercise and the intensity of the efforts made by the patient. Consequently, in Figure 4, the

more the individuals are located to the right of the plane, the lower is the time spent in exercise and the

less important are the efforts they make. The second axis is mainly defined by the medium (−M ) and

extreme (−H,−L) modalities ofImpMinV entE , ImpOverAcc, ImpR andHeartRateE , which define

the ventilation activity in terms of amplitude, frequency and flow rate, especially in rest. This axis can be

interpreted as an “axis of cardiovascular efficiency”. In Figure 4 the more the individuals are located to

the lower part of the plane, the less important is their ventilation in rest (i.e. their cardiovascular system

is more “efficient”), independently of the daily activity duration and intensity (i.e. of the position along

the first axis).

As it can be seen on Figure 4, trajectories present different locations and evolutions on the factorial

plane, with a high overlapping.

V. CLUSTERING TRAJECTORIES ON THE FACTORIAL PLANE

The aim of the present study is to cluster patients according to their clinical state during the follow-up

period, which, in terms of methodology, corresponds to the clustering of trajectories on the factorial plane

according to their location and evolution. Considering thecharacteristics of the trajectories, the clustering

methodology has to address the following issues:

• Unsupervised: noa priori knowledge on the clusters is required.

• Similarity measure: relevance in comparing trajectories onthe factorial plane having different

numbers of points and possibly subjects to nonlinear spatio-temporal deformations.
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• Location and evolution: both locations and evolutions of thetrajectories on the factorial plane have

to be taken into account, as they are both informative.

Each of the previous three points is described in the following sections.

A. An appropriate clustering algorithm

Among the unsupervised clustering algorithms,k-means and agglomerative hierarchical clustering

(AHC) are two classical methods.

The k-means algorithm implies the definition of centroids for eachcluster, which in the present study

is not trivial as the considered objects are trajectories possibly constituted of different numbers of points

within the same cluster. Thek-means method seems then not relevant for this particular problem.

Agglomerative hierarchical clustering only requires the definition of the dissimilarity matrix between

the objects (i.e. the trajectories) and of the aggregation link. It is chosen as the clustering technique is

the present study with the complete link as an aggregation link.

B. A relevant similarity measure between trajectories

The main difficulty is the definition of a similarity measure corresponding to the trajectories on

factorial planes. As mentioned above, these trajectories can potentially be subject to deformations and are

constituted of different numbers of points. Consequently,the Euclidian distance is not suitable. Among the

measures of dissimilarity, dynamic time warping (DTW) and longest common subsequence (LCSS) both

allow stretching in time and comparing time-series of different lengths. DTW has been widely used as a

measure of dissimilarity in time-series clustering, indexing and retrieving [15], in speech or handwriting

recognition [16]. LCSS has also been studied as a similarity measure for heterogeneous multivariate

time-series or for multidimensional trajectories [17]. DTWpresents the advantage over LCSS to be

non-parametric and seems thus more appropriate for unsupervised clustering.

The computation of the DTW vector can be adapted in two dimensions to deal with two trajectories

instead of two time-series. Given one trajectoryTrajk = {(Trajk(xi), T rajk(yi))}i∈[1,m] constituted of

m data points and one trajectoryTrajl = {(Trajl(xj), T rajl(yj))}j∈[1,n] constituted ofn data points,

the DTW vector is denotedDTWk,l(i, j). It is defined according to the equation:

DTWk,l(i, j) = Dk,l(i, j) + min[DTWk,l(i − 1, j − 1),

DTWk,l(i, j − 1), DTWk,l(i − 1, j)] (3)
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where Dk,l(i, j) is the Euclidian distance between the coordinates(Trajk(xi), T rajk(yi)) and

(Trajl(xj), T rajl(yj)). Then, the distance DTW between the two trajectories isDTWk,l =

DTWk,l(m, n).

C. A similarity measure considering both locations and evolutions of the trajectories in the factorial

plane

The positions of the modalities on the factorial plane in Figure 3 indicate that two trajectories with

similar shapes but located at different positions on the factorial plane are related to different modalities.

This observation underlines the fact that both theirlocation and theirevolution, i.e. both their coordinates

and their derivatives, in the factorial plane are informative to cluster similar trajectories and to compute

the dissimilarity matrix. The DTW can then be used with the following modifications.

Given thekth trajectoryTrajk, its derivative is:

dTrajk = {(Trajk(xi) − Trajk(xi−1),

T rajk(yi) − Trajk(yi−1))}i∈[1,m]. (4)

The DTW vectordDTWk,l(i, j) between the two derivativesdTrajk anddTrajl is defined according

to equation 3 and the distance DTW between the two derivativesis dDTWk,l = dDTWk,l(m, n).

Thus in this study, givenDeuclidk,l = euclid(mean(Trajk), mean(Trajl)) the Euclidian distance

between the means of the coordinates ofTrajk andTrajl in the factorial plane, the dissimilarity measure

between the two trajectoriesTrajk andTrajl is defined as:

DMk,l = dDTWk,l + Deuclidk,l, (5)

wheredDTWk,l takes into account the derivatives of the trajectories andDeuclidk,l their locations.

The N × N dissimilarity matrix used for the AHC is thenDM = {DMk,l}k,l∈[1,N ]2 , N being the

number of trajectories to be clustered. After computation of the AHC with complete linkage and the

dissimilarity matrixDM , a dendrogram is obtained.

D. Cluster validity criterion

In AHC, in order to choose the threshold of cut in the dendrogram (i.e. the number of clusters) and

to verify the validity of the clustering, cluster validity indices are used (for a review, see [18]). As

no information on the data is available (unsupervised clustering), only internal validation indices are
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suitable. They are based on computing the properties of the resulting clusters, as the intra- and inter-

cluster distances. The internal validation index used in thestudy is the mean silhouette value, denotedS

and described in [19].S is in the interval [-1, +1], where values close to -1 indicatea wrong clustering

and values close to +1 indicate a correct clustering.

VI. RESULTS OBTAINED WITH THE CLUSTERING

Before applying the proposed clustering method, namely agglomerative hierarchical clustering with

complete linkage and the dissimilarity matrix based on dynamic time warping, it is tested on two simulated

datasets, described in the following sections.

A. Tests on simulated datasets

The aim of the first test is to explore the capability of the proposed similarity measure to take into

account both locations and evolutions of the trajectories on the factorial plane. The second test interests

in the complete methodology described in Figure 1, from the fuzzy space-time coding to the clustering.

1) Test on the similarity measure: From two trajectories selected among the trajectories obtained with

the real dataset (cf. Figure 4), three prototypes of trajectories are computed, the third being obtained by

inverting the time samples of the first one.

Nine trajectories are simulated from the first prototype at different locations in the factorial plane, 6

from the second prototype and 12 from the third prototype. For each trajectory, a white noise is added

to obtain slightly different trajectories for the same prototype. The simulated dataset of 27 artificial

trajectories is represented in Figure 5. Figure 5 shows that the simulation reproduces the characteristics

of the real dataset, namely the overlapping of several trajectories of different shapes at different locations

on the factorial plane.

The clustering method proposed above is applied to the simulated dataset with three dissimilarity

measures based on the DTW which is alternately computed on: i)the coordinates of the trajectories, ii)

the derivatives of the trajectories, iii) the derivatives with addition of the Euclidian distance between the

means of the coordinates as proposed in equation 5.

Figure 6 illustrates the resulting dendrogram for each dissimilarity measure and provides the mean

silhouette value against the number of clusters. A dendrogram is a tree-like plot where each step of

hierarchical clustering is represented as a fusion of two branches of the tree into a single one. The

branches represent clusters obtained on each step of hierarchical clustering. This representation eases

April 7, 2008 DRAFT



14

0

0-1.5-1.5

-1

-1

-0.5

-0.5 1.5

1

1

0.5

0.5

1st factorial axis

2n
d

fa
ct

or
ia

l
ax

is

Fig. 5: Simulated dataset of 27 trajectories obtained from three real trajectories and represented on the

first factorial plane. The first point in time for each trajectoryis marked up by a circle.
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Fig. 6: Dendrograms and mean silhouette valuevs. the number of clusters, for three dissimilarity measures

based on the DTW. The clustering is applied to the simulated dataset of 27 trajectories. The dendrogram

is cut at the threshold whose value is obtained after the maximum of the mean silhouette.

the choice of the number of clusters. The dendrogram is cut at the threshold (horizontal dashed line)

producing the number of clusters corresponding to the maximum mean silhouette value.

For each of the three measures, the mean silhouette valueS presents one global maximum, indicating

a value for the number of clustersK to be chosen, and leads to a different clustering. For the DTW on

coordinates,maxK S is obtained forK = 3 and it tends to group the trajectories close in the sense of

their location on the factorial plane. For the DTW on derivatives,maxK S is obtained forK = 3, but it

regroups trajectories only according to their evolution. For the DTW on derivatives with the addition of

the Euclidian distance between coordinates,maxK S is obtained forK = 9 and each obtained cluster is
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composed of trajectories with similar evolutions and closelocations. Despite the overlapping of several

trajectories with different evolutions at the same location, the proposed dissimilarity measure is able to

group similar trajectories. Moreover, it is suitable to distinguish between shapes (independent of any

notion of time) and evolutions (with start- and end-points), as trajectories created with the first prototype

and with the third prototype are assigned to two different clusters, even if they have similar shapes.

2) Test of the complete method: In this section, the noise robustness of the proposed methodology,

described in Figure 1, is tested. Among the trajectories obtained with the real database (cf. Figure 4), seven

trajectories with different evolutions and locations are selected. The corresponding time-series (i.e. the

13 variables of analysis) are retrieved. For each selected trajectory, a white noise is added independently

to each of its 13 variables with a given signal-to-noise ratio (SNR). The original time-series and 10

realizations of the noisy time-series are coded by fuzzy space-time coding and constitute the individuals

of analysis for the SMCA. The 77 resulting trajectories are then clustered by AHC with the DTW on

derivatives with the addition of the Euclidian distance between coordinates as a dissimilarity measure

(cf. equation 5). Figure 7 presents the mean silhouette value against the number of clusters for SNR =

3 dB, and the clusters obtained for the maximum value of the silhouette value beingK = 7. Despite

the noise, the correct number of clusters is determined by the internal validation indices, the trajectories

being grouped according to their evolution and location.

It appears that above SNR = 0 dB the clustering is correct and isnot disturbed by the noise added to

the time-series and that under SNR = 0 dB,S is unable to provide the correct value ofK. The method

seems then robust to noise on the variables of analysis, which can be explained by two of its steps: the

time fuzzy coding and the smoothing performed during the SMCA. The mean silhouette value increases

when the length of the time fuzzy windows increases and is higher with the SMCA than with the MCA.

The averaging performed by both the fuzzy coding and the SMCA smoothes the time-series and the

trajectories, respectively, improving the performance ofthe clustering.

The previous two tests, performed on datasets close to the real database, have proven the validity of

the proposed approach in terms of clustering methodology and dissimilarity measure relevant for the

processed trajectories, and of noise robustness.

B. Performance of the clustering on the recorded database

In this section, the recorded database, constituted of 58 trajectories on the first factorial plane, is

clustered with the proposed approach. Figure 8 provides the mean silhouette valueS against the number

of clustersK. The number of clusters is chosen atK = 10, after the maximum value ofS. The resulting
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Fig. 7: Test of the complete method on 77 trajectories computed from 7 selected trajectories of the real

dataset. For each selected trajectory, a white noise is added independently to each of its 13 variables

with a given signal-to-noise ratio (SNR = 3 dB), and the resulting 77 trajectories are clustered. For each

cluster, individuals of analysis (in gray) and individualsof the given cluster (in black) are represented in

the first plane of the SMCA. The first point in time for each trajectory is marked up by a circle.

clusters are provided in Figure 8, where for each cluster individuals of analysis are in gray and individuals

of the given cluster are in black. One can notice that trajectories within a given cluster have visually

similar evolutions and close locations.

To evaluate the methodology, the resulting clusters have tobe compared with the appreciation of the

physicians on the evolution of the patients during each of the three-month length periods. For the present

protocol, information is available on the global state of each patient, updated at the end of each 3-month

period of the follow-up, and each “adverse event” is reported (date and type). In the present study, the

records with adverse events other than cardiac events are discarded, as a non cardiac event like a fall

or a bronchitis can have very different effects on patients with RHF. As no everyday report of patients’

clinical state is available, the difficulty resides in definingthe actual evolution of a given patient: has

a patient undergoing a cardiac adverse event at the beginning of his/her three-month length period and

recovering rapidly after hospitalization a favorable or anunfavorable evolution? In this context, indices

like the specificity or the sensitivity are difficult to compute. Consequently, the present study can only
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Fig. 8: Mean silhouette valueS against the number of clustersK. Ten clusters are determined with the

proposed methodology for the recorded database (maxK S for K = 10). For each cluster, individuals

of analysis (in gray) and individuals of the given cluster (in black) are represented in the first plane of

the SMCA. Each record of each patient (corresponding to a three-month period) is represented by one

trajectory. The first point in time for each trajectory is marked up by a circle.

focus on the relation between the different areas of the factorial plane defined by SMCA and the health

of the patients as reported at the end of each follow-up period. More data would be necessary to study

the evolutions of patients on this factorial plane.

According to the analysis performed on the position of the individuals of analysis relatively to the

position of the modalities of analysis (cf. Figures 3 and 4), the evolution of a patient (during one of

his/her three-month length period) isa priori i) favorable if the corresponding trajectory is located on the

left of the plane or evolves from the right to the left of the plane, and ii) unfavorable if the corresponding

trajectory is located on the right part of the plane or evolves from the left to the right of the plane. The

study of each cluster is necessary to confirm this division of the factorial plane into several areas with

different meanings in terms of patient’s health.

On the left of the plane, clusters 2, 4 and 5 contain 13 trajectories in total. The medical reports indicate

that all the corresponding patients were, during the given period, in a favorable state. On the right of
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the plane, clusters 8 and 9 contain 5 trajectories in total, associated with patients all undergoing a health

deterioration during the given period. These five clusters enable the definition of two distinct areas in the

factorial plane, the left one associated with a favorable state and the right one with a health deterioration.

The other five clusters are interesting as their trajectoriesshow transitions from one area to the other.

Cluster 1 comprises 27 trajectories, with small evolutionson the upper half-plane, overlapping both right

and left half-planes. During the given period, patients whose trajectories belong to cluster 1 were all in

good health, except one patient. According to the medical records on this patient, he was tired during the

period of interest (3 months post-op) and died 1 month after the end of this period, the date of his/her

adverse event is not reported. Figure 9 shows that the corresponding trajectory (solid line) is evolving

from the upper-plane to the right of the plane, with a loop around the 7th post-op week. The trajectory in

cluster 3 is very specific, evolving bottom-to-top firstly and right-to-left secondly. This patient underwent

an adverse event (heart failure) 28 days after the beginningof the period of interest, corresponding to

the changing of direction in his/her trajectory, and recovered rapidly which explains why the trajectory

evolves from right to left. Cluster 6 groups 6 trajectories evolving in the same direction (bottom-right to

top), associated with patients all, except one, presentinga favorable state during the given period. This

patient (bold line in Figure 9) underwent a cardiac adverse event around 2 months after the beginning

of the period of interest. He was hospitalized for 1 week and recovered rapidly, as can be seen from

his/her trajectory finally evolving right to left. In Figure 9,the arrow corresponds to the reported date

of the adverse event, and one can notice that a changing in thedirection of the trajectory has occurred

around 5 weeks before the adverse event. Cluster 7 comprises2 trajectories evolving from top-right to

top-left of the plane and corresponding to one patient with afavorable evolution and one patient with an

unfavorable evolution. This patient underwent a cardiac adverse event around 2 weeks before the end of

the period of interest, as can be seen with the abrupt U-turn in his/her trajectory (dashed line in Figure 9).

Cluster 10 groups 4 trajectories with two different evolutions, two trajectories have very small dynamics,

associated with patients in good health, and the two others have large evolutions from the top to the right

of the plane, associated with patients undergoing adverse events during the given period.

The clustering performed on the real dataset provides 10 clusters, grouping trajectories with similar

evolutions and close locations, as expected. The obtained clusters seem consistent with the medical records

of the patients, but no quantitative evaluation is available. Two areas in the factorial plane have been

identified, the bottom-right quarter-plane is related with ahealth degradation and the bottom-left one with

a stable clinical state. The other two areas, although being distinguished by the clustering algorithm, are

not so easily identifiable.
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VII. D ISCUSSION AND CONCLUSION

This study was designed to show the informative potential of acceleration and impedance data recorded

in implantable devices and to evaluate the appropriatenessof a multiple correspondence analysis in this

particular context. A clinical protocol has been designed to provide data on patients that suffer from heart

failure.

MCA has been chosen as it is a multivariate method that exhibits linear and non-linear relationships

between variables. However, MCA demands to transform continuous variables into nominal ones, i.e. to

code amplitude and time domains of the variables by means of crisp or fuzzy modalities. MCA does not

explicitly exploit time, but the temporal dimension is introduced in this study with a basic solution that

consists in representing each time sample (or time window) of a time-series by one statistical individual

(a row of the table of analysis) and to perform MCA. Statistical individuals are represented by trajectories

onto the factorial plane and their temporal evolution can then be exploited. Consequently, the proposed

method can be useful for graphically follow the evolution ofa given patient’s state by means of a synthetic

representation that takes into account the most pertinent information in the data.

In the present study, it has been possible to evaluate and discuss the synthetic indices provided by

the first two factorial axes of the MCA and to explain them according to functional and physiological

points of view. The 58 records provided by the clinical protocol have been represented by trajectories

on the first factorial plane of the MCA. The definition of an appropriate similarity measure has been

discussed and has enabled the clustering of the trajectories into groups of trajectories with similar locations

and evolutions on the factorial plane. The proposed distancehas been validated on simulated datasets
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and enables the clustering of trajectories in the factorialplane according to their location and/or their

evolution depending on the problem to be solved. Experimentson simulated datasets regarding the noise

robustness also show the relevance of the association of fuzzy spatio-temporal coding and smoothed

MCA. The proposed method is robust to white noise with SNR as lowas 3 dB.

A database constituted of clinical observations from 41 patients has also been analyzed by using a data

mining approach so as to characterize the data. Two areas in the factorial plane, corresponding to two

large groups of patients, have been identified, the bottom-right quarter-plane being related with a health

degradation and the bottom-left one with a stable clinical state. Most of the trajectories projected on this

first factorial plane were correctly clustered according to their location and shape. Discussed individually,

these clusters were efficient in grouping trajectories corresponding to similar patients’ clinical state. The

present study has shown that patients undergoing an adverseevent often present trajectories with abrupt

variations. A detection of such phenomena would permit to identify patients with a critical evolution.

In the future, additional data would enable the identification and detection of typical evolutions related

to health deterioration. Rules may be extracted from the location of modalities on the factorial plane, and

enable the definition of thresholds on time-series to generate alarms associated with adverse events or

health deterioration. These alarms could be sent from the pacemaker, via a data communication device

(such as a mobile phone, PDA, etc.), to a telemonitoring center. These results are encouraging and may

be useful for the definition of new selection criteria of candidate patients for CRT. Finally, the proposed

methodology can be generalized to other monitoring problems.
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